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1 Mathematical Formulation

A multiobjective optimisation problem is the following mathematical pro-
gramme

min f(x) = (f1(x), . . . , fp(x))
subject to g(x) 5 0,

where f : Rn → Rp is a vector-valued objective function and g(x) : Rn → Rm.
In the case of integer programmes, that we are mainly concerned with

in this paper, we further assume that f and g are linear functions. Thus a
multiobjective integer programme is

min f(x) = Cx

subject to Ax 5 b

x ∈ {0, 1}n.

We denote by X = {x ∈ Rn or X = {x ∈ {0, 1}n : Ax = b} the feasible
set in decision space and by Y = f(X) = {f(x) : x ∈ X} the feasible set in
objective space. We understand solving a multiobjective integer programme
as finding a complete set of efficient solutions XE , according to the definition
of Hansen (1979). A feasible solution x̂ is efficient if there is no x ∈ X with
f(x) 5 f(x̂) and f(x) 6= f(x̂). The image of the efficient set in objective space
is the set of non-dominated points YN := f(XE).

It is of course impossible to give a comprehensive survey of applications of
multiobjective optimisation in the space of this paper. I have therefore made a
very subjective selection of problems that I am familiar with. They are never-
theless drawn from widely different application areas. In each of the examples
I emphasise why I find it instructive and what lessons can be learned. The
applications I consider are the portfolio selection problem in finance (Section
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2), train timetable information and airline crew scheduling from the trans-
portation field (Sections 3 and 4), radiotherapy treatment design in medicine
(Section 5) and the telecommunication application of routing in IP networks
(Section 6).

2 Finance: Portfolio Optimisation

The first problem I want to discuss is the portfolio optimisation problem
of deciding on an investment of a certain sum of money, for example at
a stock exchange, so as to maximise the return and minimise the associ-
ated risk. If the number of websites is an indication of importance, this
is a very important problem: A Google search for “Risk Return Portfo-
lio Stock Exchange” produces about 10 million hits, among those http:
//www.ise.ie/intuition.asp?type=SUCCESS of the Irish stock exchange,
where we can read that “In this section of the Exchange’s e-learning tool you
can learn more about the trade off between risk and return.”

As the phrase “trade off” indicates, portfolio optimisation is a classical
bicriteria optimisation problem. It is arguably the first one that has been
intensively studied since the seminal work of Markowitz (1952) appeared.
The original single objective formulation employed for its solution is nothing
but the ε-constraint scalarisation of the problem

max f1(x) = µT x

min f2(x) = xT σx

subject to eT x = 1
x ≥ 0

(1)

where µ is the expected return, σ is the covariance matrix of the returns, and
e is a vector of ones.

As a biobjective programme with linear and quadratic objectives and lin-
ear constraints, the non-dominated and efficient sets are relatively easy to
compute. Figure 1 shows the non-dominated set of a portfolio optimisation
problem with n = 40 assets from Ehrgott et al. (2004).

So why should I talk about this problem? The reason becomes apparent
when we compare theory with reality. As Konno (1990) observes, most in-
vestors do not actually buy efficient portfolios, but rather those behind the
non-dominated frontier. Can this behaviour be explained? The assumption
underlying the Markowitz model is that investors are “after the money” and
therefore only interested in return and risk. We might call such investors “av-
erage” or “standard” investors. However, individual investors might not act
according to the Markowitz assumption, and consider other, additional, ob-
jectives. Such multiobjective models have been proposed, e.g., by Steuer et al.
(2006) and Ehrgott et al. (2004). The latter uses formulation (2).
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Fig. 1. The non-dominated frontier of a portfolio optimisation problem.

max f1(x) = µT
1 x

min f2(x) = xT σx

max f3(x) = µT
3 x

max f4(x) = dT x

max f5(x) = stx

subject to eT x = 1
x ≥ 0,

(2)

where µ1 and µ3 are the one and three year expected returns, d is the divi-
dend and s is the Standard and Poor’s star ranking. Steuer et al. (2006) call
investors that use such non-standard criteria “suitable portfolio investors.”
Investors may also like to have control over the number of assets in the port-
folio and the fraction of investment in a single asset. This can be incorporated
by using additional binary variables as in (Chang et al., 2000) to yield model
(3).
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max f1(x) = µT
1 x

min f2(x) = xT σx

max f3(x) = µT
3 x

max f4(x) = dT x

max f5(x) = stx

subject to eT x = 1
xi ≤ uiyi

xi ≥ liyi

eT y = k

yi ∈ {0, 1},

(3)

where k is the number of assets, and li and ui are lower and upper bounds on
the fraction of capital invested in asset i.

By now, the continuous, convex, linear-quadratic biobjective Markowitz
model has become a true multiobjective and mixed integer problem, which is
certainly worthy of further study. But besides showing that (multiobjective)
portfolio optimisation remains an interesting topic more than 50 years after its
first appearance we can learn another important lesson. Conventional port-
folio theory cannot predict behaviour of individual investors. However, the
introduction of additional objectives provides a rather plausible explanation
of this phenomenon. The model of “suitable portfolio investors” opens possi-
bilities for further research. Assuming that investors make rational (optimal)
decisions, how many and which objectives are needed to explain a particular
solution as efficient? Furthermore, the importance of multicriteria decision
aid increases, as criteria need to be made explicit and decision support is
necessary to find an investors’ most preferred portfolio.

Much more information on this topic can be found in Chapter 20 in
Figueira et al. (2005) and references therein.

3 Transportation: Train Timetable Information

At the time of planning my trip to Europe, including attendance at the
MOPGP conference, I considered using the train from Pirmasens, Germany,
to Tours. The online timetable information of Deutsche Bahn (see http:
//www.reiseauskunft.bahn.de) provided two possible connections shown in
Table 1.

So I had a choice between shorter travel time or fewer train changes.
Obviously this is a multiobjective shortest path problem (a third objective,
fare, is not available due to the international connection).

The multiobjective shortest path problem is a well studied multiobjective
combinatorial optimisation (MOCO) problem. In particular, we know that
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Table 1. Two train connections between Pirmasens and Tours.

Station Date Time Duration Changes

Pirmasens Su, 11.06.06 09:32 8:49 4

Tours Su, 11.06.06 18:21

Pirmasens Su, 11.06.06 09:32 10:05 3

Tours Su, 11.06.06 19:37

already the biobjective version is NP-hard because the digraph at the top of
Figure 2 can be used to demonstrate a reduction from the knapsack problem.
Moreover, the graph at the bottom of Figure 2 shows that it is intractable,
i.e., there can be exponentially many efficient paths and nondominated paths,
see, e.g., Ehrgott (2005) for proofs.
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Fig. 2. The multiobjective shortest path problem is NP-hard (top) and intractable
(bottom).

This is pretty bad news for a problem which is so easy in its single objective
version. Table 2 shows computation times and the number of efficient paths
for relatively big networks from Raith and Ehrgott (2006).

Apparently, the NP-hardness and intractability are not an issue in these
examples (and all others tested in Raith and Ehrgott (2006)). It is particularly
striking that the large road networks have very few efficient paths. Can this
discrepancy be explained?

Indeed it can. Müller-Hannemann and Weihe (2006) have investigated
properties of networks with two objectives that allow better estimates of the
number of efficient paths. Using the ratio between the first and second objec-
tive on the arcs they prove Theorem 1.

Theorem 1. 1. Even if the ratio between first and second length of an arc
assumes only 2 values there can be exponentially many efficient paths.
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Table 2. Number of efficient paths and CPU times for biobjective shortest path
problems of different types.

Type Nodes Edges Efficient Paths CPU Time

Grid 20,002 79,600 247 960.51

Grid 10,002 39,600 390 71.08

NetMaker 10,000 155,157 10 1.05

NetMaker 3,000 8,333 27 0.11

Road 9,559 39,377 6 0.63

Road 53,658 192,084 17 4.41

2. If there are k different ratios between first and second length of an arc
there are at most O(n2k−2) efficient bitonic paths. A bitonic path is a
path where the sequence of ratios switches only once from increasing and
decreasing.

Müller-Hannemann and Weihe (2006) have conducted experiments on the
train graph of the Deutsche Bahn rail network, which has 1.4 million nodes,
2.3 million arcs and found that 84% of efficient paths are bitonic. Moreover,
the number of efficient paths using different combinations of objectives is very
small. For distance versus time on average 2 and most 8 paths are efficient.
For fare versus time the numbers are 3 and 22 and for the three objectives
distance, time, and train changes they are 10 and 96.

Again, we learn a number of lessons from this. Firstly, the concepts of
NP-hardness may not be too relevant in multiobjective optimisation. Since
almost all MOCO problems are NP-hard and intractable, there is virtually no
distinction among problems by these criteria. Moreover, worst case estimates
may simply not apply in a particular application, even if problem instances
become very large. It is therefore always worse studying the circumstances of
the application. That will be beneficial for the application and it might lead
to interesting mathematical results.

4 Transportation: Airline Crew Scheduling

BBC News of Sunday, 4 August, 2002, had an item that serves well to explain
a problem in airline crew scheduling.

Passengers with low-cost airline Easyjet are suffering delays after
19 flights in and out of Britain were cancelled. The company blamed
the move – which comes a week after passengers staged a protest
sit-in at Nice airport – on crewing problems stemming from technical
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hitches with aircraft. Crews caught up in the delays worked up to their
maximum hours and then had to be allowed home to rest. Mobilising
replacement crews has been a problem as it takes time to bring people
to airports from home. Standby crews were already being used and
other staff are on holiday.

But first, we need to understand the standard integer programming model
of the airline crew scheduling problem. The goal is to partition the scheduled
flights into a set of pairings each of which can be operated by a crew member
to minimise cost. Let

aij =
{

1 pairing j includes flight i
0 otherwise.

The problem can then be formulated as a generalised set partitioning problem

min = cT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n.

(4)

This particular type of set partitioning problem can be solved using column
generation and constrained branching strategies. Software to solve (4) (opti-
mally or heuristically) is in use by all airlines. In fact, airline crew scheduling
has been one of the biggest successes of Operations Research.

However, as can be seen from the news item above, things do not always
go as planned and delays are common occurrences in operation. Optimal crew
schedules according to (4) often operate with minimal “sit times” between
flights, that is without buffer time between flights to be operated by the same
crew member. In addition, aircraft are also kept operating with minimal “turn
time” between flights. In such a scenario consider Figure 3. If arriving flight
Fr is late the next flight operated by the same aircraft is inevitably late, too.
Moreover, if two crew members C and F arriving on flight Fr are scheduled
to operate flights Fs and Ft, these will also be delayed. It is easy to imagine
that this propagation of delays through the schedule can cause major and
very expensive disruptions.

Thus, dealing with delay has become a focus of research in recent years. I
shall explain two approaches. The first one is based on the stochastic nature
of delays and incorporates the cost of delay into the problem formulation
resulting in a stochastic programme with recourse (Yen and Birge, 2006). The
formulation is
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Fig. 3. Delay propagation due to aircraft changes.

min cT x + Q(x)
s.t. A1x = e

A2x = b

x ∈ {0, 1}n,
(5)

where Q(x) =
∑

ω∈Ω p(ω)Q(x, ω) and Q(x, ω) is the cost of delay under sched-
ule x in scenario ω. Details of the solution algorithm – a branch and bound
algorithm, which requires a set partitioning problem to solved in every node
– can be found in Yen and Birge (2006).

The second approach is based on the conflicting goals of minimising cost
and minimising delay caused by aircraft changes, i.e., it is a biobjective pro-
gramme (Ehrgott and Ryan, 2002):

min rT x

min cT x

s.t. A1x = e

A2x = b

x ∈ {0, 1}n,

(6)

where rj is a penalty for short ground time that does not allow recovery
from previous delays. It uses the 95%-quantile of the delay distribution as
a parameter. The biobjective set partitioning models were solved using the
method of elastic constraints
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min rT x + ps

s.t. A1x = e

A2x = b

cT x− s = ε

x ∈ {0, 1}n

s ≥ 0,

(7)

a variant of the ε-constraint scalarisation which allows the ε-constraints to be
violated but penalises the violation. It is known (Ehrgott and Ryan, 2003) that
all solutions found are weakly efficient, that all efficient solutions can be found.
But most importantly it turned out to be computationally superior to the ε-
constraint method. In fact, an instance of (7) could be solved in approximately
the same time as (4), whereas solving the ε-constraint scalarisation often
exceeded the node limit of 1000 and ran more than 10 times longer.

Both approaches have been implemented using the same crew scheduling
software and the same schedule. The optimal solution of the stochastic pro-
gramme and efficient solution of the biobjective programme were simulated
using 100 delay scenarios. Figure 4 shows the average costs and delays.
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Fig. 4. Cost versus delay for schedules obtained with the stochastic and biobjective
programmes.

Using either the stochastic or biobjective approach to robust crew schedul-
ing we may solve the problem of delays caused by aircraft changes. This does
not address the problem of an arriving crew splitting up to operate different
flights. Thus, the issue is only partially resolved: What is the use of having
robust solutions for pilots if cabin crew do something different?
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Robust crew scheduling should also address unit crewing, i.e., the problem
of keeping crew together for a sequence of flights for as long as possible. Thus,
we want to solve the pairings problem for several crew groups simultaneously
so as to minimise cost and maximise unit crewing. The corresponding problem
formulation is

min cT
1 x1 + cT

2 x2

min eT s1 + eT s2

subject to A1x1 = e
M1x1 = b1

A2x2 = e
M2x2 = b2

U1x1 − U2x2 − s1 + s2 = 0
x1 x2 s1 s2 ∈ {0, 1}n.

(8)

Using new branching strategies and the elastic constraint method as in (7),
(Tam, 2004) has obtained results that show that unit crewing, crew changing
aircraft, and robustness of crew schedules are closely related, as shown in
Figure 5.
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Fig. 5. Unit crewing versus number of aircraft changes and cost.

We see here, that working on a particular application necessitates the
development of new solution techniques. Such developments drive multiob-
jective programming, eventually making it applicable in other real word sit-
uations, where multiobjective models haven’t been considered yet or haven’t
been solved before. We an also see that biobjective models may be an alter-
native to stochastic programming, if the recourse objective can be captured
by means of a deterministic objective. This is especially relevant for integer
models, where the stochastic programme is particularly hard to solve and com-
putationally expensive. Finally, multiobjective modelling can lead to a more
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comprehensive view of an application. From the biobjective model for robust
scheduling it is only a small step towards the simultaneous consideration of
several crew groups in the unit crewing problem. In fact, the next question
is immediate: Why not include aircraft routing and consider assignment of
aircraft to flights simultaneously with crew scheduling? This is an unsolved
problem that is currently under investigation (Weide, 2005).

5 Medicine: Radiotherapy Treatment Design

External beam radiotherapy is one of the major forms of cancer treatment.
About 50% of cancer patients receive radiotherapy for curative or palliative
purposes. Beams of electrons or high energy photons generated by a linear
accelerator are focused on the tumour from several directions. An oncologist
prescribes a dose distribution to be achieved by the treatment, that is a radia-
tion dose to be delivered to the tumour that achieves the curative or palliative
intent of the treatment but avoids damage to healthy tissues.

Given the beam directions, the purpose of radiotherapy treatment design is
to find beam intensity (or fluence) maps for each beam that realise the desired
dose distribution. Here I consider the treatment design problem for intensity
modulated radiotherapy (IMRT), where beam intensity can vary across a
beam. The advantage of IMRT is described on http://www.cancernews.com/
data/Article/259.asp as follows

IMRT represents an advance in the means that radiation is deliv-
ered to the target, and it is believed that IMRT offers an improve-
ment over conventional and conformal radiation in its ability to pro-
vide higher dose irradiation of tumour mass, while exposing the sur-
rounding normal tissue to less radiation. http://www.cancernews.
com/data/Article/259.asp

Many optimisation models, both linear and nonlinear, are available for
this problem. The most popular optimisation model is based on an oncologist’s
prescription of a goal dose TG to the target and upper bounds CG and NG on
the dose to critical structures and normal tissue. It consists of the minimisation
of a norm of the (nonnegative) deviation of delivered and goal dose:

min
x≥0

ωT ‖AT x− TG‖+ ωC

∥∥(ACx− CG)+
∥∥ + ωN

∥∥(ANx−NG)+
∥∥, (9)

where (·)+ = max{·, 0}. AT , AC and AN are matrices. In practice the Eu-
clidean norm is most often used and the most popular solution technique is
simulated annealing. The result of the optimisation depends crucially on the
values of ωT , ωC , ωN , which are often deemed indispensable for effective treat-
ment planning. A trial and error process is usually needed to find values that
result in a good quality treatment.
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The words “higher” and “lower” in the above quotation indicate that treat-
ment planning is about conflicting goals. And to anyone familiar with multi-
objective optimisation it is obvious that the standard dose based model (9) is
the weighted sum scalarisation of the multiobjective programme

min
x≥0

(
‖DT x− TG‖ ,

∥∥(DCx− CG)+
∥∥ ,

∥∥(DNx−NG)+
∥∥)

(10)

However, this model has only been used in the form (9), with a set of
pre-selected weights to produce several efficient plans (Cotrutz et al., 2001;
Lahanas et al., 2003). The first non-scalarised multiobjective LP model has
been proposed by Küfer and Hamacher (2000).

In the context of the multitude of objective functions used in radiotherapy
treatment planning models a theorem stated in Romeijn et al. (2004) becomes
important.

Theorem 2. The two multiobjective problems min{(f1(x), . . . , fp(x)) : x ∈
X} and min{(h1(f1(x)), . . . , hp(fp(x))) : x ∈ X} with strictly increasing func-
tions h1, . . . , hp are equivalent.

Theorem 2 is not really surprising, but it is important as it illustrates that
much of the discussion about the right model is void. We present here a linear
model with three objectives derived from (the scalar) LP in Holder (2003):

min(zT , zS , zN )
subject to AT x + zT e ≥ lT

AT x ≤ uT

ASx− zSe ≤ uS

ANx− zN e ≤ uN

zN ≥ 0
x ≥ 0.

(11)

This multiobjective linear programme may have thousands of variables
and tens of thousands of constraints. Since it has only three objectives it
is advantageous to solve it in objective space. Benson’s “outer approxima-
tion” algorithm (Benson, 1998) can be used for this purpose. In Shao and
Ehrgott (2006) we have solved a simplified version of this problem with 1293
constraints and 821 variables. 3165 non-dominated extreme points have been
obtained, shown in Figure 6. The computation took nearly one hour.

From Figure 6 it can already be seen that many of the extreme points
differ only very slightly. This result points to another issue: How is a solution
to be selected among so many options? And do we want an extreme point
solution in the first place?

At this stage it is necessary to reconsider the model. It uses a dose depo-
sition matrix A, separated by rows into AT , AC and AN as input. The entries
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Fig. 6. The non-dominated set of (11) for a prostate cancer example.

in A are the result of a dose calculation model, that calculates the amount of
dose deposited at a point in the body at unit intensity of a sub-beam. Even
with sophisticated dose models this calculation is imprecise. That means that
the data of (11) are imprecise. It turns out that in clinical practice calculating
a dose distribution to 0.1 Gy precision is sufficient.

We could therefore use an approximation version of Benson’s algorithm
that is guaranteed to solve the MOLP (11) to within 0.1 precision and achieve
a dramatic effect. This algorithm calculates 88 non-dominated extreme points
in less than one minute. The approximated non-dominated set se are shown
in Figure 7.

We have so far assumed that the beam directions are given. However, they
also have to be chosen. This choice is currently done manually. Mathemati-
cally the optimisation of beam directions can easily be incorporated in (11):

min(zT , zS , zN )
subject to AT x + zT e ≥ lT

AT x ≤ uT

ASx− zSe ≤ uS

ANx− zN e ≤ uN

zN ≥ 0
x ≥ 0
x ≤ Mye

eT y ≤ r.

(12)
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Fig. 7. The approximate non-dominated set of (11) for the same prostate cancer
example.

The solution of the large scale multiobjective mixed integer programme
(12) is a challenge for both multiobjective optimisation and radiotherapy
treatment design.

I find this application particularly instructive. It shows how hard it can
be to convince practitioners of the usefulness of multiobjective optimisation,
even if they already use elements of it, albeit unknowingly. It is a reminder
that the results of optimisation can never be more precise that the input
data, and that it is always worth exploiting features of the application to
simplify methods. In addition, applying multiobjective optimisation can lead
to improved processes in the application area as implicit benefits. In this
example the trial and error search for “optimal” weights can be eliminated.
Instead, treatment planners can concentrate on their main task, namely to
find a best possible treatment plan for the patient. Because the multiobjective
model allows a separation of plan calculation and selection, a speed up of the
planning process can be expected. Again, multicriteria decision aid is called
upon to provide appropriate decision support systems.

6 Telecommunication: Routing in IP Newtorks

Routing of data packets in computer networks using the internet protocol is
usually based on the OSPF protocol (open shortest path first). This proto-
col applies Dijkstra’s algorithm to minimise the number of hops (the number
of intermediate routers) along the path from the origin of the packet to its
destination. While other protocols exist that allow aggregation of several ob-
jectives, routing is still using a “best effort” rather than “Quality of Service”
philosophy.
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It does not take much imagination to see that several objectives are rele-
vant in this context. Gandibleux et al. (2006) have developed a routing pro-
tocol that uses the three objectives

• min f1(p) =
∑

(i,j)∈p c1(i, j), where c1(i, j) denotes the delay on link (i, j),
• max f2(p) = min(i,j)∈p c2(i, j), c2(i, j) denoting the available bandwidth of

link (i, j), and
• min f3(p) = |{(i, j) ∈ p}|, counting the number of hops

as well as additional constraints. They have implemented a modification of
Martin’s label correcting algorithm (Martins, 1984) to deal with the con-
straints and the bandwidth objective, which is of the min max rather than
the min sum type.

Considering the delay and bandwidth objectives only there are five efficient
paths from node seven to node eleven in the network of Figure 8, an actual
IP network (bandwidth and delay are listed along the arcs).

This application shows that even long known algorithms can be useful in
today’s problems. Once more, as seen in the other examples, multiobjective
modelling helps thinking outside the box.

Chapter 22 in Figueira et al. (2005) and references therein contain much
more on multicriteria decision analysis in telecommunication.

7 Conclusion

In this paper I have sketched a number of applications of multiobjective pro-
gramming. I have tried to show that interacting with practitioners in many
areas is mutually beneficial in the sense that real world applications pro-
vide opportunities for progress in multiobjective optimisation methodology
and theory and that multiobjective models provide insights in applications
that conventional models cannot reveal. In particular, multiobjective models
help question standard procedures and thus induce the practitioner to think
outside a conventional framework. It is easily possible that multiobjective op-
timisation results in benefits that are not at all part of the model. Last but
not least, the real world has many challenges and new application areas in
store to motivate established and future researchers to work in this area.
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