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Abstract

In this paper we propose a modification of Benson’s algorithm for solving
multiobjective linear programmes in objective space in order to approximate
the true nondominated set. We first summarize Benson’s original algorithm
and propose some small changes to improve computational performance. We
then introduce our approximation version of the algorithm, which computes
an inner and an outer approximation of the nondominated set. We prove that
the inner approximation provides a set of ε-nondominated points. This work
is motivated by an application, the beam intensity optimization problem of
radiotherapy treatment planning. This problem can be formulated as a mul-
tiobjective linear programme with three objectives. The constraint matrix of
the problem relies on the calculation of dose deposited in tissue. Since this
calculation is always imprecise solving the MOLP exactly is not necessary
in practice. With our algorithm we solve the problem approximately within
a specified accuracy in objective space. We present results on four clinical
cancer cases that clearly illustrate the advantages of our method.

Keywords: Multiobjective linear programming, radiotherapy treatment
planning, ε-efficient solution.



1 Outline

The paper is organized as follows. In Section 2 we state the multiobjective
linear programming problem and summarize Benson’s outer approximation
algorithm to solve it in objective space. We illustrate the algorithm by an
example and describe some modifications to improve computational perfor-
mance of the algorithm. In Section 3 we describe the approximation version
of Benson’s algorithm and prove that it finds a set of weakly ε-nondominated
points in the feasible set in objective space. The rest of the paper is ded-
icated to the application in radiotherapy treatment planning. In Section 4
we review the beam intensity optimization problem, provide a formulation
as multiobjective linear programme, and motivate the use of an approxima-
tion algorithm by clinical considerations. Finally, we provide results on four
clinical cases in Section 5 and draw some conclusions in Section 6.

2 Multiobjective Linear Programming and

Benson’s Algorithm

In this paper we consider multiple objective linear programming problems of
the form

min{Cx : x ∈ X}. (1)

We assume that X in (1) is a nonempty, compact feasible set X in decision
space R

n defined by X = {x ∈ R
n : Ax � b}. We have A ∈ R

m×n and
b ∈ R

m. C ∈ R
p×n is the p × n matrix, the rows ck, k = 1, . . . , p, of which

are the coefficients of p linear functions < ck, x >, k = 1, . . . , p.
The feasible set Y in objective space R

p is defined by

Y = {Cx : x ∈ X}. (2)

It is well known that the image Y of a nonempty, compact polyhedron X
under a linear map C is also a nonempty, compact polyhedron of dimension
dimY � p (Rockafellar, 1970).

In this paper we use the notation y1 ≤ y2 to indicate y1 � y2 but y1 �= y2

for y1, y2 ∈ R
p whereas y1 < y2 means y1

k < y2
k for all k = 1, . . . , p.

Definition 1 A feasible solution x̂ ∈ X is an efficient solution of problem
(1) if there exists no x ∈ X such that Cx ≤ Cx̂. The set of all efficient
solutions of problem (1) will be denoted by XE and called the efficient set in
decision space. Correspondingly, ŷ = Cx̂ is called a nondominated point and
YN = {Cx : x ∈ XE} is the nondominated set in objective space of problem
(1).
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Definition 2 A feasible solution x̂ ∈ X is called weakly efficient if there is
no x ∈ X such that Cx < Cx̂. The set of all weakly efficient solutions of
problem (1) will be denoted by XWE and called the weakly efficient set in
decision space. Correspondingly, the point ŷ = Cx̂ is called weakly nondom-
inated point and YWN = {Cx : x ∈ XWE} is the weakly nondominated set in
objective space of problem (1).

Researchers have developed a variety of methods for generating all or at
least part of the efficient set XE , such as multiobjective simplex methods and
interior point methods, see the references in Ehrgott and Wiecek (2005) for
more information. Although some of these approaches have had some success
in aiding the Decision Maker (DM) to solve the problem, i.e., to identify a
most preferred solution, this success has been relatively limited due to the
heavy computational requirements and the near-impossibility to study the
overwhelming set of efficient solutions XE.

For an MOLP problem YN ⊆ R
p and XE ⊆ R

n with p typically much
smaller than n and many points in XE are mapped to a single point in YN .
For these reasons Benson (1998a) argues that generating YN should require
less computation than generating XE. Moreover, it is reasonable to assume
that a decision maker (DM) will choose a solution based on the objective
values rather than variable values. Therefore, finding YN instead of XE is
more important for the DM. Benson has proposed an algorithm to solve an
MOLP in objective space in (Benson, 1998a,b). Below, we summarize his
outer approximation algorithm.

2.1 Benson’s Outer Approximation Algorithm

For the MOLP problem (1) let

Y ′ = {y ∈ R
p : Cx � y � ŷ for some x ∈ X}, (3)

where ŷ ∈ R
p is chosen to satisfy ŷ > yAI . The vector yAI ∈ R

p is called the
anti ideal point for the problem (1) and is defined as

yAI
k = max{yk : y ∈ Y }. (4)

Theorem 1 (Benson (1998a,b))

1. The set Y ′ ⊂ R
p is a nonempty, bounded polyhedron of dimension p.

2. YN = Y ′
N .
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Theorem 1 is the basis of the outer approximation algorithm. It works
on Y ′ to find all nondominated extreme points of Y . In the course of the
algorithm supporting hyperplanes of Y ′ are constructed. The following pri-
mal dual pair P(y) and D(y) of linear programmes depending on y ∈ R

p is
needed for that purpose.

P(y) min{z : Ax � b, Cx − ez � y},
D(y) max{bT u − yTw : AT u − CT w = 0, eT w = 1, u, w � 0}.

Theorem 2 (Benson (1998b))

1. Let p̄ ∈ intY ′ and suppose that yk ≤ ŷ and yk /∈ Y ′. Let qk denote
the unique point on the boundary of Y ′ that belongs to the line segment
connecting yk and p̄. Then qk ∈ Y ′

WN .

2. Assume that qk ∈ Y ′
WN , and let (uT , wT ) denote any optimal solution

to the dual linear programme D(qk). Then qk belongs to the weakly
nondominated face F (u, w) of Y ′ given by F (u, w) = {y ∈ Y ′ : 〈w, y〉 =
〈b, u〉}.

If qk ∈ Y ′
WN , then P(qk) has the optimal value z = 0, and D(qk) also

has the optimal value bT u − qkT
w = 0. The dual optimal solution (uT , wT )

is used to construct the supporting hyperplane of Y ′, H(u, w) = {y ∈ Rp :
〈w, y〉 = 〈b, u〉}.

Benson’s outer approximation algorithm is shown in Algorithm 1. For
details, the reader is referred to (Benson, 1998a,b).
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Algorithm 1 (Benson’s outer approximation algorithm)
Initialization: Compute a point p̄ ∈ intY ′ and construct a p-

dimensional simplex S0 containing Y ′. Store both the
vertex set V (S0) of S0 and the inequality representa-
tion of S0. Set k = 0 and go to iteration k.

Iteration k.
Step k1. If, for each y ∈ V (Sk), y ∈ Y ′ is satisfied, then go to

Step k5: Y ′ = Sk. Otherwise, choose any yk ∈ V (Sk)
such that yk /∈ Y ′ and continue.

Step k2. Find the unique value λk of λ, 0 < λ < 1, such that
λyk + (1− λ)p̄ belongs to the boundary of Y ′, and set
qk = λky

k + (1 − λk)p̄.
Step k3. Set Sk+1 = Sk ∩ {y ∈ R

p : 〈wk, y〉 � 〈b, uk〉}, where
(ukT

, wkT
) can be found by solving LP D(qk).

Step k4. Using V (Sk) and the definition of Sk+1 given in Step
k3, determine V (Sk+1). Set k = k + 1 and go to
iteration k.

Step k5. Let the total number of iterations be K = k. The
nondominated extreme points of Y ′ are Y ′

NE = {y ∈
V (SK) : y < ŷ}. YNE = Y ′

NE is the set of all non-
dominated extreme points of Y . Stop.

For each k � 0, the hyperplane given by
〈
wk, y

〉
=

〈
b, uk

〉
is constructed

so that it cuts off a portion of Sk containing yk, thus Sk ⊃ Sk+1 ⊃ Y ′.
This is the reason for the name “outer approximation” algorithm, although
at termination, the MOLP is solved exactly in objective space. Theorem 3
proves that Benson’s algorithm is finite and it terminates with finding all the
nondominated extreme points of Y in Step k5.

Theorem 3 (Benson (1998a,b)) . Algorithm 1 is finite and at termina-
tion SK = Y ′. Let Y ′

NE = {y ∈ V (SK) : y < ŷ}. Then Y ′
NE is identical to

the set of all nondominated extreme points of Y , i.e., Y ′
NE = YNE.

The general idea of Benson’s algorithm can be explained as follows. First,
a simplex cover S0 that contains Y ′is constructed. S0 is given by axes parallel
hyperplanes defined by the entries of ŷ and a supporting hyperplane of Y ′

with normal e = (1, . . . , 1) ∈ R
p. An interior point p̄ of Y ′ is found. Then, for

each vertex yk of the cover, it is checked whether yk is in Y ′ or not. If not, p̄
and yk are connected by a line segment that contains a unique boundary point
qk of Y ′. A cut (new supporting hyperplane) containing qk is constructed and
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the cover Sk is updated. The procedure repeats until all the vertices of the
cover are in Y ′. Then the vertices of the cover are the extreme points of Y ′

and the nondominated extreme points of Y ′ are Y ′
NE = {y ∈ V (Sk) : y < ŷ}.

We give an example to illustrate Benson’s algorithm.

Example 1 Consider the MOLP min{Cx : Ax � b}, where

C =

(
3 1

−1 −2

)
, A =

⎛
⎜⎜⎝

0 −1
−3 1

1 0
0 1

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

−3
−6

0
0

⎞
⎟⎟⎠ .

The feasible set Y in objective space is shown in Fig. 1. Choosing ŷ = (13, 1)
we define Y ′ as Y ′ = {y ∈ R

2 : Cx � y � ŷ, Ax � b}. Fig. 2 shows Y, Y ′,
S0 and the interior point p̄.
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Figure 1: Objective space Y .
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Figure 2: Y ′, S0 and interior point p̄.

Figs. 3, 4, 5, and 6 show the first, second, third and fourth hyperplane,
respectively. The first hyperplane cuts off vertex (−4, 1), the second cuts off
vertex (13,−16), the third cuts off vertex (0,−3), the fourth cuts off vertex
(6,−9). We can see the change of Sk after each cut. After the fourth cut,
we have S4 = Y ′. Therefore, the vertices of S4 are the extreme points of
Y ′. We obtain all nondominated extreme points by Y ′

NE = {y ∈ V (S4) :
y < ŷ}. In this example we obtain the three nondominated extreme points
(12,−9), (3,−6) and (0, 0).

2.2 Improvements to Benson’s Algorithm

In Step k2 of Algorithm 1 it is necessary to find the unique λ (0 < λ < 1)
which determines the boundary point qk = λyk + (1 − λ)p̄ of Y ′. Benson
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Figure 3: After the first cut.
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Figure 4: After the second cut.
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Figure 5: After the third cut.
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Figure 6: After the fourth cut.

(1998b) suggests using a bisection method. However, this requires the so-
lution of many LPs. We show that it is possible to find the appropriate λ
solving just a single LP.

Proposition 1 Let yk be a vertex of Sk and yk /∈ Y ′. Let p̄ ∈intY ′ and let
μ = yk − p̄. Then there must exist some i ∈ {1, . . . , p} such that μi < 0.

Proof: Suppose, to the contrary, that μi � 0 for all i = 1, . . . , p. According to
Theorem 2 there is a unique λ (0 < λ < 1) such that qk = λyk + (1 − λ)p̄ ∈
Y ′

WN . Then qk − p̄ = λyk + (1 − λ)p̄ − p̄ = λ(yk − p̄) = λμ � 0. For a
minimization problem this means that qk is dominated by p̄ which contradicts
qk ∈ Y ′

WN . Therefore, there must exist i with μi < 0. �

By Proposition 1 it is possible to choose l ∈ {1, . . . , p} with μl = yk
l − p̄l <

0. We choose that μl < 0 which has the biggest absolute value among the
negative μi, i.e., |μl| � |μi| for all i = 1, . . . , p with μi < 0. Due to the
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convexity of Y ′, among all points of Y ′ on the line segment connecting points
yk and p̄, the boundary point q of Y ′ attains the smallest value of ql.

Therefore the unique λ for determining qk can be found by solving the
following LP.

min λyk
l + (1 − λ)p̄l

s.t. λyk + (1 − λ)p̄ � ŷ
λyk + (1 − λ)p̄ � Cx

Ax � b
λ � 1
λ � 0,

(5)

where λ and x are the variables. Note that, since yk /∈ Y ′ and p̄ ∈ intY , λ
cannot be 0 or 1 in an optimal solution of (5).

This modification dramatically improves the computation time.
Moreover, to calculate the vertices of Sk+1 = Sk ∩ {y ∈ R

p : 〈wk, y〉 �
〈b, uk〉} in Step k4, Benson proposes the method of Horst et al. (1988) in
(Benson, 1998b) and the simplicial partitioning technique in (Benson, 1998a).
We use the on-line vertex enumeration algorithm of Chen and Hansen (1991).
This algorithm is based on the algorithm of Horst et al. (1988) but its com-
plexity is smaller, as shown in Chen and Hansen (1991). The principle of the
on-line vertex enumeration algorithm is to find the vertex sets of Sk on both
sides of the cutting plane H(u, w) = {y ∈ R

p : 〈w, y〉 = 〈b, u〉} and then to
use adjacency lists of extreme points to identify all edges of Sk intersecting
H(u, w). The corresponding intersection points are computed and the adja-
cency lists updated. We found that the on-line vertex enumeration method
leads to an improvement in computation speed compared to the simplicial
partitioning technique.

3 Approximation Version of Benson’s Algo-

rithm

Let us first define ε-efficient solutions.

Definition 3 (Loridan (1984)) Consider the MOLP (1) and let R
p
� =

{y ∈ R
p : y � 0} and ε ∈ R

p
�.

1. A feasible solution x̂ ∈ X is called an ε-efficient solution of (1) if there
does not exist x ∈ X such that Cx ≤ Cx̂−ε. Correspondingly, ŷ = Cx̂
is called an ε-nondominated point in objective space;
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2. A feasible solution x̂ ∈ X is called a weakly ε-efficient solution if there
does not exist x ∈ X such that Cx < Cx̂−ε. Correspondingly, ŷ = Cx̂
is called a weakly ε-nondominated point in objective space.

We modify Algorithm 1 in order to find weakly ε-nondominated points of
Y ′. In addition to the vertex set V (Sk) we introduce sets O and I (initially
empty) of points used for the construction of an inner and an outer approx-
imation of Y ′. In the algorithm, if an extreme point yk of V (Sk) is close to
Y ′, i.e., has a distance less than ε > 0 from the boundary point qk we omit
construction of the hyperplane in Step k3 but remember both yk and qk to
construct the inner and outer approximation of Y ′.

Our approximation version of Benson’s algorithm is identical to algorithm
1 except for Step k1, Step k3, and Step k5. Let ε ∈ R > 0 be a tolerance
and let d denote the Euclidean distance, then the changes are as follows.

Step k1. If, for each y ∈ V (Sk), y ∈ Y ′ or y ∈ O is sat-
isfied, then go to Step k5. Otherwise, choose any
yk ∈ V (Sk) \ O such that yk /∈ Y ′ and continue.

Step k3. If the distance d(yk, qk) from yk to the boundary point
qk of Y ′ is at most ε, then add yk to O and add qk to
I. Go to Step k1. Otherwise set Sk+1 = Sk ∩ {y ∈
R

p : 〈wk, y〉 � 〈b, uk〉}, where (uk, wk) can be found
by solving LP D(qk).

Step k5. Let the total number of iterations be K = k. De-
fine the set of points of the outer approximation
Vo(S

K) = V (SK) and define the set of points of the
inner approximation Vi(S

K) = (V (SK) \ O) ∪ I. The
convex hull Y ′i of Vi(S

K) represents the inner approx-
imation of Y ′. The convex hull Y ′o of Vo(S

K) repre-
sents the outer approximation of Y ′. Stop.

We apply the modified algorithm to Example 1.

Example 2 In Example 1, set p̄ = (12.5, 0.5) and ε = 2.0. After two cuts
there are two points y1 = (0,−3) and y2 = (6,−9) outside Y ′, see Fig. 7.
The boundary points corresponding to y1 and y2 are q1 = (1 6

19
,−212

19
) ≈

(1.316,−2.632) and q2 = (7 4
35

,−713
35

) ≈ (7.114,−7.371), respectively. The
distances between the infeasible points and the boundary points are d(y1, q1)
≈ 1.366 and d(y2, q2) ≈ 1.973. We accept these two infeasible points for
the outer approximation due to the distances to their corresponding boundary
points being less than ε. When the algorithm terminates, the total number
of iterations K is equal to 2, Vo(S

2) = (13, 1), (0, 1), (0,−3), (6,−9), (13,−9)
and Vi(S

2) = (13, 1), (0, 1), (1.316,−2.632), (7.114,−7.371), (13,−9). In Fig.

8



8, we show the outer approximation Y ′o and the inner approximation Y ′i of
Y ′ and their corresponding sets of points.
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Figure 7: Accepted infeasible points
for approximation.
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Figure 8: Inner and outer approxi-
mation.

By definition of the approximation version of Benson’s algorithm, we have
the following observations.

Theorem 4

1. The number of points in Vo(S
K) is equal to the number of points in

Vi(S
K).

2. All points in Vi(S
K) are on the boundary of Y ′. Some points in Vo(S

K)
are outside Y ′, while the others are on the boundary of Y ′. Moreover,
y ∈ Vo(S

K) is not on the boundary of Y ′ if and only if y /∈ Vi(S
K).

3. If yov is a point in Vo(S
K), there exists a point yiv in Vi(S

K) corre-
sponding to yov with d(yov, yiv) � ε and vice versa.

4. If Y ′i
N is the nondominated set of the inner approximation Y ′i and Y ′o

N

is the nondominated set of the outer approximation Y ′o, then we have
Y ′i

N + R
p
� ⊆ Y ′

N + R
p
� ⊆ Y ′o

N + R
p
�.

Point 4 in Theorem 4 means that Y ′i
N and Y ′o

N are upper and lower bound
sets for YN as defined by Ehrgott and Gandibleux (2006). We would also like
to note that the approximation depends on the choice of the interior point p̄.
Of course, if ε = 0 the algorithm is Benson’s original algorithm. We proceed
to show that Y ′i

N is a set of weakly ε-nondominated points for Y ′.
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Proposition 2 If yo is a weakly nondominated point of the outer approxi-
mation set Y ′o, then there exists a weakly nondominated point yi of the inner
approximation set Y ′i such that d(yo, yi) � ε.

Proof: Let yo be a point on Fo, a weakly nondominated face of the outer
approximation set with vertices y1

ov, y
2
ov, . . . , y

l
ov ∈ Vo(S

K). Then yo can be
expressed as a convex combination of the vertices, i.e., yo =

∑l
j=1 λjy

j
ov with∑l

j=1 λj = 1 and λj � 0, j = 1, . . . l.

Let y1
iv, y

2
iv, . . . , y

l
iv ∈ Vi(S

K) be the corresponding points to y1
ov, y

2
ov, . . . ,

yl
ov on the inner approximation. Then d(yj

ov, y
j
iv) ≤ ε, for j = 1, . . . , l. Let

yi =
∑l

j=1 λjy
j
iv, then d(yo, yi) = ||∑l

j=1 λjy
j
ov −

∑l
j=1 λjy

j
iv)|| �

∑l
j=1 λj||yj

ov

−yj
iv|| ≤

∑l
j=1 λjε = ε. If yi is a weakly nondominated point of the inner

approximation we are done. Otherwise, choose the intersection point ỹ of
the line connecting yi and yo with the boundary of Y ′i. Clearly d(ỹ, yo) ≤
d(yi, yo) � ε. �

Combining Proposition 2 with Definition 3 we obtain our main result.

Theorem 5 Let ε = εe, where e = (1, . . . , 1) ∈ R
p. Then Y ′i

N is a set of
weakly ε-nondominated points for Y ′.

Proof: Let yi ∈ Y ′i
N and suppose there is y ∈ Y ′ such that y < yi − ε. Thus

yi−y > ε and d(y, yi) > ||ε|| > ε. By Theorem 4 we have that Y ′ ⊆ Y ′o
N +R

p
�,

i.e., there is yo ∈ Y ′o
N such that yo � y. Now observe that the intersection

of the hypercube defined by y and yi with Y ′i contains the single point yi

because Y ′i + R
p
� is convex. The hypercube has edge length at least ε. Thus

we have that d(yo, ȳi) � d(y, ȳi) � d(y, yi) > ε for any ȳi ∈ Y ′i
N , contradicting

Proposition 2. �

Theorem 5 shows that the approximation version of Benson’s algorithm
allows a guaranteed approximation quality for the weakly nondominated set
of Y ′. Because YN ⊂ Y ′

WN it is valid for YN as well. But Y ′i
N may contain

weakly nondominated points of Y and even points of Y ′ \ Y , see Fig 8.
To approximate the nondominated set of Y and avoid weakly nondomi-

nated points and points of Y ′ \Y , we define Y i
NE = {y ∈ Vi(S

K) : y < ŷ} and
Y o

NE = {y ∈ Vo(S
K) : y < ŷ}. We construct faces using the points in Y o

NE on
the same cutting plane (found during the algorithm) and let Y o

N be the union
of the faces. Similarly, we can construct Y i

N . Then the true nondominated
set YN can be approximated from outside by Y o

N and from inside by Y i
N .

Example 3 For Example 1, the points in Y o
NE are (0,−3) and (6,−9), while

the points in Y i
NE are (1.316,−2.632) and (7.114,−7.371). The set Y o

N is the
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line segment from point (0,−3) to point (6,−9) and the set Y i
N is the line

segment from point (1.316,−2.632) to point (7.114,−7.371), see Fig. 8. Note
that there might exist y ∈ YN which are farther than ε from any point in Y o

N

and Y i
N .

4 Application: Radiotherapy Treatment

Planning

The aim of radiation therapy is to destroy the DNA of tumour cells thus
preventing them from reproducing. Since radiation harms healthy cells, too,
albeit to a lesser extent, it is necessary to protect tissue surrounding the
tumour and critical organs at risk from this damaging effect of radiation.
In order to achieve these goals with current treatment modalities, notably
intensity modulated radiotherapy, optimization based inverse planning sys-
tems are necessary. Given the number of beams and beam directions, the
beam intensity optimization consists in calculating beam intensity profiles
(also called fluence maps) for all beams that yield the best achievable dose
distribution under consideration of clinical and physical constraints. For
background on radiotherapy we refer to Schlegel and Mahr (2002). In the
following sections we review the beam intensity optimization problem and
introduce the MOLP model we use.

4.1 Beam Intensity Optimization and Multiple Objec-
tives

In the past, the beam intensity optimization problem has been formulated as
a linear or nonlinear optimization problem, see Shao (2005) for a survey of
these models. Usually, the conflicting objectives – effective treatment of the
tumour and limiting the radiation dose to the surrounding normal tissue and
organs at risk – are summed up using a weight or “importance factor” for
the tumour, each organ at risk, and the normal tissue. However, selecting
weights before optimization is problematic because it leads to a trial-and-
error process of getting the “correct” weights.

Recently, multiobjective optimization has been introduced into radiation
therapy planning. For example, Hamacher and Küfer (2002) and Küfer et al.
(2003) formulate the beam intensity optimization problem as a multiobjec-
tive linear programming (MOLP) problem, and Cotrutz et al. (2001) and
Lahanas et al. (2003b) formulate it as a multiobjective nonlinear program-
ming (MONP) problem. In their unifying framework Romeijn et al. (2004)
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show that many of the objectives commonly used in beam intensity opti-
mization are convex and can be transformed into one another by strictly
increasing transformations. Thus, for most multiobjective models efficient
solutions can be obtained using weighted sum scalarisation. Moreover, the
efficient sets of different models coincide.

Hamacher and Küfer (2002) and Küfer et al. (2003) describe an idea to
generate a subset of the nondominated set based on the concept of neighbour
solutions. Cotrutz et al. (2001) and Lahanas et al. (2003b) solve the MONP
using the weighted sum method and they obtain a subset of the nondomi-
nated set by choosing a set of weights. Lahanas et al. (2003a) use multiobjec-
tive evolutionary algorithms to obtain some discrete nondominated points.
Craft et al. (2005) use the normalized normal constraint (NC) method (Mes-
sac et al., 2003) to achieve two dimensional tradeoffs between tumour dose
homogeneity and critical organ sparing and Craft et al. (2006) propose a
method to iteratively choose weights to gradually build up the nondominated
set.

However, most of the above methods cannot give us a comprehensive
view of the entire nondominated set. They either find a subset of the non-
dominated set or try to approximate the whole nondominated set using the
nondominated points obtained, usually without guaranteed quality of ap-
proximation.

It is difficult to choose a set of weights to make the nondominated points
evenly distributed. Even if an evenly distributed set of weights is used, it
is possible that the points obtained on the nondominated set are not uni-
formly distributed (Das and Dennis, 1997). The normalized normal con-
straint method is based on the normal boundary intersection (NBI) method
of Das and Dennis (1998). Both of the methods generate a set of equidistant
reference points on the convex hull of the individual minima (CHIM). For
each reference point, a corresponding nondominated point is found solving
a single objective subproblem. These methods can find evenly distributed
nondominated points, but they have the limitation that the solution may
overlook a portion of the nondominated set if the normal of the CHIM has
negative components (which may happen for p > 2 objectives). The method
of Craft et al. (2006) uses the idea of sandwiching the nondominated set
between a lower and an upper convex approximation. In each iteration it
calculates a new weight and updates the lower and upper approximation.
However, the CHIM is taken as the upper approximation initially.

In this paper we use Algorithm 1 to determine the entire nondominated
set of an MOLP model for the beam intensity optimization problem. Due to
the size of this MOLP model for clinical cases and despite the improvements
described in Section 2.2 it turns out that computation times are excessive.
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We also observed that for the clinical examples the tradeoffs between the ob-
jectives vary widely. Thus the nondominated sets in objective space appear
to be “curved” (see the figures in Section 5. This means that very many cut-
ting planes are needed to describe Y ′. This explains why Benson’s algorithm
has computational problems and takes very long to terminate. This is one
motivation for using an approximation version of Algorithm 1.

4.2 An MOLP Model for the Beam Intensity Problem

In order to calculate dose in the beam intensity optimization problem, the
patient’s 3D volume is divided into m small voxels (volume elements), and
the beams are discretised into n small bixels (beam elements). Then

d = Ax, (6)

where d ∈ R
m is a dose vector and its elements di correspond to the dose

deposited in voxel i. Vector x ∈ R
n describes the beam intensity, xj repre-

senting the intensity of bixel j. A ∈ R
m×n is called dose deposition matrix.

The elements aij of A represent the dose deposited in voxel i due to unit
intensity in bixel j. We assume that A is given. A can be partitioned and
reordered into sub-matrices AT ∈ R

mT ×n, AC ∈ R
mC×n and AN ∈ R

mN×n

(mT + mC + mN = m) according to the rows corresponding to tumour, crit-
ical organ and normal tissue voxels, respectively.

For treatment planning, the physician needs to specify a “prescription
dose” for the tumour, each organ at risk and the normal tissue. The “pre-
scription dose” is used to construct TLB ∈ R

mT , TUB ∈ R
mT , CUB ∈ R

mC

and NUB ∈ R
mN representing lower bounds on the dose to tumour voxels,

upper bounds on the dose to tumour voxels, upper bounds on the dose to
critical organ voxels, and upper bounds on dose to normal tissue voxels.

Based on Holder’s linear programming formulation (Holder, 2003), we
formulate the beam intensity optimization problem as a multiple objective
linear programme (MOLP). In this model, we minimize the maximum devia-
tion from tumour lower bounds α, critical organ upper bounds β and normal
tissue upper bounds γ at the same time. The model can be described as
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follows:

min (α, β, γ)
s.t. TLB − αe � AT x � TUB

ACx � CUB + βe
ANx � NUB + γe

0 � α � αUB
−min CUB � β � βUB

0 � γ � γUB
0 � x,

(7)

where e is the vector in which each entry is 1, αUB ∈ R, βUB ∈ R, and
γUB ∈ R are upper bounds for α, β, and γ, respectively. They are specified
by the physician and restrict the search to clinically relevant values.

We can see that the three objectives α, β and γ in (7) are limited by
upper and lower bounds. The same effect can be achieved by adding upper
bounds and lower bounds on the decision variables, i.e., the beam intensity
x (Lim et al., 2006). Moreover, we need to point out that due to the non-
negativity of the beam intensity, this MOLP problem is always feasible as
long as appropriate lower bounds and upper bounds for α, β and γ are set,
in particular, if these values are set to ∞ (Holder, 2003).

The constraints of (7) involve the dose deposition matrix A. As mentioned
before, aij describes the dose deposited in voxel i if unit intensity is applied
in bixel j. The coefficients aij are calculated by mathematical models of
the physical behaviour of radiation as it travels through the body. While
sophisticated techniques are available and in clinical use (Nizin et al., 2001)
with the gold standard today being Monte Carlo simulation (Verhaegen,
2003) the results are always imprecise due to the nonuniform composition
of the patient body. Thus, solving (7) exactly may give an unwarranted
impression of precision, but the result of the optimization can of course not
be more precise than the input data. Thus, for clinical purposes it is perfectly
acceptable to solve (7) approximately to within a small fraction of a Gy
(Gray, the unit of measure for radiation dose). Note that the objectives
α, β, γ are commensurate and have the unit Gy and that the tolerance ε in
the approximation algorithm is absolute, not relative. This is the second
motivation for solving the problem by an approximation version of Benson’s
algorithm.

5 Results

We solve (7) both by Algorithm 1 and our approximation algorithm described
in Section 3. Four clinical cases are used, namely an arterial veinous malfor-
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mation (AVM), an acoustic neuroma (AN), a prostate (P), and a pancreatic
lesion (PL). Simplified CT images that show the outline of the tumour and
critical organs at risk are shown in Fig. 9.

Figure 9: Pictures from left to right are AVM, AN, P, and PL.

These cases have a voxel size of 5 mm on a single CT slice. For all
examples, a total of 72 evenly spaced beams were used at angles 5on, where
n = 0, . . . , 71. The number of voxels and bixels used for optimization of
each case and the prescription information that defines parameters in (7) is
shown in Table 1. The algorithm was implemented in Matlab 7.1 (R14) using
CPLEX 10.0 as LP solver and the tests were run on a dual processor CPU
with 1.8 GHz and 1 GB RAM.

Table 1: Number of voxels (total = m) and bixels (n). Lower and upper
bounds for tumour, critical organs, and normal tissue (in Gy).

Case AVM AN P PL
Tumour voxels 1 9 22 67
Critical organ voxels 0 47 89 91
Normal tissue voxels 1206 999 1182 986
Bixels 319 594 821 1140
TUB 90.64 87.55 90.64 90.64
TLB 85.36 82.45 85.36 85.36
CUB — 60/45 60/45 60/45
NUB 0.00 0.00 0.00 0.00
αUB 17.07 16.49 42.68 17.07
βUB — 12.00 30.00 12.00
γUB 90.64 87.55 100.64 90.64

For the AVM case, both algorithms find two nondominated extreme
points. They are y1 = (0, 0, 79.31) and y2 = (17.07, 0, 63.45). Here, β is
equal to zero because there is no critical organ in this case. The nondomi-
nated set is the line segment from point (0, 79.31) to point (17.07, 63.45), see
Fig. 10. The clinical meaning of point (0, 79.31) is that there is a solution
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for which the (single) voxel in the tumour will receive a dose greater than the
tumour lower bound and smaller than the upper bound, while some voxel in
the normal tissue will receive a dose as high as 79.31 Gy (this is most likely a
voxel in immediate proximity of the tumour). The clinical meaning of point
(17.07, 63.45) is that there is a solution for which the voxel in the tumour will
receive a dose as low as TLB−17.07 = 85.36−17.07 = 68.29Gy, while some
voxel in the normal tissue will receive a dose as high as 63.45 Gy. We can
explain all the other nondominated points in between those two similarly.

�α

�γ

(17.07, 63.45)
�

�

(0, 79.31)�

�

Figure 10: Nondominated set of the AVM case.

For the other cases, it is not possible to list all nondominated extreme
points. We show the set Y ′ obtained by Benson’s algorithm for the acoustic
neuroma in Fig. 11 and for the prostate in Fig. 13 side by side with the set
Y ′o of the outer approximation obtained by the approximation version of the
algorithm with ε = 0.1. The acoustic neuroma is shown in Fig. 12 and the
prostate in Fig. 14.

The pancreatic lesion case could not be solved exactly within 10 hours of
computation. Therefore, we show the sets Y ′o obtained by the approximation
algorithm for various values of ε. Fig. 15 shows the result for ε = 0.3, Fig.
16 is for ε = 0.1, Fig. 17 is for ε = 0.05, and Fig. 18 is for ε = 0.005.

Summarizing information comparing the number of nondominated ex-
treme points, the number of cutting planes and the computation time of
Benson’s algorithm and our approximation version of Benson’s algorithm
with various values of ε is given in Table 2.

Benson’s algorithm can solve the first three clinical cases exactly in less
than 1.5 hours. For the pancreatic lesion case, Benson’s algorithm did not
terminate after 10 hours of computation. On the other hand, the approxi-
mation version of Benson’s algorithm can solve all four problems within 30
minutes within an error of 0.1.

For a problem with many nondominated extreme points and a “curved”
nondominated surface, such as Fig. 18 suggests, the approximation ver-
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Figure 12: AN: Y ′o with ε = 0.1.
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Figure 13: P: Y ′.
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Figure 14: P: Y ′o with ε = 0.1.

Table 2: Running time and number of nondominated extreme points and
cutting planes for the four cases with different values of ε.

Case ε Time Nondominated Cutting
(seconds) extreme points planes

AVM 0.1 1.56 2 3
0 1.56 2 3

AN 0.1 39.19 27 21
0 178.09 55 85

P 0.1 205.95 56 42
0 4196.78 3165 3280

PL 0.3 677.15 57 37
0.1 1256.58 152 90

0.05 1990.25 278 159
0.005 30973.51 1989 1041
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Figure 15: PL: Y ′o with ε = 0.3.
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Figure 16: PL: Y ′o with ε = 0.1.
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Figure 17: PL: Y ′o with ε = 0.05.
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Figure 18: PL: Y ′o with ε = 0.005.

sion of Benson’s algorithm generates fewer extreme points and fewer cutting
planes compared with Benson’s algorithm. For the prostate example, 3165
nondominated extreme points were found with Benson’s algorithm, while the
approximation version of Benson’s algorithm generates only 56 nondominated
extreme points when ε = 0.1

Table 2 and the figures clearly show the effect of the choice of ε. The
smaller the error parameter, the more cutting planes and the more nondom-
inated extreme points are generated and the longer the computation time.

6 Conclusion

In this paper we have developed an approximation version of Benson’s algo-
rithm to solve MOLPs in objective space. We have shown that the algorithm
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guarantees to find weakly ε-nondominated points to within a specified accu-
racy.

The development of the algorithm was motivated by the beam intensity
optimisation problem of radiotherapy treatment planning, which can be for-
mulated as an MOLP. The constraint matrix of this model depends on the
model of the physical behaviour of radiation. Since this calculation is in-
accurate the application of an approximation algorithm is justified in the
practical application. In this context the parameter ε can be chosen by the
physician, based on his knowledge on how accurately the beam model used
by the specific treatment planning system calculates dose deposited in the
body.

We have used four different clinical cancer cases to test the algorithm,
using only a single CT slice and a voxel size of 5 mm. The results suggest
that our approach can be used to solve three dimensional cases with clinically
relevant 2 mm spaced CT slices and voxel size of 2 mm using computational
resources that are available at leading cancer treatment centres.

Our method provides an approximation of the whole nondominated set.
Further work is necessary to combine this approach with decision support
tools to assist the treatment planner in selecting a treatment plan from this
set that is best suited for the individual patient under consideration.

References

Benson, H. P. (1998a). Hybrid approach for solving multiple-objective linear
programs in outcome space. Journal of Optimization Theory and Applica-
tions , 98, 17–35.

Benson, H. P. (1998b). An outer approximation algorithm for generating all
efficient extreme points in the outcome set of a multiple objective linear
programming problem. Journal of Global Optimization, 13, 1–24.

Chen, P. C. and Hansen, P. (1991). On-line and off-line vertex enumeration
by adjacency lists. Operations Research Letters, 10, 403–409.

Cotrutz, C., Lahanas, M., Kappas, K., and Baltas, D. (2001). A multi-
objective gradient-based dose optimization algorithm for external beam
conformal radiotherapy. Physics in Medicine and Biology , 46, 2161–2175.

Craft, D., Halabi, T., and Bortfeld, T. (2005). Exploration of tradeoffs in
intensity-modulated radiotherapy. Physics in Medicine and Biology , 50,
5857–68.

19



Craft, D. L., Halabi, T. F., Shih, H. A., and Bortfeld, T. R. (2006). Approx-
imating convex Pareto surfaces in multiobjective radiotherapy planning.
Medical Physics, 33, 3399–3407.

Das, I. and Dennis, J. (1997). A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multicriteria op-
timization problems. Structural and Multidisciplinary Optimization, 14,
63–69.

Das, I. and Dennis, J. E. (1998). Normal-boundary intersection: A new
method for generating the Pareto surface in nonlinear multicriteria opti-
mization problems. SIAM Journal on Optimization, 8, 631–657.

Ehrgott, M. and Gandibleux, X. (2006). Bound sets for biobjective com-
binatorial optimization problems. Computers & Operations Research,
http://dx.doi.org/10.1016/j.cor.2005.10.003.

Ehrgott, M. and Wiecek, M. (2005). Multiobjective programming. In
J. Figueira, S. Greco, and M. Ehrgott, editors, Multicriteria Decision Anal-
ysis: State of the Art Surveys, pages 667–722. Springer Science + Business
Media, New York.
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