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Abstract

This paper proposes the use of an interactive decision support system to guide the treat-

ment planning process for external beam radiation therapy. Based on multicriteria optimisa-

tion our research treatment planning software Carina calculates efficient (also called Pareto

optimal) treatment plans. These are stored in a database and accessed for evaluation by

the treatment planner. The interactive component consists of navigation among the pre-

calculated plans using free search, fine search and exact search as well as sensitivity analysis,

which extracts dose dependence information for all structures from the plan database. As a

result, plan quality is improved by finding advantageous trade-offs in competing treatment

plans, trial-and-error is avoided, and effectiveness of treatment planning is increased.

Keywords: Multicriteria optimisation; decision support system; radiation therapy; treat-

ment planning.
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1 Introduction

Cancer is one of the most significant health problems worldwide with respect to its incidence
and mortality alike. The main treatment form besides surgery and chemotherapy is radiation
therapy. Ionising radiation is used to damage the DNA and interfere with division and growth
of cancer cells. An estimated 50% of all patients diagnosed with cancer would currently benefit
from radiotherapy, either to cure the disease or to palliate symptoms [47]. A curative treatment
is focused on generating a tumouricidal dose, while the total dose in a palliative treatment is
comparatively lower and is aimed at achieving temporary relief of symptoms.

Radiation therapy exploits the fact that cancerous cells are more susceptible to radiation than
healthy cells. This difference in susceptibility is called the therapeutic ratio [54]. Treatment plan-
ning is concerned with improving the therapeutic ratio by appropriately choosing beam directions,
beam intensities and other treatment parameters. Due to recent improvements in medical imag-
ing (e.g. magnetic resonance imaging) and radiotherapy technology (e.g. intensity modulation by
multi-leaf collimation) [43], an increase in applicability and treatment success of radiation therapy
has been noted [53, 54]. However, narrow therapeutic ratios are still widely observed and have
to be dealt with: They may result either in a lethal dose deposited in the tumour leading to
unacceptable damage to one or more healthy structures or, conversely, in the avoidance of any
damage to healthy structures implying ineffective treatment in terms of tumour control.

Before commencing treatment an often lengthy and complex planning process takes place.
Complexity arises from patient geometry, i.e. the shape and site of the tumour and surrounding
tissues, and the fact that a large number of plan parameters, such as number of beams, their
directions, and intensities form interdependent, non-intuitive relationships [18] that influence the
final radiation dose distribution. The optimisation of the radiation intensity delivered by given
beams is managed by the treatment planning system (TPS). The optimised treatment plan is then
evaluated by the radiation therapist and/or radiation oncologist.

A treatment plan consists of the treatment configuration for all equipment used to irradiate
the patient, resultant dose distribution in the patient, and a set of treatment instructions [54].
This includes beam modality (photons, protons, etc.) and energy (measured in MeV), irradiation
geometry (number of beams and their angles of incidence), the point of incidence (isocentre), beam
intensities, and patient set-up (treatment table positioning, immobilisation devices).

Many advances were observed in areas of patient immobilisation [42], imaging [4,43], and dose
distribution calculation [22, 30] over the last years. However, plan optimisation, though widely
investigated, is still often not satisfactory [23,38]. The role of plan optimisation is to decide on a
final treatment plan which is the best possible plan for the individual patient.

Often optimal solutions of mathematical models underlying optimisation are not clinically
acceptable. This invariably results in a trial-and-error process where the planner changes input
parameters in the search for a better optimisation output. The search may be very time-consuming,
depending on the experience of the planner and the complexity of the case. Thus treatment
planning can form bottlenecks and aggravate the waiting lists problem in oncology centres around
the world [31].

In this paper we will assume that beam modality and geometry are given and focus on the
intensity problem (also referred to as fluence map optimisation or beam weight optimisation).
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This problem consists in deciding beam intensities that generate a dose distribution in the patient
which achieves the curative or palliative primary objective of the treatment. Dose is measured as
absorbed radiation in units of Gray (Gy). For planning purposes the primary objectives are realised
by specifying a varying number of patient dependent treatment goals. These include avoidance,
conformity, homogeneity, and simplicity goals [21]. Guidelines and protocols usually recommend
values for each of these goals with respect to treatment site and progress of the disease [37]. Despite
this, the level of importance of each of these goals may vary and different radiation therapists may
set goals differently for the same patient based on their training, experience, and understanding
of the patient’s situation [40].

In the following section we outline the development of treatment planning strategies from
forward to inverse (that is, optimisation based) planning, focusing on the most recent multicriteria
based optimisation models. We argue that multicriteria optimisation models are most appropriate
for radiotherapy treatment planning, but must be accompanied by decision support for effective
use in practice.

In Section 3 we introduce the method adopted in our research treatment planning system
Carina and illustrate it with an example planning session. Section 4 concludes the paper and
points out directions for future research.

2 Forward, inverse, and multicriteria based

treatment planning

Several planning strategies have been developed over the years, with improvements following
advances in treatment equipment.

Early radiotherapy treatment used forward treatment planning, which is conducted iteratively.
The treatment planner specifies all parameter values, after which the dose calculation software
computes the dose distribution. If this is judged not acceptable by the oncologist, the initial
parameter values are then adapted by trial-and-error until the dose distribution is satisfactory. In
2002, this planning strategy was still used in about 90% of the 5,500 cancer centres worldwide
[49]. Despite the trial-and-error process, forward planning was acceptable for early forms of
radiotherapy, because the use of open fields and simple wedge filters to modify intensities meant
that only relatively few parameters needed to be specified.

Inverse planning has been introduced in the 1970’s and has become popular during the 1990’s.
The idea of inverse planning is to specify the desired outcome, such as dose distribution, and com-
pute beam intensities that produce this outcome, thereby eliminating the trial-and-error process of
forward planning. The inverse planning paradigm requires optimisation models to mathematically
formulate the relationship between beam intensities and dose distribution and to judge the quality
of a treatment plan.

The introduction of intensity modulated radiotherapy (IMRT) made the inverse planning ap-
proach indispensable. IMRT uses multileaf collimators to allow a decomposition of a beam into a
large number of beamlets. Since the intensity of the beamlets can be chosen independent of one
another, the number of planning parameters has increased by orders of magnitude. It has become
quite impossible for even experienced planners to consistently produce high quality plans in every
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case [52].
A large number of different optimisation models have been suggested to optimally solve the

intensity problem including linear programming models [5, 8, 29, 38, 41], mixed integer program-
ming models [6, 21, 35, 51], and non-linear programming models [2, 10, 14]. [44] and [12] have each
reviewed several optimisation models. We show three examples of intensity optimisation models:
A linear model by [28], the most widely used non-linear model based on linear least squares (see
e.g. [9, 45]) and a so-called biological model [11]. We do not present a formulation for a mixed
integer programming model, because these models are usually extensions of linear programming
formulations that use binary variables to include additional constraints, such as dose-volume con-
straints or homogeneity constraints, or include beam angle selection in the model. Such issues are
beyond the scope of the paper.

Mathematical models for the intensity optimisation problem are based on the discretisation of
the body and the beams. The body is divided into volume elements (voxels) or dose points. Voxels
are cubic and their edge length may be defined by the slice thickness of the patient images and is
often 3 or 5 mm. Deposited dose is calculated for one dose point in every voxel and assumed to
be the same throughout the voxel. A beam is discretised into beam elements (bixels or beamlets
or sub-beams). Their size depends on the number of leafs of the collimator and the number of
stops for each leaf as it moves across the beam. The number of voxels may be tens or hundreds of
thousands, and the number of bixels can be up to 1000 per beam (for a collimator with 120 leaves
and stops every 5 mm for a 40 × 40 cm field [50]). The relationship between intensity and dose
can then be formulated by a linear map

x → d = Ax,

where x is a vector of bixel intensities indexed by (a, i), i.e. beam number a and beamlet i of beam
a. The entries a(j,a,i) of A represent the rate at which dose is deposited in voxel j by beamlet
i of beam a. Finally, d is a dose vector indexed by voxels j that represents the discretised dose
distribution in the patient. The calculation of the values a(j,a,i) is referred to as dose calculation.
We assume that A is given.

In the linear model of [28], bixels are assigned to each of three tissue types: tumour, critical
structures, and remaining normal tissue. This results in a decomposition of A by rows into AT ,
AC , and AN . Accordingly, let TUB and TLB be a vector of upper, respectively lower, bounds on
dose for the tumour voxels, CUB a vector of upper bounds for the critical structure voxels, and
NUB a vector of upper bounds for the remaining normal tissue. The model is as follows:

minimise ωT lT α + ωCuT
Cβ + ωNuT

Nγ

subject to TLB − Lα ≤ AT x ≤ TUB

ACx ≤ CUB + UCβ

ANx ≤ NUB + UNγ

0 ≤ Lα ≤ TLB

−CUB ≤ UCβ

0 ≤ UNγ

0 ≤ x.

(1)
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Here, α, β and γ measure the underdose and overdose of tumour, critical structures, and remaining
tissue compared to TUB, TLB,CUB and NUB, respectively. Nonnegative and full (column) rank
matrices with positive row sums L,UC , UN and positive vectors l, uC , uN define how deviations
are measured (e.g. the maximum or average over voxels). Through penalty factors ωT , ωC , and
ωN associated with these deviations the objective function penalises deviations from desired dose
levels. The first three constraints place an upper, or in the case of the tumour, a lower elastic
bound on the dose received. Elastic means that the bounds are allowed to vary with α, β, and
γ, respectively. The remaining inequalities constrain the elastic bound values, and enforce non-
negativity. It can be shown that the feasible region of this model is never empty for any L, UC

or UG. This is unlike other linear programming formulations, where constraints may be set so
tight that they become infeasible, a main criticism of linear programming models for intensity
optimisation in the past. For more details we refer the reader to [28,29].

Most non-linear programming formulations of the intensity problem are quadratic programmes
of the least-squares type, i.e. they minimise the weighted squared differences between actual and
prescribed doses summed over all structures, see e.g. [14,45]:

minimise ωT fq
T (x) +

∑K
k=1 ωkfq

Ck
(x) + ωNfq

N (x)
subject to x ≥ 0,

(2)

where fT , fCk
and fN are defined as

fq
T (x) = ‖(TLB −AT x)+‖22 ,

fq
Ck

(x) = ‖(ACk
x− CUBCk

)+‖22 for k = 1, . . . ,K,

fq
N (x) = ‖(ANx−NUB)+‖22 .

Here the critical structure voxels C are partitioned into individual structures Ck, k = 1, . . . ,K.
Negative values of TLB −AT x, ACk

− TUBk, and ANx−NUB should be encouraged, hence
(·)+ := max {· , 0}. The parameters ωT , ωCk

, and ωN represent weights or “importance factors” of
the tumour, critical structures and normal tissue. There are many variations of this model, e.g.
TG−AT x may be used instead of (TLB −AT x)+ with a target dose TG. Then fT is a measure
of dose variability that is to be minimised. Setting ωN = 0 indicates that normal tissue is not
considered. Values of CUBk = 0 may be used in order to minimise dose to critical structures.

Whatever the variation, it has to be pointed out that the quadratic model (2) is convex, hence
there is only one (global) minimum. These quadratic programmes can be solved with several tech-
niques, e.g. sequential quadratic programming, gradient methods, quasi-Newton methods [10], or
special techniques for nonnegative least squares problems [7] (see also [44] and references therein).

In biological models mathematical expressions for the dose response relationship of different
tissues are used to formulate probabilities for tumour control (TCP ) and complications in normal
tissue (NTCP ) as functions of dose (and therefore of intensity), see e.g. [3, 11]. This approach
leads to nonlinear optimisation models to maximise, e.g. the complication free tumour control
probability

max TCP (1−NTCP ). (3)

We observe that both the linear (1) and quadratic (2) models include “importance weights”
as parameters in the objective functions, namely (ωT , ωC , ωN ) (ωC = ωN = 1 and ωT large
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are used in [28, 29]). These parameters have to be specified before optimisation. Therefore,
albeit optimisation based inverse planning removes the trial-and-error process of choosing x and
calculating Ax until a satisfactory treatment plan is found, a new trial-and-error process may be
necessary. If the values chosen for the weights (ωT , ωC , ωN ) do not yield a satisfactory plan even
with optimal x, then they have to be adjusted in an iterative fashion.

A second observation is that in forward and inverse planning alike, the fundamental problem
is that minimising the dose to healthy tissues conflicts with generating a sufficiently high dose to
the tumour. As a result, difficult decisions have to be made regarding the overdosing of organs
and/or the underdosing of the tumour. These decisions will always have to balance the perceived
risk of unsuccessful tumour control with the possibility of complications in healthy tissues.

The models (1) – (3) reflect this dilemma by including components that correspond to the
different goals of treatment planning in the objective functions. In order to deliver a radiation
dose to the tumour that achieves the curative or palliative intent of the treatment they penalise
low dose to the tumour either directly or via low TCP . In order to limit the dose to healthy tissue
they penalise high dose to the critical structures and normal tissue, again, either directly or via
high NTCP . However, with these single objective models treatment plans are judged on the basis
of one value representing the plan quality (objective function value or figure of merit). In this way
they hide the possible trade-offs between the conflicting goals and hinder the effective use of that
valuable information.

With this observation it becomes apparent that the formulations commonly used in inverse
planning are not adequate models of the problem. Instead, the intensity problem should be
formulated as multicriteria optimisation problem that keeps the conflicting objectives separate,
i.e. the objective functions of (1) – (3) should be replaced by

minF l(x) = (fT (x), fC(x), fN (x)) = (lT α, uT
Cβ, uT

Nγ),

minF q(x) = (fT (x), fC1(x), . . . , fCk
(x), fN (x)),

minF b(x) = (fT (x), fCN (x)) = (TCP, 1−NTCP ),

respectively.
A feasible solution x of a multicriteria optimisation problem is called efficient (or Pareto

optimal) if there is no other feasible solution x′, such that x′ is at least as good as x for all
components of F l (or F q, or F b) and strictly better for at least one. If x is efficient we say
that F (x) is a nondominated point. Multicriteria optimisation problems have a set of efficient
solutions with incomparable nondominated points, rather than optimal solutions with a unique
optimal objective value.

A number of multicriteria optimisation models have already been proposed in the literature.
Multicriteria models with quadratic objectives can be found in [13, 25, 34], multiobjective linear
programming formulations are given in [26,27] and models using the concept of equivalent uniform
dose are used in [32,33,48]. A survey of possible objective functions is given in [39].

We present the multicriteria linear model of [26], which has been used in Carina. The model
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is essentially a special case of the multicriteria version of (1).

minimise (α, β1, . . . , βK)
subject to TLB −AT x ≤ αe

AT x− CUBk ≤ βk for k = 1, . . . ,K

x ≥ 0
α, βk ≥ 0 k = 1, . . . ,K,

(4)

where e denotes a vector of ones of appropriate dimension. Thus we have f l
T (x) = α = maxj∈T ((

TLB −AT x)j)+ and similarly f l
Ck

= βk = maxj∈Ck
((ACk

x− CUBk)j)+.
The objective is to minimise the maximum deviation from specified bounds in all structures

and the constraints ensure that only overdose in critical structure voxels and underdose in tumour
voxels is considered. Intensities x have to be nonnegative. Ideally, one would want a solution with
F l(x) = (0, . . . , 0), but due to the problem of narrow therapeutic ratios this does not usually exist,
and we have to find a compromise solution.

The set of efficient solutions/nondominated points of a multicriteria model of the intensity
problem represents the available trade-offs between the conflicting goals of radiotherapy treatment.
Thus the solution which offers the best compromise for the individual patient should be chosen
from this set. This approach guarantees that there is no plan that achieves better results against
all objective functions, but guarantees enough flexibility for the planner to take case-specific
information into account.

Since the set of efficient solutions (nondominated points) is a continuum it is not possible to
compute all efficient solutions. In this context two results are important. [39] have shown that
many of the objective functions used in intensity optimisation (including radiobiological ones)
can be transformed into convex functions through strictly monotone mappings. [39] have also
demonstrated that this does not change the set of efficient solutions (note that (1), (2), and
(4) have convex objective and constraints). Thus, the intensity problem can be formulated as
convex multicriteria optimisation problem. For such problems the following fundamental theorem
of multicriteria optimisation is known.

Theorem 1 [24] Let f and G be convex function. The set of properly efficient solutions of the
multicriteria optimisation problem

min{F (x) = (f1(x), . . . , fp(x)) : G(x) ≥ 0}

is identical to the union of the sets of optimal solutions of weighted sum problems min{
∑p

i=1 ωp

fp(x) : G(x) ≥ 0} for all ω ∈ Ω = {(ω1, . . . , ωp) : ωk > 0 for all k = 1, . . . , p and
∑p

k=1 ωk = 1}.

Properly efficient solutions exclude those efficient solutions which have an infinite trade-off
between at least two of the objectives: A deterioration in one can only achieve an infinitesimally
small improvement in another. Since such solutions are clearly not relevant in the radiotherapy
context, this qualification is of no importance for intensity optimisation models, on the contrary,
it is an additional advantage.

Theorem 1 illustrates the close relationship between the traditional models like (1) – (3) and
multicriteria models such as (4). The iterative process of optimisation and adjustment of weights
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can be interpreted as the search for an efficient solution that offers an adequate compromise
between the treatment goals for the case at hand.

Some researchers have tried to “optimise” importance factors [55] or to calculate them during
optimisation [56] to speed up this process. The alternative that multicriteria models offer is to
use a multi-plan strategy for treatment planning. This is addressed in the next section.

3 Decision support-based treatment planning

Some authors have suggested to generate a set of importance weights and solve the single objective
version of their multicriteria model with a weighted sum of the objectives for all of these weights.
The treatment planner can then select one of the generated plans that best suits the individual
patient [13, 34]. This strategy is based on the idea that if a wide variety of weights is used, the
resulting plans should also cover the set of efficient solutions.

However, it is known in multicriteria optimisation that the relationship between weights and
efficient solutions/nondominated points is quite counterintuitive: very similar weights might pro-
duce widely differing efficient solutions, whereas very different weights might produce the same
efficient solution. It is also known that given a set of weight vectors that are equally distributed
over the set Ω there is no guarantee that the resulting nondominated points are well distributed
too, as has been demonstrated e.g. by [15].

It is thus necessary to avoid using importance weights altogether in order to compute a set of
treatment plans that truly reflect the available treatment options for a specific patient.

The preceding discussion shows that the problem shifts from generating a mathematically
optimal plan to determining the one plan that is most suitable for the individual patient from
among the set of efficient solutions. Multicriteria models make this possible because they allow a
decoupling of plan optimisation and final plan determination. Once a set of efficient solutions is
determined, the question is How can the treatment planner determine the one plan that is best for
the patient from a large number of efficient plans?

As a result, the trial-and-error process, that iterates between human action (specifying weights)
and plan optimisation, is abandoned in favour of guided search among pre-computed efficient
treatment plans (Figure 1). A decision support system provides the planner with the necessary
guidance in selecting the final treatment plan and making trade-off decisions between a set of
pre-computed efficient treatment plans. Ideas for such DSS based treatment planning systems can
be found in [33,40].

With the model (4) our approach is aimed at generating a well-balanced trade-off between the
over- and underdose of organs and the tumour, respectively. We have addressed this question with
the software Carina.

3.1 Generating efficient solutions

Let us denote the feasible set of (4) by X. We first estimate the range of values that f l
T and f l

Ck

in (4) can take. This means calculating the ideal and nadir points of (4). The ideal point is 0,
because all values are by definition nonnegative and there always exist solutions such that fT = 0
(with large x) or fCk

= 0 (with x = 0). The nadir point (the point defined by the maximal values
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Figure 1: Changes in the treatment planning paradigm from forward planning (left) to inverse
planning (middle) to decision support-based planning (right).

the objectives can attain over the efficient set) is hard to compute [20]. We estimate it by a lower
bound by solving the following problems:

min f l
T (x) + ε

∑K
k=1 fCj

(x)

min f l
Ck

(x) + ε
(
fT (x) +

∑
j 6=k fCk

(x)
)

for k = 1, . . . ,K.
(5)

Let xT and xk, k = 1, . . . ,K be optimal solutions. By Theorem 1 these solutions are efficient.
Furthermore, positive (but small) ε implies that fT (xT ) respectively fCk

(xk) is small. Thus
f̂T = maxk=1,...,K{fT (xk)} and f̂k = max{fCk

(xT ), maxj 6=k{fCk
(xj)}} give the desired lower

bounds on the nadir values.
Next, we find a solution x̂ with the values of fT (x̂) and fCk

(x̂) as equal as possible. This
is called the lexicographic max-ordering solution [16] or nucleolar solution [36] of (4). It can be
interpreted as a balanced or unbiased solution of the problem and is also guaranteed to be efficient,
see [16].

We define a grid of points that covers the area defined by the range of values [0, f̂1]×. . .×[0, f̂K ]
and is centred at F l(x̂). The grid is homogeneous, in that the distances between all neighbouring
solutions are equal. One exception to this is the division of the grid into an inner and outer grid.
The inner grid surrounds the balanced solution, and is surrounded by the outer grid. The points
in the outer grid will be less densely spaced than in the inner grid (Figure 2). This is reasonable
because the inner grid is of higher clinical importance, as the values of objectives are less extreme.
In Carina the user can decide on either the number of grid points or the maximum distance
between two neighbouring points.

In order to find efficient solutions, the improved ε-constraint method [19] is used and an LP is
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Figure 2: The grid of efficient solutions divided into inner (densely spaced points) and outer grid.
The balanced solution is situated in the exact centre of the inner grid. The grid may not be
complete if the boundary of the solution space has been reached.

solved for every gridpoint g = (g1, . . . , gK).

minimise fT (x)−
∑K

k=1 λksk +
∑K

k=1 µkuk

subject to fCk
(x) + sk − uk = gk for k = 1, . . . K

x ∈ X

sk, lk ≥ 0 for k = 1, . . . ,K

(6)

With positive λk and µk an optimal solution of (6) is always efficient [19]. The formulation aims
at finding efficient solutions that match the values of the grid points, but allows for corrections in
case a grid point is not efficient. In addition, for every grid point, the best possible result for the
tumour is obtained. Note that unlike the importance factors ωk the weights λk and µk here are
technical parameters and can be handled automatically during optimisation.

Efficient treatment plans are calculated by solving the problems (5) – (6). The number of
problems to be solved depends on the number of critical structures (i.e. objectives) and the
coarseness of the grid and can be large. Note, however, that no interaction with the treatment
planner is required during this computation, so it can be done unsupervised (at night), requiring
only computing time. All efficient solutions are stored in a database. Each solution consists of
the beamlet values x and the objective values fT (x) and fCk

(x). These are necessary for plan
evaluation/navigation. The structure of the database is such that there is one table containing
the efficient candidate plans. Each solution in this set is recognised by a unique plan identifier.
The parameters used to calculate the plans, are stored in a different table and can be recognised
by their unique parameter set identifiers.

During navigation, plan evaluation and comparison take place, and the radiation therapist
decides on the final treatment plan that best fulfils individual treatment goals. This requires
close interaction between the software and the radiation therapist. During the evaluation of the
balanced solution the radiation therapist decides which treatment goals are met or which deviation
value has to be improved (i.e. decreased). For this improvement another criterion value has to be
traded-off, i.e. the radiation therapist determines which structure’s deviation will be deteriorated
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(i.e. increased). Given these requirements for improvement and deterioration, a free search or a
fine search can be initialised. In the free search, the radiation therapist specifies and inputs the
exact values for improvement and deterioration for each structure. Another option is to fix a
number of structures at their current deviation levels. Carina writes an SQL string according
to these inputs, queries the database, and returns the plan which best fulfils these requirements.
In this process, the deviation between a specified value and the actual value in the database will
be minimised. The free search is cumbersome when simply a neighbouring solution is sought,
i.e. a slight increase in one structure traded-off against a slight decrease in another structure.
In this case, a fine search is more appropriate. The only inputs necessary are which structure
to improve and which to deteriorate. Carina will return a unique neighbouring solution if one
exists. Otherwise it informs the planner that his requests cannot be met and resets the last user
inputs. A third option is an exact search, where the plan identifier is input and the corresponding
plan is immediately displayed. This is useful when solutions are revisited for comparison purposes
or after sensitivity analysis (see below).

Each iteration of a free or fine search constitutes one search process. Navigation may consist
of several of these search processes until a satisfying treatment plan is found. Searches will be
very fast and query times instantaneous due to the query optimisation engine in the database
management system. The navigation log will store the plan identifiers, deviation values, and
search requirements for each search process. Evaluation of single solutions or the comparison
of several solutions is possible by means of dose distribution/difference diagrams, dose-volume
histograms, and bar charts of the deviation values [46]. The polygon approach by Küfer et al. [33]
is another elegant concept for comparing deviation values.

During each successive search process Carina provides further information based on the plan
data available in the database. It provides the user with the number of available solutions in the
database, which is bound to decrease as only a limited number of plans can satisfy set requirements.
Carina also outputs permissible value ranges for each structure, as they also change with specified
requirements. However, most important is the use of sensitivity analysis to retrieve information
on how the dose to one structure is dependent on the dose to another structure. The usefulness
of sensitivity analysis has been noted elsewhere [1, 40]. For example, sensitivity analysis can
yield information on how much a critical structure could be spared if a tumour dose reduction is
accepted.

This information is not provided by current TPS, because multicriteria methods are necessary
to obtain and exploit it. Additionally, sensitivity analysis has the power to reveal advantageous
trade-offs where the total improvement greatly exceeds the total deterioration when comparing
two rival treatment plans. Table 1 gives a convenient overview of the several navigation options
Carina provides.

3.2 Example treatment planning session

This simple example demonstrates the use of sensitivity analysis and compares it with the fine
search. In this example, the tumour is situated in close proximity to three organs: spinal cord,
left and right kidney. The treatment parameters specified before optimisation are summarised in
Table 2.
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Option Input Explanation

Free search Exact value desired for each
structure

Minimisation of deviation be-
tween specified value and value
saved in the database

Fine search One structure desired to improve
and one structure desired to de-
teriorate

Neighbouring solution will be
found

Exact search Plan identifier Straight plan retrieval
Available so-
lutions

Automatic after each search pro-
cess

The number of plans that can
satisfy the currently set require-
ments

Value ranges Automatic before each search
process

Possible value range of each
structure available for the next
search

Sensitivity
analysis

One structure that may improve
and one structure that may dete-
riorate

Shows how the two structure
doses are dependent from one an-
other and can thus reveal advan-
tageous trade-offs

Table 1: Navigation options and information provided by Carina.

1581 efficient solutions were stored in the database.
The radiation therapist’s task is to trade-off over- and underdose to organs and tumour, re-

spectively, with regard to the treatment goals. Figure 3 shows the dose distribution diagram and
dose-volume histogram for the balanced solution. The deviation values in all structures are equal
with α = βk = 2.97 for k = 1, . . . ,K. Doses are already close to the bounds, which is a direct
consequence of the large number of treatment fields. However, there is still room for navigation.
Treatment goals are such that the dose to the radio-sensitive spinal cord (k = 3) should be de-
creased further, while accepting increased irradiation of the left kidney (k = 1). The right kidney
(k = 2) should be spared as well, so that the main radiation burden is on the left kidney.1 If
possible the dose deposited in the tumour should not be more than 3Gy below the lower bound,
i.e. α ≤ 3.

With this in mind, an improved plan would have the right kidney and the spinal cord irradiated
at their set limits, i.e. β2 = 0 and β3 = 0. In order to obtain information on dose dependence
between the left kidney and the tumour, a sensitivity analysis is performed which fixes deviation
levels β2 and β3 at 0 Gy. The result is given in Table 3.
Opting for solution 631 instead of the balanced solution represents an advantageous trade-off. The
total improvement is 6.22 Gy, which represents the combined improvements of the right kidney
(2.97 Gy), the spinal cord (2.97 Gy), and the tumour (0.28 Gy). This has been traded-off against
a total deterioration of only 0.6 Gy (in the left kidney only). Plans 727 and 823 represent even
higher advantageous trade-offs, with improvements of 7.32 Gy and 8.43 Gy, and deteriorations of
1.2 Gy and 1.79 Gy, respectively. However, when single radiation doses become too large, they

1It is a common approach to completely protect one to the detriment of the other when dealing with paired
organs.
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Equipment specifications: Dose distribution specifications:

� 10 treatment fields � 80 Gy tumour (min)
� 15 degrees equispaced angles � 33 Gy left kidney (max)
� 16 MV beam energy � 33 Gy right kidney (max)

� 25 Gy spinal cord (max)

Grid specifications:
� 9 points inner grid
� 4 points outer grid

Table 2: Example parameter settings.

Figure 3: The isodose (left) and DVH (right) plots for the balanced solution. The objective
function values are F l = {2.97, 2.97, 2.97, 2.97}.

cause streaks of high radiation through the body. Hence, solution 631 is made the new plan of
choice (Figure 4).
Note that a free search with α < 3 and β2 = β3 = 0 would have given the same result, albeit
without dose dependence information.

The next step is to search within the immediate neighbourhood of plan 631 in order to achieve
a better deviation value for the left kidney. A fine tuning search is done with α < 3, β1 < 3.57,
β2 = 0 and β3 > 0. Querying the database brings forward that such a plan does not exist.
Repeating the query with β3 = 0 and β2 > 0 shows that β2 must be increased to at least 4.76 Gy.
This is not acceptable. The remaining options are to either increase the tumour deviation, keep
the β1 value at 3.57 Gy, or decrease both β2 and β3. The last approach was tested by sensitivity
analysis. The result is given in Table 4.
Unfortunately, the doses to the right kidney and spinal cord would have to be increased quite
dramatically in order to decrease the dose to the left kidney even slightly. This is not acceptable.
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planID α β1 ∆ α ∆ β1 ∆ β1 −∆ α

631 2.69 3.57 0.28 .60 .32
727 1.59 4.17 1.38 1.19 −.19
823 0.48 4.76 2.49 1.79 −.70

Table 3: Information extracted on the dose dependence between the tumour (T1) and the left
kidney ( T2).

Figure 4: The isodose (left) and DVH (right) plots for solution 631. The objective function values
are F l = {2.69, 3.57, 0, 0}.

Hence, plan 631 is chosen as the final treatment plan for this patient. The corresponding beam
intensities are stored in the database and can be retrieved for implementation,

4 Conclusions and directions for future research

Based on the reasonable assumption that oncology personnel want as much influence on the
final treatment plan as possible, Carina’s navigation process accomplishes this using versatile
options for navigation searches. Moreover, it provides information to support all search processes.
Sensitivity analysis has emerged as an extremely useful option to find treatment plans having
advantageously traded-off deviation values.

Interactivity in treatment planning is a rather new concept. One condition for interactivity
is certainly that plan optimisation and evaluation is instantaneous. However, most TPS have
re-optimisation times of several minutes. [40] recently presented a new research TPS that inter-
actively explores optimal treatment plans based on objective parametric programming. A limited
number of optimal treatment plans with varying parameters are pre-calculated and subsequently
interactively evaluated. They also conclude that interactivity leads to more efficiency in treat-
ment planning and increases plan quality. It has to be noted, however, that the set of solutions to
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planID α β2 β4 ∆ α

1213 2.998 2.68 4.17 −.306
1217 2.997 2.97 2.68 −.304
588 2.991 3.57 1.19 −.298

1224 2.983 3.27 2.08 −.290
1218 2.977 2.97 2.97 −.285

Table 4: Sensitivity analysis for an improvement in the left kidney and a deterioration in the right
kidney, the spinal cord, and the tumour.

choose from is biased with respect to the choice of initial parameters and hence does not exhaust
the whole efficient set. As a result, the best patient-tailored solution may not be identified.

Multicriteria optimisation on the other hand provides a cover of the whole relevant solution
space. The only limitations of this approach are the need for storage space and the large plan
calculation time [39]. The advantages however are convincing. The decision making task per-
formed by the radiation therapist and oncologist is supported, not replaced, by a decision support
system. The reason for achieving or not achieving patient specific treatment goals becomes more
transparent and directly influenceable. As a result of avoiding trial-and-error and re-optimisation,
planning times are drastically shortened. In addition, plan quality is improved by finding and
exploiting advantageous trade-offs.

Radiation therapy treatment planning is a very complex process. It is important to direct
attention to not only the intensity problem itself, but also to factors influencing it. Consequently,
radiation therapists should be supported in their choice of initial parameters. Here, beam direction
optimisation is most critical, as the influence of beam directions on the resulting dose distribution
is substantial and the choice of beam directions often non-intuitive [17].

The support through sensitivity analysis should be expanded. The idea is to initialise a search
program that extracts advantageous trade-offs from the database of pre-computed treatment plans.
As a result, CARINA could propose treatment plans based on such a search outcome.
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