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Abstract

We report the results of a laboratory experiment investigating propagation of beliefs in a social
network. During the experiment, participants faced several questions having objectively correct
answers and could update their answers several times based on aggregate information about answers
chosen by their neighbours. One of the novelties of the experiment was that the binary choices
faced by participants were augmented to include an “I do not know” option and incentives to choose
it when they felt indifferent between the actual options.

We observe that the dynamics of decisions in the network strongly depends on the question type,
logical or factual. The results also indicate that propagation of beliefs can be more accurately
described by a threshold model rather than models of probabilistic contagion. However, in contrast
with assumptions underlying standard threshold models, our results suggest that it is not the
larger proportion of neighbours that is driving participants’ choices but the difference between the
proportions of neighbours opting for the competing options.
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1 Introduction

Social learning is one of the most important phenomena affecting behaviours of individuals and
shaping behaviours of societies. People can learn from others about facts (“Yesterday’s fog caused
more than 10 car accidents”), about their actions and preferences (“I did not buy it, no one wears
this 1960s style nowadays”), and about their beliefs (“I am sure I can learn to ride a unicycle in
just a couple of days”). The present study specifically focuses on the spread of beliefs, a type of
information that cannot be verified by a person receiving within a reasonable time. Even if a person
sharing the information actually knows the information is correct, it is not possible to demonstrate
to the recipient that it is correct. For example, if someone simply claims that the Great Wall
of China is the only man-made object visible from the Moon it is impossible to verify the claim
without resorting to other sources. Our interest in the propagation of beliefs is driven mainly by
two factors. First, from the practical standpoint, it is arguably a more common situation than the
spread/formation of social norms or propagation of verifiable information. Indeed, most often we
cannot easily verify the information we receive by email or read on the internet. Second, from the
academic standpoint, propagation of beliefs is another “pure” case, but, unlike the propagation of
actions (e.g., herding), appears to be much less understood.
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The main part of this study is a laboratory experiment. Participants, connected via a network,
aim to select the correct answer to a multiple choice question with a single objectively correct
answer. They perform several iterations of this process, simultaneously, at each iteration being
given information on the distribution of answers of their neighbours at the last iteration. We are
interested in whether social influence and learning occurs — that is, how close do the agents come
to a unanimously correct selection, and how quickly. Furthermore, we are interested in whether
there are significant differences between types of questions (for example, purely logical questions
versus those that require knowledge of the world), and whether allowing agents to admit ignorance
has an impact on learning.

In order to explain the positioning of our study in more detail we review in Section 1.1–1.4 some
of the streams of research most closely related to our study. We give an overview of our specific
hypotheses and results in Section 1.5. Section 2 describes our experimental setup. In Section 3 we
present data and analysis, and Section 4 gives discussion, conclusions and comparison with other
work.

1.1 Models of group behaviour

Social sciences as a whole, from history, philosophy and anthropology to political science and
finance, aim at improving our understanding of human societies — a problem mankind has been
challenged with since its own inception. The problem is complicated by the complexity of the
society, owing to multiple levels of interactions and a variety of roles played by every member
of the society. For example, a typical person belongs to a family, acting as a parent for her/his
children, and, at the same time, as a sibling and a child her/himself. The same person may have a
circle of friends (possibly having some set of unwritten rules and a hierarchy), belong to a religious
group, be employed at a company (governed by its constitution and by laws), have responsibilities
as a citizen (e.g. voting), etc. This (typical) person is often caught between conflicting goals,
principles, disconnects between desires and capabilities, and has to face multidimensional trade-
offs. The interests, beliefs, capabilities, and roles of individuals, companies, unions, etc., interact
in incredibly complex ways, on multiple levels of legal, cultural and emotional ties.

Different fields approach the problem from the different perspectives and with a variety of method-
ologies. A common feature of most of these methodologies is individualism — although “emergent
phenomena” may occur in groups, the individual is considered as the basic unit of analysis.

Tasks performed by individuals in groups are often modelled by game theory. The key concept
is that of best response, a choice of actions for each situation such that each action optimizes the
agent’s payoff in that situation. When all agents simultaneously adopt such a strategy, this leads
to Nash equilibrium. Furthermore, in some situations, iterated best response by players in some
order will converge to an equilibrium. Of course, there are several problems with this approach:
informational and computational requirements for agents to compute their equilibrium strategy
may be enormous even in relatively small games; there may be more than one equilibrium, and no
“obvious” one to coordinate on; convergence is not always achieved.

Experiments such as ours are often modelled by a graphical game, a strategic game in which each
player’s payoff depends only on the actions of her neighbours in the network. More specifically,
since information about specific neighbours is not known, we are dealing with a semi-anonymous
graphical game (Jackson 2010, Chapter 9). Many authors have studied coordination games, games
that exhibit strategic complementarity, where the payoff increases with the number of neighbours
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sharing the same action as a given agent. Such games have been well studied, for example to model
the adoption of new technologies, and they often lead to herd behaviour where players converge on
a unanimous action.

However, game-theoretic models are of limited relevance for us. This is because the game is degen-
erate — each agent’s payoffs are not affected by the actions of any other player. This is because
our experimental design aims to incentivise participants to find the correct answer, rather than
conform to the majority answer. This latter problem, namely that of emergence of social norms,
has been widely studied in the past. Our main subject of interest in the present paper, however, is
the propagation of knowledge and beliefs.

Of course, even though we designed the experiment to avoid explicit complementarities (or other
externalities), we cannot rule out subjects deriving utility from being in the majority opinion even
when it is wrong, for example. However, even if such were the case (which we doubt), we do
not know how to estimate this utility quantitatively and compare it with the utility derived (via
monetary payment) from correctly answering. Thus we assume that as stated above, strategic
considerations do not really enter agents’ analyses.

Our experimental situation is better modelled as an instance of social learning, which is closely
related to diffusion, influence, and contagion. The answers of its neighbours may influence the
answers of an agent, even though the payoffs are not directly influenced. A network diffusion model
is specified by a set of nodes (agents) connected in a some way (topology), each node characterized by
a state, and some transition function describing an evolution of states over time. Typical examples
include models of infectious disease (where the state of an agent may be “infected”, “susceptible”,
“recovered”, etc), information flow (“informed”, “uninformed”), product adoption (“has adopted”,
“has not yet adopted”).

The special case where each agent is directly connected to each other (the complete graph) typically
has much simpler dynamics, so the topology (the structure of the underlying graph of the social
network) is usually very important in such models. However, in some models even the case of a
complete graph is challenging, owing to the relative complexity of the transition function. Studies
on diffusion in network models are mostly separated into those studying the effects of network
topology and those studying the effects of local interactions between agents.

The earliest models of contagion come from the study of infectious diseases, and do not discuss
networks at all. In effect, they use a complete graph, probabilistic transitions and “mean-field”
approximations looking only at population means. They are also typically in continuous time and
hence use the machinery of differential equations. By analogy, such models can also be used to
describe the spread of rumours or information.

For example, the SIR model (Kermack & McKendrick 1927), apparently adopted from earlier
models describing the rate of a chemical reaction, describes the spread of a contagious disease in
a population. In our terminology, each node in a complete graph can be in one of three states: S
(susceptible), I (infected), or R (recovered). The incubation period is zero and any infected person
is contagious. At any point in time any infected person has a chance γ to heal and a susceptible
person gets infected with some probability β. The dynamics of the system is fully described by the
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following system of ordinary non-linear differential equations

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI.

Note that although contagion and recovery take place probabilistically the transition equations are
deterministic due to the assumption of a large population.

Variants of this model include the SI, SIRS, SIER models.

Epidemic models of the above type in which network structure is explicitly considered have even
more interesting behaviour. Their long-run behaviour and time evolution can be studied using
percolation theory and other mathematical tools. See Newman (2010) for background. Much is
known about how the network topology controls the rate and extent of contagion in such models.
These findings can be summarized roughly as: contagion spreads faster when there are “long ties”,
and in “small world” networks with low diameter. Such models have been used to study information
flow, in addition to the spread of diseases.

More recently, researchers have realized that there is a difference between simple contagions of
this type and complex contagions (Centola & Macy 2007). For the latter, simple exposure to an
infected neighbour is not usually sufficient for a node to change state, and multiple exposures
are required. For example, this appears to better model behavioral changes such as smoking
cessation. The reason, apparently, is that, in contrast with the case of catching an infection,
adoption of a behavior requires reinforcement, multiple exposures to the behavior adopted by close
neighbours. Changing belief about a factual question, as in our study, is likely (we think) to
require substantial reinforcement. Overall, complex contagions exhibit much different behaviour
from simple contagions. Centola & Macy (2007) give four reasons why complex contagion may
occur: strategic complementarity, credibility, legitimacy, emotional contagion. The second of these
seems especially relevant to our study.

The role of topology in complex contagions was clarified by (Centola 2010), who used an experiment
to study adoption of healthy behaviors in online communities, Manipulating the network topology
showed that, contrary to the intuition derived from epidemic models, a small-world network is
less effective than a highly clustered network in promoting diffusion of such behaviours, strongly
suggesting that influence in such situations is a complex contagion.

For understanding complex contagions, the class of (linear) threshold models is often used. These
were introduced in Schelling (1969)), in the context of segregation. In such a model, each node has
an individual threshold (a real number in the interval [0, 1]) for changing its state, and will change
state to s if and only if the fraction of its neighbours having state s exceeds the threshold. This
is stark contrast to epidemic models in which a very small initial contagion can spread throughout
the network much more easily. Schelling’s model was the first that demonstrated the importance
of allowing for both key components of network models, the micro interactions and the topology.

Threshold models are deterministic, although obvious probabilistic analogues exist. Granovetter
(1973) argues that threshold models are well adapted to describe collective behaviour like riots,
strikes, and diffusion of some types of innovations. The last situation has been heavily studied,
sometimes under the name of “product adoption”, first studied in Bass (1969) via a network-free
simple contagion model, a special case of the SIR model.
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A topic that has not been much studied is the node states and their role. Historically, the choice
of a node state space has been motivated either empirically or by tractability. The most imme-
diate example is the SIR model. The three possible states of a node match the actual conditions
that a person may go through during an epidemic. However, extending the model to include the
latent period (condition E) resulted in a model more closely matching the actual situation. In
another example, Schelling’s model of segregation, a node can be in one of a finite number of
states, corresponding to the number of races. In such a model there is simply no room for inter-
racial households and, if their proportion in the population of interest is large, one might consider
extending the nodes’ states to allow for mixed cases.

However, in situations when a node’s evolution is a result of the node’s decision-making, choosing
an appropriate state space is much less straightforward. In particular, if the node state represents
a belief (say, a subjective probability), then a continuous state is appropriate, in contrast to the
discrete-state models described above.

In order to better align our experiment with reality, we allowed participants to report one of three
states, one of which is “I don’t know”.

1.2 Decision-making in groups

Studies of group decision-making specifically focusing on social influence date back to the middle
of the 20th century (see Costanzo et al. (1968) and references therein). This literature mostly deals
with experiments on small groups in which information can flow easily between all members. Our
study uses topologies and information restrictions in which this is not the case. Nevertheless, this
literature contains some insights relevant to our study.

Costanzo et al. (1968) report that adoption by a group member of the same behavior as the majority
of the group (conformity) is directly related to the perceived expertise of the majority of the group
and inversely proportional to the (self)-perceived expertise of the person making the choice. In our
experiment, we aim to implicitly manipulate the perceived expertise by choosing different types
of questions. One of the questions was similar to a task used in Costanzo et al. (1968), involving
estimating the area of figures.

Cox & Hayne (2006) note that most of research in decision-making focuses on individual-decision
makers whereas most important decisions in real life are made by groups and little systematic
work has been done. They also find, in the context of the common-value auction (known for
the “winner’s curse”) that the performance does not improve with the size of a bidding unit (in
the experiment they used 1, 3, 5 and 7 people in a unit). In the contrast, Slembeck & Tyran
(2004) find that in a “Three Door” task, famous in part because less than 20% of participants
choose to switch the door, introduction of groups results in nearly 100% correct decisions. Kugler
et al. (2012) review the literature on group decision-making published over 25 years (including
“groupthink”) and conclude that in interactive settings (games) groups tend to make decisions
closer to the standard game-theoretic predictions but in non-interactive settings, groups tend to
mitigate some of the biases typical for individuals while perhaps exacerbating others. Overall,
groups may perform better, worse or on par with individuals. The point, as Davis (1992) states it
having reviewed the consensus group research published over 1950-1990 period, is that “group-level
phenomena are often counterintuitive”.

In the above studies, the group members typically reach a consensus on the group’s answer, via an
explicit or implicit social decision scheme. The most commonly studied are: “truth wins”, where
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a single participant with the correct answer suffices for the entire group to adopt that answer;
simple majority voting over two alternatives; choosing an answer uniformly at random; “truth
supported wins”, where two correct answers suffice for the entire group. Each of these explains
observed behaviour best for certain types of questions. For example, “truth wins” works well
for mathematical questions, while “truth supported wins” better explains performance on general
world knowledge. An explanation for this in terms of demonstrability is given in Laughlin & Ellis
(1986). Unsurprisingly, question types and experimental setups in which a participant knowing the
correct answer can convince a skeptic of its correctness require fewer group members to support
that answer initially in order for it to be adopted by the group. In our study, we chose different
types of questions in order to better detect such differences. We did not go to the extreme of
questions involving preferences with no objective justification, but we did include both “logical”
(essentially mathematical) questions and “factual” questions involving general world knowledge.
Our experiment did not allow for an communication between agents. Thus even though we chose
question types that would have had high demonstrability if in-group discussion were allowed, our
setup promotes low demonstrability.

A substantial body of research on advice-giving and advice-taking suggests that whether people
take advice or discount it, and whether advising improves the quality of decisions, depends on
factors such as the expertise of the advisor, the perceived expertise of the advisor, the confidence of
the advisor, the expertise of the judge (a person taking advice) in the problem at hand, the value
of rewards for high performance, etc. (see Bonaccio & Dalal (2006) for a literature review). The
interplay between these factors can be important for the overall performance but not straightforward
to predict. For example, Bonner et al. (2002) report that groups are more willing to follow advice of
experts when the latter are legitimate, i.e. have a proven record of expertise. However, the overall
performance may actually suffer because the non-expert group members are not scrutinizing the
opinions of the legitimate experts, and when the latter make mistakes other members are unable
to spot them.

From the network research perspective, it is interesting that most of the studies investigating the
effect of group size do not generally find a substantial effect. There are exceptions, e.g. Laughlin
et al. (2006) find that teams of 3, 4 or 5 people do better in the Letter-to-Number task, but the
most prominent one is in coordination games — a robust finding here is that coordination typically
fails once the team size goes over 4 people (Feri et al. 2010).

1.3 Social learning

The main focus of the present article is on how information about beliefs of other group members
can, over time, lead to more accurate beliefs by individuals. If a single group belief is to be reported
(for example in a jury trial) this can be computed via some aggregation method such as a fixed
voting rule. Note that the idea that aggregation can substantially improve group decisions made
by imperfect agents, without any interaction between agents, is at least as old as the Condorcet
Jury Theorem, and is commonly referred to as “the wisdom of crowds”. The mathematics behind
such results often expresses the fact that independent random errors essentially cancel out under
aggregation, at least when the number of agents is large. However, if there is bias in the errors,
aggregation can exacerbate this bias. In our study, by using questions known from the psychology
literature to elicit an intuitively obvious but factually incorrect answer, we introduce bias.

Different mechanisms have been proposed for how individuals learn from others. Where sufficient
time and opportunity for communications between agents is available, improvements in skill (the
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traditional meaning of “learning”) are possible. However in many situations of interest (for example,
anonymous online networks), agents can only (repeatedly) observe actions of other agents (obser-
vational learning as opposed to communicational learning). This does not rule out (by provoking
further introspection) agents improving their skill, but can also lead to simple imitation without
an increase in understanding. This distinction between process contagion and output contagion is
made in Rahwan et al. (2014). Our study is designed to be purely observational.

The literature discussed in Section 1.2 is all concerned with communicational learning, and in
the case where the topology is trivial (a complete graph). From now on we focus on learning on
networks. This closely related to diffusion — the node state is typically called a belief, and we
expect beliefs to diffuse somehow through the network. However typically there is a notion of
objective truth which we hope that beliefs will converge to. The basic questions are: is convergence
to an equilibrium belief reached? is the equilibrium belief unanimous (a consensus)? is the crowd
eventually wise? Of course, beliefs cannot usually be measured directly, and are typically inferred
from actions.

Lazer & Friedman (2007) derive a model for collaborative problem-solving in which the underlying
topology is a variable and agents imitate others with better solutions. The model predicts that for
difficult tasks involving a “rugged” landscape of solutions, networks that optimize the spread of
information lead to worse overall solutions in the long run than less efficient networks, although they
do better on shorter time scales. The explanation is that there is a tradeoff between “exploration”
(generating candidate solutions) and “exploitation”, and too much communication early in the
process reduces diversity and thus curtails exploration, leading to locally optimal but globally
suboptimal solutions. Mason & Watts (2012) describe a laboratory experiment along similar lines
which finds, in contrast, that performance is better overall for efficient networks. One explanation
is that inefficient networks, by allowing complex contagion, promote imitation and act against
exploration. Mason et al. (2008) also describes a laboratory experiment which refines the above
analysis. They find that very different network topologies work best for different types of problems
— it matters whether there is a single good solution, many acceptable ones, etc. The problem
described in this paragraph differs markedly from ours, in that participants in our study do not
receive any information on the quality of their proposed answer until after the experiment.

Closer to our setup, Lorenz et al. (2011) describe an experiment (on a complete network) involving
observational learning, in which social aggregation of information is relatively poor, and give three
main reasons for this. Two of these are related to social influence — a reduction in diversity as
in Lazer & Friedman (2007), and increased confidence of agents in their answers because of herd
effects. Rahwan et al. (2014) describe an experimental study of observational learning whose main
finding is that higher connectivity leads to better convergence to the correct answer.

The main models of observational learning on networks involve subjective probability. Each agent
maintains a number between 0 and 1, which is updated based on the beliefs of other agents.
Bayesian learning (Gale & Kariv 2003) requires (rather unrealistically) each agent to consider the
full history of actions of each neighbour, and typically leads to convergence to a consensus belief in
the long run. A simpler myopic update rule was proposed by DeGroot (1974), in which the state
of a node is updated by forming a weighted average of all neighbouring states (the weights are
fixed, so that node do not revise their beliefs about reliability of their neighbours). This typically
leads to convergence (guaranteed by theorems about Markov chains) to a common consensus belief.
Furthermore, crowds are eventually wise under many natural sufficient conditions. More detailed
information can be derived about convergence rates, situations where convergence fails, and the
relationship between convergence speed and wisdom (Golub & Jackson 2010).

7



Note that both of the above models assume knowledge by each agent of each neighbour’s state.
More typically agents can only observe actions of others, and actions are discrete. In situations
where anonymity is preserved, such as large online networks, typically only summary statistics are
available. This means that individual neighbours cannot be distinguished. A discrete analogue
of the DeGroot model in the case where there are 2 actions is described in Chandrasekhar et al.
(2012). Each agent has a subjective probability, and a threshold t with 0 ≤ t ≤ 1. At each time
step, each agent reports a discrete opinion 0 or 1. Each agent updates its state by simple averaging
(possibly with a different weight given to its own opinion) and reports 1 if and only if this average
exceeds t.

Our study is designed so that participants receive only fully anonymized summary feedback about
their neighbours. Furthermore there are only 3 signals observed.

Some experimental work on observational social learning in networks has been conducted and
brought a number of important insights (Berninghaus et al. 2002, Cassar 2007, Centola 2010,
Chandrasekhar et al. 2012, Choi & Lee 2014, Corbae & Duffy 2008, Jia et al. 2014, Watts &
Dodds 2007). For example, Choi et al. (2005) have the agents play a coordination game in which
they receive a payment if they all choose the same action, and the nodes whose action was taken
receive more than the rest. They find that more connected network structures as well as longer
communication improve the efficiency and the equity of the outcomes. Chandrasekhar et al. (2012)
conduct a unique lab experiment in rural India to test the performance of Bayesian and DeGroot
models and find that a simple DeGroot averaging model with 50% threshold better models the
learning process occurring on the network.

1.4 Belief revision

Our study concentrates on beliefs about matters of objective fact, where the observed actions of
agents are “believe P is true”, “believe P is false”, or “don’t know”. A theoretical motivation for
focusing on a three-state model of belief stems from the extensive literature in belief revision (an
active area of research by computer scientists, logicians and philosophers since the seminal work
(Alchourran et al. 1985) (see also Gärdenfors (1988)). An important distinction in belief revision
is that between revision and contraction. A revision is a belief change in which an agent adopts
a new belief, and a contraction is one in which the agent drops a belief without endorsing a new
one. An example of a belief contraction is someone who becomes agnostic (refrains from belief
or disbelieving in God) without becoming atheist (disbelieving in God). Another instance is to
stop condemning something without condoning it. Finite state models make more sense in this
framework. It is a notorious problem to draw a distinction between revision and contraction in a
probabilistic framework.

1.5 Our contribution

We performed a controlled laboratory experiment with human participants, designed to detect
propagation of beliefs among them, and analysed the dynamics of subjects’ answers. We used two
“logical” questions (Q1, Q2) for which the correct answer can be deduced from the information given
in the question, two “factual” questions (Q3,Q4) that required knowledge of famous but difficult
to remember facts about the world that could not be deduced from the question, and one factual
question (Q5) chosen so that no one could possibly know the correct answer with certainty except
for the experimenters. In the latter case we provided the correct answer to some participants and
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made it common knowledge that some participants know the answer. For each question participants
were provided two possible answers, of which one was correct, and a possibility to admit they do
not know the answer by choosing the “I do not know” option. We considered two questions to be
“fair” (Q1, Q3), two to be “tricky” (Q2, Q4), and one to be “impossible” (Q5).

1.5.1 Research hypotheses

(i) (topology)

(a) Convergence will be faster in the complete graph than in the other topology.

(b) There will be a larger degree of unanimity with the complete graph than with the other
topology.

(ii) (rationality)

(a) The group will learn the correct answer on Q3 and Q5.

(b) The number of incorrect responses will be less on Q3 and Q5 than on the other questions.

(iii) (logical versus factual questions)

(a) The level of susceptibility of participants to influence from neighbours is lower for the
logical questions than for the factual questions.

(b) The degree of unanimity among participants is lower for the logical questions than for
the factual questions.

(c) The likelihood of answering “I don’t know” is lower for the logical questions than for the
factual questions.

(d) The group is more likely to learn the correct answer on factual than on logical questions.

(iv) (fair versus tricky questions)

(a) For fair questions, aggregation by plurality voting will eventually yield the correct answer,
whereas this will not occur for tricky questions.

(b) The group is more likely to learn the correct answer on fair than on tricky questions.

(c) For tricky questions, better eventual aggregation of the correct answer will occur in the
other topology, whereas for fair questions, it will be the same for both topologies.

(d) The speed of convergence for tricky questions will be greater than for the fair questions.

(v) (belief revision)

(a) Participants require more reinforcement from neighbours before deciding to switch from
Answer 1 or “don’t know” to Answer 2 than to switch from Answer 1 to “don’t know”
(here 1 and 2 denote the two definite answers, either of which could be correct).
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1.5.2 Discussion of research hypotheses

For (i), note that whether the contagion is simple or complex, all standard models predict faster
convergence on complete graphs. The idea of lack of diversity begin caused by communication
efficiency leads to the second assertion.

For (ii), note that given sufficient confidence in the rationality of others, it is rational to answer
Q5 correctly (if the subject has been given the answer), or answer “I do not know” until some
neighbour gives either answer 1 or 2, in which case (assuming there is only one such answer given
by neighbours) the subject should copy that answer. For Q3, a similar argument holds: we expect
that participants will know immediately that they do not know the answer, and expect that at
least someone else in their network does know (for Q5, this fact was common knowledge).

The reasoning behind (iii) is as follows. For logical questions, each participant will consider her
expertise to be fairly high relative to the group’s expertise, and in any case will know that in princi-
ple she can answer the question correctly without external help. For factual questions, she is more
likely to realise her own ignorance (and for the impossible question, ignorance of most participants
is essentially common knowledge). Thus participants will be more susceptible to influence from
neighbours in the factual questions than in the logical questions. Furthermore fewer wrong answers
will be given, since answering “I don’t know” gives better payoff than guessing. Finally, the lack
of diversity of answers should lead to a higher degree of unanimity caused by herding.

For (iv), note that we chose Q2 and Q4 to have commonly chosen false answers. Our hypothesis is
that participants giving these answers (more than half of them) are less likely to be influenced than
on other questions, and in any case even if they are influenced, most of their neighbours will also
be wrong. This explains the fourth assertion. It is known that the expected success rate is about
10–20% for the Wason task. It is hard to imagine a convincing learning model that will lead to the
majority of the group converging to the correct answer, given the purely observational nature of
the study (low demonstrability). The second assertion is motivated by the idea that herding will
occur owing to a lack of diversity of answers. The third assertion is based on the findings of Lazer
& Friedman (2007).

As for (v), our understanding of belief revision implies that giving up a belief (“becoming agnostic”)
requires more reinforcement than adopting the opposite belief (“becoming atheist”).

1.5.3 Summary of results

Our study shows that under the experimental conditions described, subjects’ answers are influenced
by the answers of others, even for purely logical questions and where almost no information can be
deduced about the correctness of others’ answers during the experiment.

We broadly confirm the research hypotheses (i) – (v) above, with some exceptions (see Section 3
for details). In particular, the effect on convergence rate of topology and question type was not as
expected.

Refuting a model with many unknown parameters is beyond the power of our study. Our results
are broadly consistent with threshold models. However, we can refute models that predict that
the fraction of participants giving the correct answer should increase monotonically with iteration
number.

Also, models predicting eventual convergence to unanimity in all cases are refuted by our data.
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This includes many standard infection models, which gives more justification for us to consider
threshold models.

Interestingly, we find that standard threshold-type models, in which the likelihood of switching
opinion to a given answer is an increasing function of the absolute fraction of neighbours exhibiting
that opinion, are not well suited to our data. Much more compelling are models in which the
relevant variable is the net fraction of neighbours holding an opinion.

2 Experimental setup

Considering the exploratory focus of the study, a major requirement for the experiment design was
to enable us to obtain a rich data set. To this end, two key design parameters, the decision-making
tasks and the network topology, were chosen to ensure a wide range of distinct decision-making
conditions.

2.1 Participants

Participants were students of a large public university in Australasia from a variety of majors,
mostly business school undergraduates. Overall, 52 people took part in the study. To recruit
participants we used ORSEE (Greiner n.d.). All sessions were conducted in a decision-making
research computer laboratory designed for running decision-making experiments. Participants were
paid around $5 of “show-up” fee and an additional amount of money proportional to the profit (in
experimental tokens) earned as a result of the decisions they made during the experiment. The
average payment, including the show-up fee, was around $20. Prior the experiment, participants
did not know the exact nature of the experiment, only that it is about belief propagation in social
networks. Participants may or may not have had prior information about each other. However the
experimental setup ensured that all information about a given participant was anonymised, so that
no participant could know anything about the answers given by any other.

2.2 Incentives

Money was the only pecuniary incentive provided. During the experiment participants were pre-
sented with five different questions (see Appendix C). On each question they could answer 10 times
by choosing among three options that were the same every time. One of the options was the cor-
rect answer (each question had an objectively correct answer), one was an incorrect answer and the
third option was “I do not know”. After a participant answered the question 10 times, the correct
answer was revealed.

Participants were paid as follows (see the experiment instructions in Appendix A):

• out of ten answers that each participant can give for each question, only two contributed to
the profit; the very first answer and one other chosen at random;

• the correct answer results in 10 tokens;

• the incorrect answer, or no answer, results in 0 (zero) tokens;

• answering “I do not know” results in 6 tokens.
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We chose these parameters in order to induce participants to report “don’t know” rather than not
answering, or guessing an answer uniformly at random.

2.3 Decision-making tasks (Questions)

Our selection was subordinate to the goal of inducing different degrees of confidence in the correct
answer. Two cognitive questions (Questions 1 and 2 in Appendix C), one of the questions used in
Frederick’s Cognitive Reflection Test (Frederick 2005) and a standard variant of the Wason selection
task (Wason 1968), are well-known to be challenging, producing substantial proportions of incorrect
answers. These questions are self-contained and no extra information is needed to answer them
correctly. In contrast, the experience-based questions testing factual knowledge have the property
that the correct answer may be not known to everyone. Therefore, receiving information about
answers given by other people is the only possibility for those who do not know the fact underlying
the question to give a correct answer. Two of the factual questions (Q3 & Q4) are based on publicly
known facts. One question (Q5) is based on a fact privately communicated to some participants,
while all other participants were assured that some people know the correct answer.

To collect the participants’ responses we used zTree (Fischbacher 2007). The very first screen
displayed the experiment instructions (Appendix A). Then participants were presented with each
question 10 times. At each of the 10 iterations for a given question, they were provided the
information about their last answer and the distribution of answers given by their neighbours.
They were then given the opportunity to change their answer if desired. They could not change
any of the past answers. Participants were told how many neighbours they had, but nothing that
would identify who they were.

2.4 Topology

We used two quite different network topologies in our experiment. One of these was a complete
(undirected) graph in which each pair of distinct nodes is linked. We also devised another network
topology having several interesting properties. First, the links are directed. The influence can only
propagate in the direction of the arrows. Simply put, a node only “see” those nodes that have
arrows going to that node. One goal we pursued with this design feature was to avoid endogeneity
in one part on the network (horizontal nodes at the bottom of Figure 1). Another goal was to
make it possible to create a more uniform distribution of the degrees on the network, and this is
the second main property of the topology.

For each of the 5 questions, the node numbers of the physical machines were permuted, so that
subjects usually occupied different positions in the network. For each iteration of a fixed question,
the node numbers were fixed.

3 Experimental results

We captured a complete record of subjects’ answers at every iteration of each question. We also
have complete information about the answers from the previous iteration fed to each node.
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Figure 1: The principle behind the network topology used in the experiment. Labels on the nodes
indicate the number of incoming links. The nodes have been divided in two groups. Each of the
bottom nodes has only one feeding node, and those closer to the left feed increasingly more nodes
above. The bottom nodes are not influenced by the nodes above.

Table 1: Parameters of the different treatments used

Treatment ID Treatment date Topology Number of participants

A 140822 1152 directed 14
B 140910 1337 directed 8
C 141001 1308 complete 18
D 141002 1255 complete 12

3.1 Descriptive statistics

We first present some graphs. A label such as A, 1 refers to Treatment A (see Table 1), Question
1. For each treatment, we use several indicator variables, indexed by subject s, question q and
iteration i. These are shown in Table 2. For each such variable, omitting an index simply averages
over all values of the index. Thus, for example, ls is the mean of the last iteration on which subject
s changed, over all questions q.

First, we present Figure 2 which displays for each treatment and each subject s, the value of ns,
the fraction of times s changed answer while answering the same question. Figure 2 shows that
subjects were generally engaged in the experiment, and made substantial numbers of changes to
their answers. There was a substantial variation between subjects.

Figure 3 shows, for each question and treatment, the fraction (Cq,i, Iq,i, Uq,i, Aq,i) of subjects giving
each possible type of answer at each iteration.

Figure 4 shows the (approximate, since repeated data points were “jittered”) empirical cumulative
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Figure 2: Changes by treatment and subject
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Figure 3: Answer type distribution by (treatment, question)
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Table 2: Indicator variables used in analysis
Variable Meaning

n Change in answer
n1 Change to answer 1
n2 Change to answer 2
n3 Change to answer 3 (“don’t know”)
L Last iteration when answer changed
C Correct answer given
I Incorrect answer given
U “Don’t know” given
A No answer given
M Answer given is the modal answer

logical Question is “logical” (Q1, Q3)
tricky Question is “tricky” (Q2, Q4)
topology Did not use complete graph (Treatment C, D)

distribution functions for all changes to a given answer, the colours red, green, and gold correspond-
ing to the answers 1, 2, 3 (= “don’t know”) respectively. The horizontal axis measures the fraction
of neighbours that had the given colour. We observe that a large number of changes occurred to
answer 1 (answer 2) by nodes with small fractions of neighbours having given that answer the the
previous iteration. Also, there is a clear difference between the behaviour of answer 3 (the top
curve) and that for the other answers, formalized by first-order dominance.

3.2 Statistical tests

We formulate our research hypotheses, listed in Section 1.5.1, in terms of the experimental data as
follows.

(i) L will be smaller in treatments C and D than in A and B, while for i = 10, Mi will be larger.
Similarly, M10 −M1 will be larger for treatments C and D.

(ii) When i = 10, Cq,i > 0.5 for q ∈ {3, 5}. Also, Iq will be smaller for q ∈ {3, 5} than for
q ∈ {1, 2, 4}.

(iii) There will be a difference in the patterns of answers associated with “logical” versus “factual”
questions. Specifically:

• For both i = 1 and i = 10, Uq,i will be smaller in the logical questions (q ∈ {1, 2}) than
in the factual ones (q ∈ {3, 4, 5}).
• Lq and nq will be larger in the “factual” questions than in the “logical” ones.

• When i = 10, Mq,i will be larger for q ∈ {3, 4, 5} than for q ∈ {1, 2}.
• Cq,10 − Cq,1 will be smaller for q ∈ {1, 2} than for q ∈ {3, 4, 5}.

(iv) There will be a difference in the patterns of answers associated with “fair” versus “tricky”
questions. Specifically:

• When i = 10 Iq,i ≥ 0.5 for q ∈ {2, 4}, while when i = 10 Cq,i > 0.5 for q ∈ {1, 3, 5}).
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Figure 4: Empirical distributions of switching depending on the proportion of neighbours choosing
the given answer. For example, about 70% of switches to answer 3 (“don’t know”) occurred with
at most 40% of neighbours reporting that answer in the previous iteration.

• Cq,10 − Cq,1 will be smaller for q ∈ {2, 4} than for q ∈ {1, 3, 5}.
• For tricky questions, when i = 10, Cq,i will be larger for treatments A and B than for

treatments C and D. For fair questions there will be no difference.

• Lq and nq will be larger in the “fair” questions than in the “tricky” ones.

(v) There will be a difference between the empirical distribution functions of “don’t know” and
the other two answers.

We present the results of several regression analyses. Throughout, we excluded data points in which
a subject did not make any choice (Figure 3 shows the number of such points). In each case, the
regressors include the indicators of whether the question is logical or factual, and whether it is “fair”
or “tricky”, as described above, and there is one data point for each subject. Tables 3–5 present
models fitted to the data and our conclusions are based on the significance results reported in these
tables. Note that R-squared tend to be very low, and, therefore, our assessment of the detected
effects is, correspondingly, that they are very moderate despite being statistically significant.

We observe a clear difference between types of questions. Table 3 shows regression results for the
case where the dependent variable is respectively Uq, Uq,1, Uq,10, while the independent variables
are indicators for logical and tricky questions.

At the first iteration, “I do not know” is less likely on the logical questions than the factual ones.
However, at the 10th iteration the difference is no longer statistically significant. Similarly, there
is a clear difference at the first iteration between tricky and fair questions, which persists (albeit
rather weakly) until the 10th iteration.

Regression analysis for correctness is shown in Table 5. We observe a clear difference between
question types in terms of fraction of correct answers.

We are interested to see whether “crowds became wiser” and if the type of question mattered. To
this end, we regress the difference between two indicators on the question type. Model (1) in Table
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5 presents the results. The variable diffCorrect is simply Cs,q,10−Cs,q,1, measuring the coincidence
with the correct answer at the last and at the first iteration. In the same table, model (2) tests
whether subjects become closer to the modal answer. The variable diffModal is Ms,q,10 −Ms,q,1.

We fit a regression model to test whether the convergence depends on the question type. The
results shown in Table 4. In the first model, the dependent variable is Ls,q. In the second model,
the dependent variable is ns,q.

Table 3: Factors affecting “I do not know” choice (logit model)

Dependent variable:

idk

(1) (2) (3)

logical1 −0.21 −1.02 0.49
p = 0.05∗∗ p = 0.0005∗∗∗ p = 0.15

tricky1 −0.44 −0.63 −0.76
p = 0.0001∗∗∗ p = 0.03∗∗ p = 0.05∗∗

Constant −1.17 0.14 −1.52
p = 0.00∗∗∗ p = 0.45 p = 0.00∗∗∗

Akaike Inf. Crit. 2,487.12 319.13 235.20

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: The pattern of changes (OLS model)

Dependent variable:

lastChanged subjChanged

(1) (2)

logical1 0.63 0.12
p = 0.20 p = 0.62

tricky1 −1.17 −0.77
p = 0.02∗∗ p = 0.002∗∗∗

topology 0.42
p = 0.38

Constant 3.61 2.35
p = 0.00∗∗∗ p = 0.00∗∗∗

Observations 256 280
Adjusted R2 0.02 0.03

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We find a clear asymmetry between dynamics of the “don’t know” option and the other options.
This is evident from Figure 4, and confirmed by a Kolmogorov-Smirnov test. The p-values of
the KS tests all for three pairwise comparisons are less than 0.001. More changes are made to
“undecided” than to other answers. This is consistent with a 3-state threshold model incorporating
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Table 5: Correct and modal answers

Dependent variable:

diffCorrect diffModal correct isModal

OLS OLS logit logit

(1) (2) (3) (4)

logical1 −0.26 −0.09 −1.16 −0.54
p = 0.0001∗∗∗ p = 0.32 p = 0.0001∗∗∗ p = 0.06∗

tricky1 −0.24 −0.02 −1.19 −0.38
p = 0.0002∗∗∗ p = 0.79 p = 0.0001∗∗∗ p = 0.19

topology −0.18 −0.15 −0.20 −0.73
p = 0.003∗∗∗ p = 0.07∗ p = 0.49 p = 0.01∗∗∗

Constant 0.54 0.27 1.56 1.55
p = 0.00∗∗∗ p = 0.0002∗∗∗ p = 0.00∗∗∗ p = 0.00∗∗∗

Observations 256 256
Adjusted R2 0.15 0.01
Akaike Inf. Crit. 307.97 309.69

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

both revision and contraction.

4 Discussion and conclusions

4.1 Research hypotheses

Of our 13 research hypotheses, 8 were supported by our data and analysis. The following were not
confirmed.

• We did not observe a statistically significant increase in convergence rate when using the
complete topology as compared to the other topology.

• We did not observe a statistically significant increase in convergence rate when using logical
questions as compared to factual questions (in Table 4), there is no significant coefficient for
the indicator logical).

• Although the fraction of subjects answering “don’t know” was significantly smaller for logical
than factual questions over all iterations and for the first iteration, this effect was no longer
significant when we looked only at the last iteration.

• We did not observe that for tricky questions, social learning of the correct answer was greater
when using the incomplete topology (the signs of the coefficients in the first column of Table 5
should be different, but they are the same; performance on fair questions appears better in
the complete topology).
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Overall, we find that participants are more influenced by neighbours’ answers to logical questions
than we had expected.

4.2 Implications for modelling

Non-monotonicity

We note that the fraction of correct answers is mostly non-monotonic as a function of iteration
number. The crowds may “eventually become wise”, but their correctness is not monotonically
improving over time. Crowds may also become unwise. The (treatment, question) pair labelled
(B,2) is an instance where half of the participants had the correct answer to begin with, but fewer
than half had the correct answer by the end. Even with the complete graph (D,1), well over 50%
were correct at iteration 6 and 7, but well under 50% were correct in the following 3 iterations. This
data refutes any model that predicts monotonicity. Also, models predicting eventual convergence
to unanimity in all cases are refuted by our data. This includes many standard infection models.

Rationality

We have observed some violations of rationality. For example, for Q5 all participants were informed
that the correct answer had been given to some participants. For a participant to whom the correct
answer was given, answering correctly at every iteration dominates every other option (because of
the payoff structure). For the other participants, answering “don’t know” until another answer is
detected among the feeds, then switching to that answer, dominates any other strategy (assum-
ing belief in rationality of other players). However in Q5 we observed some subjects answering
incorrectly.

Such violations were relatively few, however. We designed Q3 so that subjects would be led to
reason as for Q5 - it seems reasonable to assume that even if I don’t know the answer, at least one
other participant will know it. The number of incorrect answers was fairly small for this question,
and the correct answer was eventually chosen by a large majority in both of these questions, with
the initially rather large number of undecided subjects rapidly becoming small.

Threshold models

Table 6 presents models (1)-(5), one for each question. In each model the dependent variable is a1,
an indicator equal to 1 whenever a subject chooses the first option among the three answer choices.
The independent variables p1 and p2 are the proportions of neighbours that chose at the previous
iteration answers 1 and 2 respectively. Note that p3 is not included because p1 + p2 + p3 = 1).

Note that we are using linear models in a situation when the dependent variable is binary while a
logit model would be normally used.

However, these models illustrate two important points. First, the coefficients (regardless of the
fact that the models are not particularly meaningful) are very different across models. That is,
participants’ behavior was very different in different questions. Second, the values of R2 are vastly
different too, ranging from 7% to 73%. In other words, a model perfectly fitting the data in one
question may be unable to describe what happens in another question, let alone to predict. This is
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consistent with our analyses above showing substantial sensitivity of dynamics to the type of the
question.

Table 6: The explanatory power of neighbours’ influence

Dependent variable:

a1

(1) (2) (3) (4) (5)

p1 0.51 0.68 0.15 0.56 0.94
p = 0.00∗∗∗ p = 0.00∗∗∗ p = 0.05∗∗ p = 0.00∗∗∗ p = 0.00∗∗∗

p2 0.16 0.19 0.08 0.14 0.72
p = 0.0002∗∗∗ p = 0.0000∗∗∗ p = 0.0001∗∗∗ p = 0.0004∗∗∗ p = 0.0000∗∗∗

Observations 448 455 457 459 459
Adjusted R2 0.25 0.35 0.06 0.26 0.73

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Next, Table 7 presents three logit models explaining the role of the neighbours on the choice of the
first answer. The dependent variable a1 is an indicator that equals to 1 when a subject chooses
the first answer. Model (1) follows, roughly, the general “threshold” idea that the likelihood of
choosing the first answer depends only on the proportion of neighbours choosing the same answer.
Model (2) is more in spirit of preferential attachment models stating that a node may imitate
any of its neighbours but the chances depend on the proportions of neighbours of each type. The
proportion of neighbours choosing “I do not know” option is not included into the model because
p1 + p2 + p3 = 1 and so introducing p3 cannot add any new information. As important result
following from model (2) is that the coefficients of p1 and p2 are nearly equal in absolute value
but have different signs (this would be a trivial result if there were only two options because then
p1 = 1−p2 would hold but there are three options in our experiment). In effect, this is equivalent to
saying that the likelihood of a subject choosing answer 1 depends on the difference, (p1−p2). To test
this data-driven hypothesis, in model (3) we excluded p1 and p2 but introduced diff12 = (p1− p2)
and also p3. Judging by AIC, model (2) is better than model (1) but (3) is better than (2). The
interpretation of model (3) is somewhat counter-intuitive. For example, compare two situations in
which the proportions of neighbours who have chosen options 1, 2 and 3, respectively, are 0.55, 0.45,
0.0 and 0.1, 0.0, 0.9. The difference between the proportions of the first and the second choices is
the same 0.1 but the proportion of option 3 in the second scenario is much larger. According to
the model, the likelihood of the node choosing option 1 is much smaller than in the first case. The
intuition, apparently, seems to suggest the opposite because 0.55 is not very different from 0.45 and
so a person should be almost indifferent between the two options while 0.1 is infinitely larger than
0.0 and so the first option seems clearly dominant. Yet, apparently, larger proportions of people
abstaining from taking either side may serve as a kind of a warning signal that other people may
be seeing some “red flag”. Similar observations hold for the second answer, only less pronounced.

Turning to the third, “I do not know” answer, Table 8 presents several models we fit to uncover how
much this choice is affected by the neighbours’ decisions. The most simple Model (1) turns out to
have an excellent fit, better than Model (2) in which we introduced the absolute difference between
the proportions of neighbours choosing options 1 and 2, and only slightly worse than the complete
Model (3) in which we included not the proportions of neighbours choosing each option. However,
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Table 7: Compensatory effects of neighbours’ choices

Dependent variable:

a1

(1) (2) (3)

p1 2.92 1.85
p = 0.00∗∗∗ p = 0.00∗∗∗

p2 −1.70
p = 0.00∗∗∗

diff12 1.74
p = 0.00∗∗∗

p3 −0.99
p = 0.0001∗∗∗

Constant −1.73 −0.66 −0.42
p = 0.00∗∗∗ p = 0.0000∗∗∗ p = 0.00∗∗∗

Akaike Inf. Crit. 2,432.69 2,364.35 2,345.41

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Model (3) has redundancy due to p1 + p2 + p3 = 1 and, therefore, coefficients cannot interpreted
due to the issue with identifiability. Interestingly, excluding p3 from the predictors results in a very
poorly fit Model (4) despite the added absolute difference. Therefore, our conclusion is simply that
p3 is the only reliably informative predictor.

Table 8: How neighbours affect the “I do not know” choice

Dependent variable:

a3

(1) (2) (3) (4)

diff12abs −0.09 −0.42
p = 0.65 p = 0.07∗

p1 0.68 −0.56
p = 0.11 p = 0.05∗∗

p2 0.74 −0.48
p = 0.07∗ p = 0.07∗

p3 1.77 1.71 2.41
p = 0.00∗∗∗ p = 0.00∗∗∗ p = 0.0000∗∗∗

Constant −1.92 −1.86 −2.60 −0.94
p = 0.00∗∗∗ p = 0.00∗∗∗ p = 0.00∗∗∗ p = 0.00∗∗∗

Akaike Inf. Crit. 2,058.59 2,060.38 2,058.62 2,101.36

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A pure linear threshold model, where the agent places zero weight on her own current belief, would
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predict that changes to option 1 (respectively 2) would be impossible if the feeds were all of the
opposite opinion. We observe no violations of this in our data. Another basic prediction of such
models is that if 100% of feeds agree on 1 or 2 being the correct answer, any switch would be to
that answer. We see only one violation of this, in (A, 3) where 100% of feeds choosing answer 2
led to a switch to “undecided”.

Although the logical questions were able to be solved without any input from other participants,
there are many instances where participants changed their answer. For example, in Q2 several
switches to the wrong answer occurred. This is consistent with the idea that some participants
have low thresholds for influence.

Question 2 (the Wason task) displayed some interesting behaviour. Not only did the crowd not
become wise in any of the 4 treatments, there were some violations of standard threshold models.
For example, in (C,2) there are several changes to the correct answer when 80% of feeds supplied
the wrong answer. This behaviour did not occur in the factual questions and indicates that a
larger weight on each agent’s own opinion is required when modelling logical questions (as seems
intuitively reasonable).

Our data allow for more testing of threshold models. For example, we can find upper and lower
bounds on subjects’ thresholds by observing when they change or did not change their answer.
Thus, the upper bound of the threshold for switching to option 1 of a given subject for a given
question is defined as the proportion of neighbours choosing 1 observed when the focal subject
switched to option 1. The reasoning is that since the subject switched then it must be the case
that the proportion of neighbours exceeded the threshold. The threshold is still unknown but
smaller than the observed proportion of neighbours. The lower bound is defined as the proportion
of neighbours when the subject did not switch to 1. That is, since the subject did not change it
must be the case that the proportion of neighbours is not below the threshold. An inconsistency
occurs whenever the lower bound exceeds the upper bound. In order to have enough data, we
pooled all answers for each subject. We observe substantial inconsistency of choice. For option 1
alone, 2/3 of participants made decisions such that their lower bound strictly exceeded the upper
bound. However, the data in Table 9 suggests that choice inconsistency is highly dependent on
the question type. Although one might expect that people would be more likely to drastically
change their opinions on logical questions, supposedly because the questions are self-contained,
most violations come from the factual question 5.

Table 9: Violations of the upper and lower bounds
Session Period Subject violations

1 A 1 10 1
2 A 2 9 2
3 A 3 9 2
4 A 4 5 4
5 A 5 4 4
6 B 3 6 1
7 C 1 3 1
8 C 1 9 2
9 C 4 16 2

10 C 5 9 7
11 C 5 16 7
12 D 1 12 2
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4.3 Relation to literature

The closest previous work to ours is Rahwan et al. (2014). The authors found that on “logical”
questions from the Cognitive Reflection Test, there is strong evidence of output contagion but no
evidence of process contagion. This would suggest that under the conditions of their experiments,
“System 2” (analytical reasoning) is not engaged. Our study was not designed to differentiate
between output contagion and process contagion. Furthermore we have some doubts about the
conclusions of Rahwan et al. (2014). The results on random and clustered topologies in Rahwan
et al. (2014) show that random graphs propagate the correct answer much better, consistent with
standard infection/information models but not with complex contagions (Centola 2010). Since
we believe that in an observational study of this type, simple contagion should not cause output
contagion, this is puzzling and deserves further study.

Note that one possible weakness in both studies is the amount of time given to participants to
revise their answers. In our experiment, participants were allowed 30 seconds in iterations after
the first, while in Rahwan et al. (2014) 15 seconds were allowed. It seems likely that for very
small allowed times, only output contagion can occur, because there is not enough time for further
thinking. This is another reason for our skepticism above. A further study to investigate the role
of time constraints is desirable.

Our study is different from Rahwan et al. (2014) in three key aspects. First, we study how the
dynamics of belief propagation depends on the type of question, by using factual questions that are
not “logical”. Second, by letting participants not only guess the answer but also admit ignorance
we are able to obtain a cleaner view on the propagation of beliefs. Third, we require participants
to choose between two options (or admit ignorance), whereas Rahwan et al. (2014) allows free-
form answers. Allowing free-form answers can result in many answers, very few of which have
substantial support, which may reduce influence from neighbours. On the other hand, for certain
types of questions (those where a proposed solution can be verified much more easily than it can be
derived, as for the “widgets” question common to our study and Rahwan et al. (2014)), it may be
much easier to spread the correct answer via free-form rather than via multiple choice answers (a
simple rather than a complex contagion). This may be the reason behind the behaviour on random
versus clustered topologies mentioned above. Note that on the one question (widgets) and topology
(complete) where the two studies overlap, our study finds a higher proportion of correct answers, and
also exhibits nonmonotonicity in this proportion over iterations, showing quite different behaviour
from Rahwan et al. (2014). This strengthens our belief in the sensitivity of results to experimental
design features.

Another related work is Lorenz et al. (2011) which uses the complete graph and a problem-solving
task that asks participants to estimate the value of factual numbers, such as the length of the
border between two countries. The study also varied the information given to participants (none,
arithmetic mean of neighbours’ guesses, full information about neighbours’ guesses), and found
little difference between the last two, but an improvement by both of them in collective accuracy
over the first regime.

4.4 Future work

We conjecture that allowing the “don’t know” option allows for better overall social learning.
This seems plausible, because in the 2-state model the wrong answer can gain majority support
early, and convergence to that answer occurs quickly. However, we have not yet performed a
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control experiment in which only two answers were allowed, and the presence of “tricky” questions
complicates things considerably. This is an obvious area for future work.

Various studies have used different answer formats (multiple choice, free-form) and different ques-
tion types (single correct answer, optimisation problem). We suspect that these choices have a
substantial effect on which type of network topology is best for social learning and aggregation. A
study concentrating on the interaction of topology with question/answer format looks promising.

The exploration/exploitation literature deals with optimisation problems and the overall state of
knowledge is unclear. Focusing on learning of unique correct answers as in the present paper might
be helpful. For example, the idea of what is a “difficult” question in the optimisation framework
may have some, or no, relation to what we call “tricky” questions. It may be that we can unearth
an underlying difference in types of questions, which may incorporate both global properties of the
solution space and psychological and cognitive information about the agents, which explains both
types of experiments.

Figure 4 displays for answers 1 and 2 three main small intervals in the x-axis where relatively large
jumps in the cdf occur. These are near 0, near 0.5 and near 1. We hypothesize that this indicates
three main types of subjects: those with low and high thresholds for influence by neighbours, and
those who tend to adopt majority opinion. Figure 2 supports this to some extent, but the data is
not clear. Further experimentation to determine whether these types really exist in the population
would be very interesting. Such an experiment would probably use the complete graph.

Using experimental data to compare threshold models with other models of diffusion and learning,
and even to fit them to real data, is another obvious area to explore. Our results showing that
threshold models are not always appropriate in the case of more than two states deserve more
scrutiny.
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Appendices

A Experiment instructions

Information about the experimental setup.
Together with several other people in the room you are part of a connected network. Some of

the links between people are “one-way” while others are “two-way”.

Some of you are connected to more people than others (the number of links ranges from 1 to
17). Participation is anonymous so that you will not know the identities of people you are con-
nected to at any moment.

You will be asked several questions in turn. Each question will be asked simultaneously to ev-
erybody in the network. You will be asked the same question several times. After each iteration
you will receive a summary of answers supplied by your “feeds” (people connected to you in the
network). You will also be feeding your answer to the people to whom you are connected (they
may be different from people feeding their answers to you because some links are one-way). At
each iteration you will have an opportunity to update your answer.

Before every question the positions of people on the network will be changed randomly. Therefore,
you may be connected to a different number of people, and to different people, than before.

Your decisions and how you will be paid.
You will receive $5 for participating in this experiment. In addition you can earn money based

on your answers. Each question has 2 possible answers, plus a third option “I am not sure”.

An incorrect answer is worth 0 (zero) tokens. A correct answer is worth 10 tokens. Choosing
“I am not sure” will give you 6 tokens. Not choosing anything will give you 0 (zero) tokens.

For each question, you will receive a payment for your very first answer and for your answer
in another randomly chosen iteration. Note that not answering is guaranteed the lowest payment,
and choosing an answer randomly has an expected payment of 5 tokens, which is lower than the 6
token payment for “I am not sure”.
At the end of the experiment tokens will be converted to [redacted to conceal the national currency]
paid in cash privately.

26



B Decision-making interface

Figure 5: Information provided to every participant included the question, available answers, the
participant’s previous answer as well as the distribution of answers among the feeding nodes.

C Questions used in the experiment

The specific questions and answers have been chosen to simulate different degrees of knowledge
among the participants.

Question 1. If it takes 5 machines 5 minutes to make 5 widgets, how long will it take 100 machines
to make 100 widgets?

1. At least 50 minutes

2. Less than 50 minutes

3. I am not sure

Question 2. Suppose you have a set of four cards placed on a table, each of which has a number
on one side and a coloured patch on the other side. The visible faces of the cards show 3, 8, red
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and brown. Which card(s) must you turn over in order to test the truth of the following claim: “if
a card shows an even number on one face, then its opposite face is red” ?

1. 8 and brown

2. 8 and red

3. I am not sure

Question 3. The name of the character played by Paul Walker in the “Fast and Furious” movies
is:

1. Dominic

2. Brian

3. I am not sure

Question 4. True or false: the Great Wall of China is the only manmade object visible from the
Moon.

1. True

2. False

3. I am not sure

Question 5. Does the picture below contain more white or black dots?

1. More white dots

2. More black dots

3. I am not sure

For Question 5 a picture has been converted to black and white format and adjusted such that the
experimenters thought it was impossible to tell whether it had more black or white dots.

D More detailed data analysis

Figure 6 shows for each treatment and question the fraction of subjects who changed their answer,
at each iteration. We observe that in most of these cases, convergence (defined as, say, no changes
for at least 2 consecutive iterations) was not achieved by our 10 iteration cutoff. However, in many
cases by iteration 10 convergence appears to be almost reached. This apparent convergence is much
faster for the complete graph than for the other topology, and for the factual questions (especially
Q5) than for the logical ones.
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Figure 6: Changes by question and treatment
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