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Abstract 
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Abstract 
The efficiency of a Genetic Algorithm for constrained 
parameter optimization depends heavily on the ratio of 
feasible to infeasible area in its rectangular search space. We 
show an algorithm based on existing mathematical 
programming methods which improves this ratio assuming a 
set of linear constraints. We approximate the feasible area by a 
multidimensional ellipsoid and rotate the original search space 
parallel to its main axes. The minimum volume hyper 
rectangle we can wrap around the rotated constraint set gives 
us a new rectangular search space. In addition to that we 
propose to continue with a local search algorithm for fine 
tuning. To demonstrate the use of the proposed method, we 
perform test runs on randomly generated cases as well as on 
three selected examples. 

Introduction 
Genetic Algorithms (GAs) are used more and more for 
numerical optimization and conquered their place among other 
classical optimization techniques. Due to their robustness and 
flexibility they are mainly applied on complex, nonlinear, 
even stochastic optimization problems of moderate size. One 
important issue for an optimization algorithm is to handle 
constraints. The search space for a Genetic Algorithm has the 
form of an n-dimensional rectangle. However real world 
problems have more constraints than upper and lower bounds 
on the variables.  In special cases it is possible to get rid of 
constraints using a problem specific coding scheme and 
problem specific operators to preserve feasibility of solutions 
(e.g.:[1]). In the other cases the feasible area is smaller than 
the search space, which makes the GA inefficient. This detail 
is especially important for problems where running time is a 
major concern. General applicable methods for handling 
constraints are: penalty functions and repair or mapping 
algorithms [2], [1], [3] to name the most important ones. 
In this paper we present a method to improve the efficiency of 
handling linear constraints in general which can be applied in 
combination with all known constraint handling techniques 
for GAs. 
We show a polynomial time algorithm to minimize the 
infeasible area in the search space by rotating the coordinate 
system before starting the GA. The GA then works more 
efficiently in a transformed coordinate system, still using 
constraint handling techniques.  
The feasible area is a polyhedral set defined by the linear 
constraints (figure 1). We approximate this area by a 
multidimensional ellipsoid (figure 3) using Semi Definite 
Programming (SDP).  The smallest rectangle one can wrap 
around an ellipsoid has sides parallel to its principle axes. 
Therefore we rotate the original search space parallel to the 
main axes of the ellipsoid. The smallest n-dimensional 
rectangle in the rotated system is then obtained via a sequence 
of linear programs (LPs). Since the replacement of the original 

polyhedral set by an ellipsoid is just an approximation we 
refine the search by a local gradient method.  Finally we check 
the improvement by comparing the volume of the new box to 
the original one. 
Minimizing the infeasible area typically has many local 
optima, so the overall optimal rotation can only be found by 
global optimization, which would require a large 
computational effort - especially in higher dimensions and 
with large constraint sets. The algorithm presented here uses a 
heuristic to get find the global optimum.  
In the following paragraphs we briefly sketch the underlying 
theory for our algorithm, describe the algorithm itself and 
eventually show the benefits of the algorithm by some 
experimental results. 

The Problem 
Genetic Algorithms are often applied to numerical 
optimization problems. Without loss of generality we assume 
continuous variables in ℜ . This mathematical program can be 
written in the following form: 

 optimize  , ( )z f x x xn= 1 2, , ,K

where the objective function z is an arbitrary function in ℜ . 
The search space  for Genetic Algorithms is defined 
as an n-dimensional rectangle in ℜ , defined by lower and 
upper bounds of the variables 

S n⊆ ℜ
n

x : 

 lb x ub i ni i i≤ ≤ ≤ ≤, 1  

Set  defines the feasible part of the search space - the 
infeasible part I is the remaining set 

F S⊆
I S F= \ . If no additional 

constraints are given then F equals S . Otherwise F  is 
defined by the following set of m constraints: 
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where ( )g i mi 1≤ ≤  are, like z, arbitrary functions in ℜ . 
 

Constraint Handling 
As stated above, standard Genetic Algorithms without specific 
"feasibility preserving" coding schemes and operators can 
only search in an n-dimensional rectangle, which requires 
constraint-handling methods. Generally they can be grouped 
into the following two categories: 
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• methods which repair infeasible solutions  
Infeasible solutions are projected at the boundary or inside 
the feasible set F e.g. in [1], [3] or [4]. 

 
and 
 
• methods based on penalty functions  

These methods add "penalties" to the objective function 
value for violating constraints e.g. in [2]. 

 
We do not discuss these methods here. One comprehensive 
survey is given in [5]. Our approach, presented in this paper, 
can be used in combination with all methods mentioned 
above. 
 

Efficiency of a GA 
The efficiency of Genetic Algorithms depends obviously on 
the size of the search space [6]. The more the search space can 
be reduced, the more efficient the algorithm will be. 
Furthermore some constraint handling techniques such as 
methods based on "repairing infeasible solutions" disturb the 
creation and propagation of building blocks (compare [7] or 
[6]) by disrupting schemes with their "corrections". If we have 
a constrained optimization problem we have to accept the 
disadvantages of these techniques. So we try to reduce the 
infeasible area I as much as possible. 

Basics 
In this section the basic underlying theory of our approach to 
reduce the size of the infeasible region in the search space is 
presented. We state an optimization problem with linear 
constraints and summarize the two mathematical programs 
used in our approach, LPs and SDPs. 

Linear Constraints 
The feasible region F  is defined by a set of  linear 
in/equalities (linear constraints) 

m
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or equivalently  which is a convex, 
polyhedral set, hereafter referred to as polyhedron (see figure 
1). 

{ }Ax b≤ = ≥/ /
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Figure 1, Convex Polyhedral Set. 

However if there is a constraint of the form  (where 
 is the i  row of 

a x bi
T = i

ai
th A ) then the interior of the set is empty. 

The approach used in the sequel requires the polyhedron to 
have a non-empty interior. Therefore in the sequel it is 
assumed that the polyhedron consists of the set 

 { }P = x Ax b≤  

where ,  and b . The variable bounds 
are defined by the smallest hyper cube which contains P  (see 
figure 2) and may be obtained via a sequence of linear 
programs. 

x n∈ℜ A m n∈ℜ × m∈ℜ
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Figure 2, Smallest Enclosing Rectangle. 

 

Linear Programming 
Linear programming was first introduced by George Dantzig 
[8] and is widely used in many applications today. One form 
of a linear program is 
 
 LP: minimize c xT  
  subject to Ax b≤  
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where , ,  and b . In order to 
solve a linear program many different solution techniques can 
be used [8]. 

x n∈ℜ c n∈ℜ A m n∈ℜ × m∈ℜ

 

Semidefinite Programming - Maxdet Problem 
Semidefinite programming (SDP) is a relatively new 
mathematical programming technique. For a detailed survey 
of the theory of SDP see e.g.: [9].  The general form of a SDP 
is 
 
 SDP: minimize c xT  
  subject to F x  ( ) ≥ 0
 

where , ,  and . 

In this problem  means that  is positive semi-
definite (i.e. , ). SDPs can be solved 
using interior point methods similar to those developed for 
LPs. These methods are discussed in [10] and will not be 
repeated here. 

F x F x Fi i
i

n
( ) = +

=
∑0

1
x n∈ℜ c n∈ℜ Fi

m m∈ℜ ×

F x( ) ≥ 0 F x( )
z F x zT ( ) ≥ 0 ∀ ∈ℜz m

 
One generalization of an SDP is the "determinant 
maximization problem". This problem, described by 
Vandenberghe and Boyd [11], is referred to as the "maxdet 
problem" and has the form 
 
maxdet: minimize  c x G xT log det + −( ) 1

 subject to G x  ( ) > 0
    F x( ) ≥ 0
 
where x  and c  are defined as in the SDP, l  and 

 are defined by 
G n l:ℜ → ℜ ×

m:ℜ → ℜ

n

F n m×
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1
Gi
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F x F x Fi i
i

( ) = +
=
∑0

1
Fi

m m∈ℜ ×

and  means that G x  is positive definite. When 
 the maxdet problem reverts to an SDP. Similar 

interior point methods to those used for SDPs can be applied 
to maxdet problems [11]. 

G x( ) > 0 ( )
G x( ) = 1

Maximum volume ellipsoid in a polyhedron 
One example of the maxdet problem presented in [11] is the 
problem of maximizing the volume of an ellipsoid which lies 
in the interior of a polyhedron (see Figure 3).  
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Figure 3, Maximum Volume Ellipsoid. 

 
We use this method in our algorithm, so we briefly review it 
here. 
As stated above, any polyhedron may be expressed by a set of 
linear inequalities { }P = x Ax b≤ , where ,  

and . Any ellipsoid may be represented by a matrix, 

x n∈ℜ A m n∈ℜ ×

b m∈ℜ
C , and a vector, , in the form d

 { }E = + ≤Cy d y 1  

where  such that C n n∈ℜ × C C= >T 0  (i.e. C  is positive 
definite and symmetric) and d . The volume of the 
ellipsoid  is proportional to 

n∈ℜ
E det C . The problem of finding 

the maximum volume ellipsoid can be written as follows 
("maxdet problem"): 
 
 maximize log   det C
 subject to C C= >T 0  
    E P⊆
 
However 
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T

T T 0 i m= 1, ,K  

 
we have now formulated the problem as a maxdet problem  
 
maximize  log det C
subject to C C= >T 0  
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and it may be solved using the methods described in [11]. The 
matrix C is a rotation/scaling matrix which scales and then 
rotates the unit hyper sphere to conform to the ellipsoid 
required. The vector d is a translation vector which moves the 
ellipsoid from the origin to the interior of the polyhedron. 

Approach 
The ideas reviewed in the previous section are composed in an 
algorithm which attempts to rotate the search space so that the 
ratio of the feasible area to the total search space is increased. 
Consider the following example : 
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This polyhedron is a rectangle rotated anticlockwise by π/4 
radians. Calculating the upper and lower bounds in the 
original coordinate system gives a fairly inefficient search 
space. The dark gray area in figure 4a is the infeasible part of 
the search space. 
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Figure 4, Example - Original (a) and rotated (b) coordinate 
system. 

 
Obviously it would be a advantageous to rotate the coordinate 
system clockwise by π/4 radians. The search space found in 
the new coordinate system conforms exactly to the feasible 
region (light gray area in figure 4b). 
In the following we show an algorithm to find the suitable 
angles for more common cases. 

Finding the original search space 
Finding the search space for linear constraints involves 
solving a sequence of LPs. Two LPs must be solved for each 
dimension of the problem, one to find the minimal value, the 

other to find the maximal value in that dimension. The linear 
constraints that constitute the polyhedron are 

 { }P = x Ax b≤ . 

The two LPs for dimension i have the following formulations: 
 
  minimize  li : xi

  subject to Ax b≤  
 
and 
 
  minimize  ui : −xi

  subject to Ax b≤  
 
They return the lower and upper bounds for the search space 
in dimension i. We call this part of the algorithm "shrinking". 
The problem now becomes one of finding the angles of 
rotation for the coordinate system which maximizes the ratio 
of feasible area to search space. 

Find maximum volume ellipsoid 
One heuristic for finding a good rotation for the coordinate 
system is to approximate the polyhedron by an ellipsoid. If the 
volume of the ellipsoid is maximal, but is still contained 
within the polyhedron then it approximates well its volume 
and shape. The accuracy of this approximation and therefore 
the quality of the heuristic depends on the shape of the 
polyhedral set. 
Finding the maximum volume ellipsoid in a polyhedron 
belongs to the class of maxdet problems and can be solved by 
methods discussed in [11]. They yield an ellipsoid 

 { }E = + ≤Cy d y 1  

which consists of a rotation/scaling matrix C , and a 
translation vector d , which describe how to transform the unit 
hyper sphere into the required ellipsoid. 

Finding the angles of the principal axes 
The principal axes of the ellipsoid are given by the rotation of 
the original coordinate axes. The rotation/scaling matrix, C, 
both rotates and scales these axes. However by 
orthonormalizing C the scaling factor is removed and only the 
rotation R remains. The orthonormalized matrix, R, gives a 
basis transformation for the new coordinate system. 

Rotating the coordinate system 
To rotate the coordinate system the only change required is 
the basis change given by the orthonormalized matrix R. 
Rotation of the polyhedron  
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 { }P = x Ax b≤  

gives a new polyhedron 

 { }′ ′ ′ ≤P = x ARx b  

which can then be used to find the new search space in the 
new coordinate system. 

Finding the new search space 
The new search space  is found by shrinking an n-
dimensional rectangle around the transformed polyhedron - a 
procedure similar to finding the original search space (see 
above). An n-dimensional rectangle represents the new search 
space in the new coordinate system. 

′S

Local Search 
The rotation given by the principal axes of the maximum 
volume interior ellipsoid lies close to the possible minimum. 
The better the ellipsoid approximates the polyhedron, the 
closer the approach. The final approach is done by a local 
gradient search (e.g.: quasi-Newton [12]). The objective 
function for the search is the volume of the hyper rectangle 
calculated by solving the "shrinking" sub-problem. The 
variables represent the rotation angles (rotation) along the 
axes of the coordinate system. 

Accept or Reject 
Having defined a new search space the question has to be 
addressed, whether the new search space is more efficient than 
the original one. The comparison of the volume of the original 
search space V  and the new search space ′V  yields an 
answer. As both of the search spaces are hyper rectangles 
these volumes are simple to calculate. As our approach is only 
a heuristic (it approximates the polyhedron by an ellipsoid) in 
some rare situations it can happen that the search space has 
deteriorated (i.e. increased in volume) after rotation. In such a 
case the original search space could not be reduced and is to 
be used without any modification. 

Run Time Transformation Function for the GA 
Eventually a run time transformation function needs to be 
provided for the GA. Rotating the coordinate system relative 
to the original system requires the re-transformation of the 
parameters ′x  generated in the rotated system when calling 
the fitness (objective) function. Since we have already 
computed the rotation matrix  and  we find R ′ =x R x

  x R x= ′−1

by computing the inverse rotation matrix . R −1

Estimate of Time Complexity 
All our calculations are completed before the GA run starts 
(pre-processor), the time complexity of the algorithm shown 
here is independent from the time complexity of a GA. 
However finding an improved search space will improve the 
running time of the GA and so the efforts to obtain a new, 
smaller search space ′S may be very beneficial. 
 
Finding the new search space includes four steps : 
 
• Finding the maximum ellipsoid inside the polyhedron via 

maxdet 
• Rotation of the coordinate system 
• Finding the new search space in the new coordinate 

system by "shrinking" 
• Refining the search by using a local gradient search. 
 
Vandenberghe and Boyd [11] showed that a general maxdet 
problem ,  and  has a 

worst-case complexity of 

x n∈ℜ G n:ℜ → ℜ ×l l mF n m:ℜ → ℜ ×

(O m)

)

 Newton iterations. Each 

Newton iteration requires the computation of Newton 
directions which can be done in  operations. 

Thus the total time complexity for solving the maxdet problem 
is 

( )(O m l n2 2 2+

( )( )O m m l n2 2 2+ . However when finding the maximum 

ellipsoid inside the polyhedron ( ), the dimensions of the 
maxdet problem are  (

m n×
x n n∈ℜ +( ) /1 2 x  is composed of the 

translation vector d  and the symmetric part of the rotation 
matrix C ),  and  

. Thus the running time in terms 
of the dimensions of the polyhedron is 

G n n( )ℜ n n: / →ℜ+ ×1 2

+F n n m n m n: ( ) / ( ) ( )ℜ → ℜ+ + ×1 2 1 1

( )( )( )O m n m n n n n n( ) ( ) ( )+ /+ + + +1 1 1 22 2 2 2  which is 

( ) ( )≈ ≤O Om n m n5 2 13 2 3 7/ / . This means that the maximum 
volume interior ellipsoid is done in polynomial time in terms 
of the polyhedron dimensions. The rotation of the coordinate 
system is simply a case of a basis transformation which 
involves the multiplication of  and  which 
is 

A m n∈ℜ × R n n∈ℜ ×

( )O mn 2 . Shrinking in the new coordinate system requires 

to solve 2  LPs, each with a constraint matrix . 
The time complexity for solving a single LP with the simplex 
method is 

n A m n∈ℜ ×

( )O 2m , so the time complexity of shrinking the box 

is ( )O n m2 . The function evaluation in the quasi-Newton 
search requires the hyper cube to be found by shrinking the 
box, so each function evaluation takes ( )O n m2  time. The 
convergence rate of the gradient search (quasi-Newton) 
depends on the specific polyhedron. 
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The overall time complexity of the algorithm is dominated by 
the time needed to shrink the rectangle around the polyhedron. 
This has a time complexity of solving 2  LPs. The additional 
gradient search adds some calls to the "shrinking" problem. 
However if a LP solution method which runs in polynomial 
time is used then the algorithm may be run in polynomial time 
in terms of the dimensions of the polyhedron.  

n

Just to give an idea on how fast the algorithm actually runs: 
Our test examples took less than 2 seconds to compute on a 
DEC 3000 workstation which is about 6 times slower than a 
personal computer with 166 MHz Pentium CPU, an example 
with 16 dimensions and 32 constraints took about 50 seconds 
on the same machine. 

Results 
The power of our method to minimize the search space, i.e. to 
increase the ratio of feasible to infeasible area was tested in 
some experiments. They were carried out in two dimensions, 
without loss of generality but with the possibility of plotting 
the search space. Three manually constructed cases are 
discussed and followed by randomly generated ones. The 
statistic we are considering is the ratio of the polygon area to 
the enclosing rectangle at three stages in our algorithm: 
• before the rotation of the polygon 
• after we rotated the polygon but before the local search 
• after the local search. 

The experiments were performed with a program written in 
Matlab [13] with calls to routines from [12] and [14]. 

Manually Constructed Difficult Cases 
To demonstrate the behavior of our algorithm in extreme 
cases, three scenarios were constructed by hand, which are 
refered to as Needle, Diamond, and Box, and are drawn in 
figures 5 to 7 : 
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Figure 5, Needle before (a) and after rotation (b). 
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Figure 6, Diamond before (a) and after rotation (b). 
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Figure 7, Box before (a) and after rotation (b). 

 
The geometry of the Needle (figure 5a) favors our algorithm 
because obviously a rotation yields a much smaller infeasible 
area.  The ratio of feasible to infeasible area has been 
remarkably increased from 0.1786 to 0.5015.  For the 
diamond a similar result holds here (from 0.5000 to 0.7243).  
In addition the local search algorithm demonstrates the 
importance of the final rotation adjustment.  Without this step, 
the polygon would not have been rotated at all because the 
principal axes of the ellipsoid are already parallel to the 
coordinate system (figure 6a).  In the third example (Box, 
figure 7a) the algorithm behaves opposite to the way it did at 
the example of the Diamond: the initial rotation based on the 
ellipsoid did take place and the local search afterwards undid 
that turn because the ratio of feasible to infeasible area cannot 
be improved upon the initial state  - since it was already 
optimal.  The plots in figure 5b to 7b show the results of 
applying the algorithm to the three cases. 

Tests On Randomly Generated Cases 
Convex hulls containing 5, 7, 9, 11, and 13 points were 
considered to obtain some statistical significance for our 
results.  In each category 40 samples were generated.  The 
basic procedure to obtain the equations for the polyhedron is 
as follows:  after randomly generating the points, an algorithm 
known as a Graham Scan [15] is used to find the convex hull.  
From the convex hull, we can compute the equations for the 
linear constraints easily. 
The test statistic is the ratio of the polygon area to the 
enclosing rectangular area. Figure 8 depicts the distribution of 
the overall improvement of this ratio. 
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Figure 8, Distribution of the Overall Improvement. 

It turns out that the improvement of the ratio is higher with 
fewer points.  This is not surprising because the more points 
are contained in the convex hull, the more it tends to be 
rectangular and hence the percentage improvement by means 
of rotation decreases.  In fact, in a few cases the rotation 
method does not yield any improvement. 
The next issue we address is to show the necessity of a local 
search on top of the "maxdet" rotation (based on the 
orientation of the maximum volume ellipsoid).  The following 
two graphs, which include only cases of more than 1% 
improvement, illustrate this.  The improvement after the first 
("maxdet") rotation is shown in figure 9. 
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Figure 9, Initial Rotation Improvement. 

Between 40% to 60% of all cases are improved by at least 
23% for a convex hull consisting of 5, 7, or 9 points,.  To 
yield an even higher improvement for more cases, a secondary 
rotation was added. This is essentially a steepest descent 
algorithm, which tries to improve upon the status quo.  The 
results are shown in figure 10. 
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Figure 10, Overall Improvement. 

The overall benefit of the second rotation (local search) is 
considerable: not only has the individual improvement 
increased in most cases, but also an improvement can be 
achieved for a much broader range of cases. 

Discussion 
The experimental results shown above, demonstrate that our 
algorithm yields a considerable reduction of the search space 
when doing parameter optimization with linear constraints. In 
addition the ratio of feasible to infeasible area is increased. 
Both facts can improve dramatically the overall behavior of a 
GA [6]. 
In addition to that two other strengths of this method are speed 
and scalability. The algorithm runs in polynomial time in the 
dimensions of the polyhedron and is also not limited by the 
dimensionality of the problem. Another advantage is that our 
algorithm does a pre-processing of the data and is therefore 
(with the exception of the run time transformation) 
independent of the optimization part itself. Any other 
constraint handling technique can still be applied to the 
modified data. The improvement that can be achieved by the 
proposed algorithm depends on how much the shape of the 
feasible set differs from a hyper rectangle: the greater the 
difference, the greater is the benefit. 
The algorithm presented in this paper can be used for a all 
optimization problems with parameter optimization an linear 
constraints. It is fast, scalable and reduces the search of a GA 
considerably. 

Future Work 
In our future work we aim at handling nonlinear constraints as 
well and to adapt a GA for the local search part. 
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