
Improving the Efficiency of Genetic Algorithms for
Linearly Constrained Optimization

Siegfried Vössner*

Department of Engineering- and Business Informatics
Graz University of Technology

Graz, Austria

Michael O'Sullivan†, ‡

Department of Engineering Science
University of Auckland
Auckland, New Zealand

Ulrich Kausch

Abstract
The efficiency of a Genetic Algorithm for constrained parameter optimization depends heavily on the ratio of
feasible to infeasible area in its rectangular search space. We show an algorithm based on existing mathematical
programming methods which improves this ratio assuming a set of linear constraints. We approximate the feasible
area by a multidimensional ellipsoid and rotate the original search space parallel to its main axes. The minimum
volume hyper rectangle we can wrap around the rotated constraint set gives us a new rectangular search space. In
addition to that we propose to continue with a local search algorithm for fine tuning. To demonstrate the use of the
proposed method, we perform test runs on randomly generated cases as well as on three selected examples.

* Research performed while visiting the Department of Engineering-Economic Systems and Operations Research

(now Management Science and Engineering), Stanford University, during 1997.
† Corresponding author.
 Email address: michael.osullivan@auckland.ac.nz (M. J. O’Sullivan)
‡ Research performed while a PhD student in the Department of Engineering-Economic Systems and Operations

Research (now Management Science and Engineering), Stanford University, during 1997.

Abstract
The efficiency of a Genetic Algorithm for constrained
parameter optimization depends heavily on the ratio of
feasible to infeasible area in its rectangular search space. We
show an algorithm based on existing mathematical
programming methods which improves this ratio assuming a
set of linear constraints. We approximate the feasible area by a
multidimensional ellipsoid and rotate the original search space
parallel to its main axes. The minimum volume hyper
rectangle we can wrap around the rotated constraint set gives
us a new rectangular search space. In addition to that we
propose to continue with a local search algorithm for fine
tuning. To demonstrate the use of the proposed method, we
perform test runs on randomly generated cases as well as on
three selected examples.

Introduction
Genetic Algorithms (GAs) are used more and more for
numerical optimization and conquered their place among other
classical optimization techniques. Due to their robustness and
flexibility they are mainly applied on complex, nonlinear,
even stochastic optimization problems of moderate size. One
important issue for an optimization algorithm is to handle
constraints. The search space for a Genetic Algorithm has the
form of an n-dimensional rectangle. However real world
problems have more constraints than upper and lower bounds
on the variables. In special cases it is possible to get rid of
constraints using a problem specific coding scheme and
problem specific operators to preserve feasibility of solutions
(e.g.:[1]). In the other cases the feasible area is smaller than
the search space, which makes the GA inefficient. This detail
is especially important for problems where running time is a
major concern. General applicable methods for handling
constraints are: penalty functions and repair or mapping
algorithms [2], [1], [3] to name the most important ones.
In this paper we present a method to improve the efficiency of
handling linear constraints in general which can be applied in
combination with all known constraint handling techniques
for GAs.
We show a polynomial time algorithm to minimize the
infeasible area in the search space by rotating the coordinate
system before starting the GA. The GA then works more
efficiently in a transformed coordinate system, still using
constraint handling techniques.
The feasible area is a polyhedral set defined by the linear
constraints (figure 1). We approximate this area by a
multidimensional ellipsoid (figure 3) using Semi Definite
Programming (SDP). The smallest rectangle one can wrap
around an ellipsoid has sides parallel to its principle axes.
Therefore we rotate the original search space parallel to the
main axes of the ellipsoid. The smallest n-dimensional
rectangle in the rotated system is then obtained via a sequence
of linear programs (LPs). Since the replacement of the original

polyhedral set by an ellipsoid is just an approximation we
refine the search by a local gradient method. Finally we check
the improvement by comparing the volume of the new box to
the original one.
Minimizing the infeasible area typically has many local
optima, so the overall optimal rotation can only be found by
global optimization, which would require a large
computational effort - especially in higher dimensions and
with large constraint sets. The algorithm presented here uses a
heuristic to get find the global optimum.
In the following paragraphs we briefly sketch the underlying
theory for our algorithm, describe the algorithm itself and
eventually show the benefits of the algorithm by some
experimental results.

The Problem
Genetic Algorithms are often applied to numerical
optimization problems. Without loss of generality we assume
continuous variables in ℜ . This mathematical program can be
written in the following form:

 optimize , ()z f x x xn= 1 2, , ,K

where the objective function z is an arbitrary function in ℜ .
The search space for Genetic Algorithms is defined
as an n-dimensional rectangle in ℜ , defined by lower and
upper bounds of the variables

S n⊆ ℜ
n

x :

 lb x ub i ni i i≤ ≤ ≤ ≤, 1

Set defines the feasible part of the search space - the
infeasible part I is the remaining set

F S⊆
I S F= \ . If no additional

constraints are given then F equals S . Otherwise F is
defined by the following set of m constraints:

()
()

()

g x x x

g x x x

g x x x

b

b

b

n

n

m n m

1 1 2

2 1 2

1 2

1

2

, ,

, ,

, ,

K

K

M

K

M

⎫

⎬

⎪
⎪

⎭

⎪
⎪

≤
=
≥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

where ()g i mi 1≤ ≤ are, like z, arbitrary functions in ℜ .

Constraint Handling
As stated above, standard Genetic Algorithms without specific
"feasibility preserving" coding schemes and operators can
only search in an n-dimensional rectangle, which requires
constraint-handling methods. Generally they can be grouped
into the following two categories:

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 2

• methods which repair infeasible solutions
Infeasible solutions are projected at the boundary or inside
the feasible set F e.g. in [1], [3] or [4].

and

• methods based on penalty functions

These methods add "penalties" to the objective function
value for violating constraints e.g. in [2].

We do not discuss these methods here. One comprehensive
survey is given in [5]. Our approach, presented in this paper,
can be used in combination with all methods mentioned
above.

Efficiency of a GA
The efficiency of Genetic Algorithms depends obviously on
the size of the search space [6]. The more the search space can
be reduced, the more efficient the algorithm will be.
Furthermore some constraint handling techniques such as
methods based on "repairing infeasible solutions" disturb the
creation and propagation of building blocks (compare [7] or
[6]) by disrupting schemes with their "corrections". If we have
a constrained optimization problem we have to accept the
disadvantages of these techniques. So we try to reduce the
infeasible area I as much as possible.

Basics
In this section the basic underlying theory of our approach to
reduce the size of the infeasible region in the search space is
presented. We state an optimization problem with linear
constraints and summarize the two mathematical programs
used in our approach, LPs and SDPs.

Linear Constraints
The feasible region F is defined by a set of linear
in/equalities (linear constraints)

m

a x a x a x
a x a x a x

a x a x a x

b
b

b

n n

n n

m m mn n

11 1 12 2 1

21 1 22 2 2

1 1 2 2

1

2

+ + +
+ + +

+ + +

⎫

⎬
⎪
⎪

⎭
⎪
⎪

≤
=
≥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

K

K

M

K

M

m

or equivalently which is a convex,
polyhedral set, hereafter referred to as polyhedron (see figure
1).

{ }Ax b≤ = ≥/ /

x2

g
1

g
2

g
3

g
4

g
5

x
1

F

Figure 1, Convex Polyhedral Set.

However if there is a constraint of the form (where
 is the i row of

a x bi
T = i

ai
th A) then the interior of the set is empty.

The approach used in the sequel requires the polyhedron to
have a non-empty interior. Therefore in the sequel it is
assumed that the polyhedron consists of the set

 { }P = x Ax b≤

where , and b . The variable bounds
are defined by the smallest hyper cube which contains P (see
figure 2) and may be obtained via a sequence of linear
programs.

x n∈ℜ A m n∈ℜ × m∈ℜ

l
1

x
1

u
1

l
2

u
2

x
2

I

F

Figure 2, Smallest Enclosing Rectangle.

Linear Programming
Linear programming was first introduced by George Dantzig
[8] and is widely used in many applications today. One form
of a linear program is

 LP: minimize c xT
 subject to Ax b≤

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 3

where , , and b . In order to
solve a linear program many different solution techniques can
be used [8].

x n∈ℜ c n∈ℜ A m n∈ℜ × m∈ℜ

Semidefinite Programming - Maxdet Problem
Semidefinite programming (SDP) is a relatively new
mathematical programming technique. For a detailed survey
of the theory of SDP see e.g.: [9]. The general form of a SDP
is

 SDP: minimize c xT
 subject to F x () ≥ 0

where , , and .

In this problem means that is positive semi-
definite (i.e. ,). SDPs can be solved
using interior point methods similar to those developed for
LPs. These methods are discussed in [10] and will not be
repeated here.

F x F x Fi i
i

n
() = +

=
∑0

1
x n∈ℜ c n∈ℜ Fi

m m∈ℜ ×

F x() ≥ 0 F x()
z F x zT () ≥ 0 ∀ ∈ℜz m

One generalization of an SDP is the "determinant
maximization problem". This problem, described by
Vandenberghe and Boyd [11], is referred to as the "maxdet
problem" and has the form

maxdet: minimize c x G xT log det + −() 1

 subject to G x () > 0
 F x() ≥ 0

where x and c are defined as in the SDP, l and

 are defined by
G n l:ℜ → ℜ ×

m:ℜ → ℜ

n

F n m×

 ,

 ,

G x G x Gi i
i

n
() = +

=
∑0

1
Gi

l l∈ℜ ×

F x F x Fi i
i

() = +
=
∑0

1
Fi

m m∈ℜ ×

and means that G x is positive definite. When
 the maxdet problem reverts to an SDP. Similar

interior point methods to those used for SDPs can be applied
to maxdet problems [11].

G x() > 0 ()
G x() = 1

Maximum volume ellipsoid in a polyhedron
One example of the maxdet problem presented in [11] is the
problem of maximizing the volume of an ellipsoid which lies
in the interior of a polyhedron (see Figure 3).

x
2

x
1

Figure 3, Maximum Volume Ellipsoid.

We use this method in our algorithm, so we briefly review it
here.
As stated above, any polyhedron may be expressed by a set of
linear inequalities { }P = x Ax b≤ , where ,

and . Any ellipsoid may be represented by a matrix,

x n∈ℜ A m n∈ℜ ×

b m∈ℜ
C , and a vector, , in the form d

 { }E = + ≤Cy d y 1

where such that C n n∈ℜ × C C= >T 0 (i.e. C is positive
definite and symmetric) and d . The volume of the
ellipsoid is proportional to

n∈ℜ
E det C . The problem of finding

the maximum volume ellipsoid can be written as follows
("maxdet problem"):

 maximize log det C
 subject to C C= >T 0
 E P⊆

However

E P⊆ ⇔ , i m sup T

x
i ia x b

∈
≤

E
= 1, ,K

 ⇔ sup T T

y
i i ia Cy a d b

≤
+ ≤

1
, i m1, ,K =

 ⇔ Ca a d bi i i+ ≤T = 1, ,K, i m

 ⇔ , ()b a d I Ca
a C b a d

i i i

i i i

−
−

⎡

⎣
⎢

⎤

⎦
⎥ ≥

T

T T 0 i m= 1, ,K

we have now formulated the problem as a maxdet problem

maximize log det C
subject to C C= >T 0

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 4

 , i m
()b a d I Ca

a C b a d
i i i

i i i

−
−

⎡

⎣
⎢

⎤

⎦
⎥ ≥

T

T T 0 = 1, ,K

and it may be solved using the methods described in [11]. The
matrix C is a rotation/scaling matrix which scales and then
rotates the unit hyper sphere to conform to the ellipsoid
required. The vector d is a translation vector which moves the
ellipsoid from the origin to the interior of the polyhedron.

Approach
The ideas reviewed in the previous section are composed in an
algorithm which attempts to rotate the search space so that the
ratio of the feasible area to the total search space is increased.
Consider the following example :

 P = x

x x
x x
x x
x x

∈ℜ

+ ≥
− ≤
+ ≤
− ≥ −

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

2

1 2

1 2

1 2

1 2

1
1
4

1

This polyhedron is a rectangle rotated anticlockwise by π/4
radians. Calculating the upper and lower bounds in the
original coordinate system gives a fairly inefficient search
space. The dark gray area in figure 4a is the infeasible part of
the search space.

 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

 (a) (b)

Figure 4, Example - Original (a) and rotated (b) coordinate
system.

Obviously it would be a advantageous to rotate the coordinate
system clockwise by π/4 radians. The search space found in
the new coordinate system conforms exactly to the feasible
region (light gray area in figure 4b).
In the following we show an algorithm to find the suitable
angles for more common cases.

Finding the original search space
Finding the search space for linear constraints involves
solving a sequence of LPs. Two LPs must be solved for each
dimension of the problem, one to find the minimal value, the

other to find the maximal value in that dimension. The linear
constraints that constitute the polyhedron are

 { }P = x Ax b≤ .

The two LPs for dimension i have the following formulations:

 minimize li : xi

 subject to Ax b≤

and

 minimize ui : −xi

 subject to Ax b≤

They return the lower and upper bounds for the search space
in dimension i. We call this part of the algorithm "shrinking".
The problem now becomes one of finding the angles of
rotation for the coordinate system which maximizes the ratio
of feasible area to search space.

Find maximum volume ellipsoid
One heuristic for finding a good rotation for the coordinate
system is to approximate the polyhedron by an ellipsoid. If the
volume of the ellipsoid is maximal, but is still contained
within the polyhedron then it approximates well its volume
and shape. The accuracy of this approximation and therefore
the quality of the heuristic depends on the shape of the
polyhedral set.
Finding the maximum volume ellipsoid in a polyhedron
belongs to the class of maxdet problems and can be solved by
methods discussed in [11]. They yield an ellipsoid

 { }E = + ≤Cy d y 1

which consists of a rotation/scaling matrix C , and a
translation vector d , which describe how to transform the unit
hyper sphere into the required ellipsoid.

Finding the angles of the principal axes
The principal axes of the ellipsoid are given by the rotation of
the original coordinate axes. The rotation/scaling matrix, C,
both rotates and scales these axes. However by
orthonormalizing C the scaling factor is removed and only the
rotation R remains. The orthonormalized matrix, R, gives a
basis transformation for the new coordinate system.

Rotating the coordinate system
To rotate the coordinate system the only change required is
the basis change given by the orthonormalized matrix R.
Rotation of the polyhedron

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 5

 { }P = x Ax b≤

gives a new polyhedron

 { }′ ′ ′ ≤P = x ARx b

which can then be used to find the new search space in the
new coordinate system.

Finding the new search space
The new search space is found by shrinking an n-
dimensional rectangle around the transformed polyhedron - a
procedure similar to finding the original search space (see
above). An n-dimensional rectangle represents the new search
space in the new coordinate system.

′S

Local Search
The rotation given by the principal axes of the maximum
volume interior ellipsoid lies close to the possible minimum.
The better the ellipsoid approximates the polyhedron, the
closer the approach. The final approach is done by a local
gradient search (e.g.: quasi-Newton [12]). The objective
function for the search is the volume of the hyper rectangle
calculated by solving the "shrinking" sub-problem. The
variables represent the rotation angles (rotation) along the
axes of the coordinate system.

Accept or Reject
Having defined a new search space the question has to be
addressed, whether the new search space is more efficient than
the original one. The comparison of the volume of the original
search space V and the new search space ′V yields an
answer. As both of the search spaces are hyper rectangles
these volumes are simple to calculate. As our approach is only
a heuristic (it approximates the polyhedron by an ellipsoid) in
some rare situations it can happen that the search space has
deteriorated (i.e. increased in volume) after rotation. In such a
case the original search space could not be reduced and is to
be used without any modification.

Run Time Transformation Function for the GA
Eventually a run time transformation function needs to be
provided for the GA. Rotating the coordinate system relative
to the original system requires the re-transformation of the
parameters ′x generated in the rotated system when calling
the fitness (objective) function. Since we have already
computed the rotation matrix and we find R ′ =x R x

 x R x= ′−1

by computing the inverse rotation matrix . R −1

Estimate of Time Complexity
All our calculations are completed before the GA run starts
(pre-processor), the time complexity of the algorithm shown
here is independent from the time complexity of a GA.
However finding an improved search space will improve the
running time of the GA and so the efforts to obtain a new,
smaller search space ′S may be very beneficial.

Finding the new search space includes four steps :

• Finding the maximum ellipsoid inside the polyhedron via

maxdet
• Rotation of the coordinate system
• Finding the new search space in the new coordinate

system by "shrinking"
• Refining the search by using a local gradient search.

Vandenberghe and Boyd [11] showed that a general maxdet
problem , and has a

worst-case complexity of

x n∈ℜ G n:ℜ → ℜ ×l l mF n m:ℜ → ℜ ×

(O m)

)

 Newton iterations. Each

Newton iteration requires the computation of Newton
directions which can be done in operations.

Thus the total time complexity for solving the maxdet problem
is

()(O m l n2 2 2+

()()O m m l n2 2 2+ . However when finding the maximum

ellipsoid inside the polyhedron (), the dimensions of the
maxdet problem are (

m n×
x n n∈ℜ +() /1 2 x is composed of the

translation vector d and the symmetric part of the rotation
matrix C), and

. Thus the running time in terms
of the dimensions of the polyhedron is

G n n()ℜ n n: / →ℜ+ ×1 2

+F n n m n m n: () / () ()ℜ → ℜ+ + ×1 2 1 1

()()()O m n m n n n n n() () ()+ /+ + + +1 1 1 22 2 2 2 which is

() ()≈ ≤O Om n m n5 2 13 2 3 7/ / . This means that the maximum
volume interior ellipsoid is done in polynomial time in terms
of the polyhedron dimensions. The rotation of the coordinate
system is simply a case of a basis transformation which
involves the multiplication of and which
is

A m n∈ℜ × R n n∈ℜ ×

()O mn 2 . Shrinking in the new coordinate system requires

to solve 2 LPs, each with a constraint matrix .
The time complexity for solving a single LP with the simplex
method is

n A m n∈ℜ ×

()O 2m , so the time complexity of shrinking the box

is ()O n m2 . The function evaluation in the quasi-Newton
search requires the hyper cube to be found by shrinking the
box, so each function evaluation takes ()O n m2 time. The
convergence rate of the gradient search (quasi-Newton)
depends on the specific polyhedron.

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 6

The overall time complexity of the algorithm is dominated by
the time needed to shrink the rectangle around the polyhedron.
This has a time complexity of solving 2 LPs. The additional
gradient search adds some calls to the "shrinking" problem.
However if a LP solution method which runs in polynomial
time is used then the algorithm may be run in polynomial time
in terms of the dimensions of the polyhedron.

n

Just to give an idea on how fast the algorithm actually runs:
Our test examples took less than 2 seconds to compute on a
DEC 3000 workstation which is about 6 times slower than a
personal computer with 166 MHz Pentium CPU, an example
with 16 dimensions and 32 constraints took about 50 seconds
on the same machine.

Results
The power of our method to minimize the search space, i.e. to
increase the ratio of feasible to infeasible area was tested in
some experiments. They were carried out in two dimensions,
without loss of generality but with the possibility of plotting
the search space. Three manually constructed cases are
discussed and followed by randomly generated ones. The
statistic we are considering is the ratio of the polygon area to
the enclosing rectangle at three stages in our algorithm:
• before the rotation of the polygon
• after we rotated the polygon but before the local search
• after the local search.

The experiments were performed with a program written in
Matlab [13] with calls to routines from [12] and [14].

Manually Constructed Difficult Cases
To demonstrate the behavior of our algorithm in extreme
cases, three scenarios were constructed by hand, which are
refered to as Needle, Diamond, and Box, and are drawn in
figures 5 to 7 :

1 2 3 4 5 6 7 8

1

2

3

4

5

 -4 -2 0 2 4
2
3

4
5
6

7
8
9

 (a) (b)

Figure 5, Needle before (a) and after rotation (b).

 2 3 4 5 6 7 8

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4
3.5

4
4.5

5
5.5

6
6.5

7

5
 (a) (b)

Figure 6, Diamond before (a) and after rotation (b).

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6
0

0.5
1

1.5
2

2.5
3

3.5
4

1 2 3 4 5 6
 (a) (b)

Figure 7, Box before (a) and after rotation (b).

The geometry of the Needle (figure 5a) favors our algorithm
because obviously a rotation yields a much smaller infeasible
area. The ratio of feasible to infeasible area has been
remarkably increased from 0.1786 to 0.5015. For the
diamond a similar result holds here (from 0.5000 to 0.7243).
In addition the local search algorithm demonstrates the
importance of the final rotation adjustment. Without this step,
the polygon would not have been rotated at all because the
principal axes of the ellipsoid are already parallel to the
coordinate system (figure 6a). In the third example (Box,
figure 7a) the algorithm behaves opposite to the way it did at
the example of the Diamond: the initial rotation based on the
ellipsoid did take place and the local search afterwards undid
that turn because the ratio of feasible to infeasible area cannot
be improved upon the initial state - since it was already
optimal. The plots in figure 5b to 7b show the results of
applying the algorithm to the three cases.

Tests On Randomly Generated Cases
Convex hulls containing 5, 7, 9, 11, and 13 points were
considered to obtain some statistical significance for our
results. In each category 40 samples were generated. The
basic procedure to obtain the equations for the polyhedron is
as follows: after randomly generating the points, an algorithm
known as a Graham Scan [15] is used to find the convex hull.
From the convex hull, we can compute the equations for the
linear constraints easily.
The test statistic is the ratio of the polygon area to the
enclosing rectangular area. Figure 8 depicts the distribution of
the overall improvement of this ratio.

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 7

13 Pts11 Pts9 Pts7 Pts5 Pts

0

50

100

150

200

250

Overall improvement versus number of points in convex hull

Figure 8, Distribution of the Overall Improvement.

It turns out that the improvement of the ratio is higher with
fewer points. This is not surprising because the more points
are contained in the convex hull, the more it tends to be
rectangular and hence the percentage improvement by means
of rotation decreases. In fact, in a few cases the rotation
method does not yield any improvement.
The next issue we address is to show the necessity of a local
search on top of the "maxdet" rotation (based on the
orientation of the maximum volume ellipsoid). The following
two graphs, which include only cases of more than 1%
improvement, illustrate this. The improvement after the first
("maxdet") rotation is shown in figure 9.

"Maxdet" rotation
Number of cases improved versus points in convex hull

0

10

20

30

40

50

60

5 Pts 7 Pts 9 Pts 11 Pts 13 Pts

Average Improvement (use >1 %) % of cases improved

Figure 9, Initial Rotation Improvement.

Between 40% to 60% of all cases are improved by at least
23% for a convex hull consisting of 5, 7, or 9 points,. To
yield an even higher improvement for more cases, a secondary
rotation was added. This is essentially a steepest descent
algorithm, which tries to improve upon the status quo. The
results are shown in figure 10.

Overall improvement
Number of cases improved versus points in convex hull

0

10

20

30

40

50

60

70

80

90

100

5 Pts 7 Pts 9 Pts 11 Pts 13 Pts

Average Improvement (use >1 %) % of cases improved

Figure 10, Overall Improvement.

The overall benefit of the second rotation (local search) is
considerable: not only has the individual improvement
increased in most cases, but also an improvement can be
achieved for a much broader range of cases.

Discussion
The experimental results shown above, demonstrate that our
algorithm yields a considerable reduction of the search space
when doing parameter optimization with linear constraints. In
addition the ratio of feasible to infeasible area is increased.
Both facts can improve dramatically the overall behavior of a
GA [6].
In addition to that two other strengths of this method are speed
and scalability. The algorithm runs in polynomial time in the
dimensions of the polyhedron and is also not limited by the
dimensionality of the problem. Another advantage is that our
algorithm does a pre-processing of the data and is therefore
(with the exception of the run time transformation)
independent of the optimization part itself. Any other
constraint handling technique can still be applied to the
modified data. The improvement that can be achieved by the
proposed algorithm depends on how much the shape of the
feasible set differs from a hyper rectangle: the greater the
difference, the greater is the benefit.
The algorithm presented in this paper can be used for a all
optimization problems with parameter optimization an linear
constraints. It is fast, scalable and reduces the search of a GA
considerably.

Future Work
In our future work we aim at handling nonlinear constraints as
well and to adapt a GA for the local search part.

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 8

Acknowledgments
We would like to thank Stephen Boyd and Lieven
Vandenberghe for their help, valuable discussions and
permission to use their Matlab source code to solve the
maxdet-program.

References

[1] Z. Michalewicz and G. A. Vignaux, “A Non-

Standard Genetic Algorithm for the Nonlinear
Transportation Problem,” ORSA Journal on
Computing, vol. 3, pp. 307-316, 1991.

[2] J. T. Richardson, M. R. Palmer, G. Liepins, and M.
Hilliard, “Some Guidelines for Genetic Algorithms
with Penalty Functions,” presented at 3rd
International Conference on Genetic Algorithms,
1989.

[3] W. Banzhaf, “Genotype-Phenotype-Mapping and
Neutral Variation - A case study in Genetic
Programming,” in Parallel Problem Solving from
Nature III, Y. Davidor and e. al., Eds. Berlin:
Springer, 1994.

[4] S. Vössner and G. Infanger, “A Hybrid Repair
Technique for Constrained Parameter Optimization
with Genetic Algorithms based on a NLP,”
unpublished manuscript, 1996.

[5] Z. Michalewicz, “A Survey of Constraint Handling
Techniques in Evolutionary Computation Methods,”
presented at 4th Annual Conference on Evolutionary
Programming, 1995.

[6] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
Massachusetts: Addison-Wesley, 1989.

[7] J. Holland, Adaptation in Natural and Artificial
Systems, 2nd ed. Cambridge, Massachusetts: MIT
Press, 1992.

[8] G. B. Dantzig, Linear Programming and Extensions.
Princeton, NJ: Princeton University Press, 1963.

[9] F. Alizadeh, “Interior point methods in semidefinite
programming with applications to combinatorial
optimization,” SIAM Journal on Optimization, vol. 5,
pp. 13-51, 1995.

[10] L. Vandenberghe and S. Boyd, “Semidefinite
Programming,” SIAM Review, vol. 38, pp. 49-95,
1996.

[11] L. Vandenberghe, S. Boyd, and S.-P. Wu,
“Determinant maximization with linear matrix
inequality constraints,” submitted to SIAM Journal on
Matrix Analysis and Applications, 1996.

[12] The MathWorks Inc., “Optimization TOOLBOX,” ,
1994.

[13] The MathWorks Inc., “Matlab 4.2,” , 1994.
[14] L. Vandenberghe, S. Boyd, and S.-P. Wu, “maxdet,”

1996.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms: McGraw-Hill, 1990.

Improving the Efficiency of Genetic Algorithms for Linearly Constrained Optimization 9

	Abstract
	 Abstract
	Introduction
	The Problem
	Constraint Handling
	Efficiency of a GA
	Basics
	Linear Constraints
	Linear Programming
	Semidefinite Programming - Maxdet Problem
	Maximum volume ellipsoid in a polyhedron

	Approach
	Finding the original search space
	Find maximum volume ellipsoid
	Finding the angles of the principal axes
	Rotating the coordinate system
	Finding the new search space
	Local Search
	Accept or Reject
	Run Time Transformation Function for the GA
	Estimate of Time Complexity

	Results
	Manually Constructed Difficult Cases
	Tests On Randomly Generated Cases

	Discussion
	Future Work
	Acknowledgments
	References

