
Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www.citr.auckland.ac.nz/)

CITR-TR-107                         December 2001

Switches May Solve Adjacency Problems

Reinhard Klette1

Abstract

This paper presents a new method for defining grid-point adjacencies,
called the switch approach. It is discussed how it relates to
connectedness definition in multi-valued images. The paper illustrates
how the method can be used, and provides a few experimental data
illustrating the relevance and simplicity of the approach.

                                                          
1 Center for Image Technology and Robotics Tamaki Campus, The University of Auckland, Auckland,
New Zealand. r.klette@auckland.ac.nz

You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report
in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that
this technical report is still available from the CITR Tamaki web site under terms that include this permission. All other rights
are reserved by the author(s).



Switches May Solve Adjacency Problems

Reinhard Klette
CITR, Department of Computer Science,Tamaki Campus

The University of Auckland, Private Bag 92019, Auckland, New Zealand
Email: r.klette@citr.auckland.ac.nz

Abstract

This paper presents a new method for defining grid-point
adjacencies, called the switch approach. It is discussed
how it relates to connectedness definition in multi-valued
images. The paper illustrates how the method can be used,
and provides a few experimental data illustrating the rele-
vance and simplicity of the approach.
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1. Introduction

Neighborhood or adjacency structures of digital images,
and topological problems related to image analysis have
been studied over the last thirty years [3]. This article sug-
gests a simple and new model for data-dependent pixel ad-
jacencies which might be an interesting alternative. Data-
dependency of adjacencies is also discussed in [6] using
hypergraphs, allowing even incorporations of local image
data variances into the adjacency definition.

An image I is a discrete-valued function defined on a
rectangular set Cm;n � Z2 of grid points. The range is
f0; : : : ; Gmaxg with Gmax � 1. In case Gmax = 1 we
have a binary image. To simplify our discussions, assume
that any image defines different equivalence classes Cu0 of
points p 2 C by its values u0, 0 � u0 � Gmax: points p
and q are I-equivalent iff I(p) = I(q).

Papers [7, 8] defined connected subsets in the orthogonal
grid, based on 4-adjacency or 8-adjacency. The separation
problem in binary image analysis is solved by using two
different adjacency definitions (called a good pair in [1])
on the image adjacency graph. For example, this suggests
for M = I�1(1) to use 4-connectedness for M , and to use
8-connectedness forM = I�1(0); or vice-versa. See Fig. 1
for an illustration of good pairs (8,4) and (4,8), where all
object points are shown as filled dots and all background
points are shown as hollow dots.

Valid adjacencies are between adjacent grid points which
are labeled by identical image values. Valid adjacencies are

Figure 1. Left: good pair (8,4). Right: good
pair (4,8) (this binary image example has
been discussed in [5]). There are ‘cuts’ of
the V-shape in both cases established by 8-
adjacencies.

shown by connecting line segments. Invalid adjacencies are
between points in different I-equivalence classes defined by
different values of image I.

The left half of the binary image (an example from [5])
in Fig. 1 shows a ‘background V’, the right half shows an
‘object V’. There is only one connected ‘V’ in both copies
of this image, for good pair (8,4) and for good pair (4,8).
The second ‘V’ is (already) disconnected by 8-connected
pixels, i.e. it may happen that subsequent image analysis
procedures have to disconnect these pixels again.

Image analysis normally deals with multi-level input im-
ages (actually even with multi-channel images in an increas-
ing number of applications), i.e. we have Gmax > 1. See
Fig. 2 for an example; pixel values are shown as shaded

Figure 2. Multi-level input image as normally
given in image analysis.
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Figure 3. Pair (4,4) and good pair (6,6): there
are still a few ‘cuts’ as in Fig. 1 for (6,6). Miss-
ing connections may be obtained by subse-
quent image analysis approaches.

squares. The concept of good pairs cannot be extended to
such multi-level images I where a similar consistency of
different neighborhood definitions for I�1(u), for 0 � u �

Gmax, is impossible if Gmax > 1.
Alternative orientations of diagonals defining 6-

adjacencies introduce a (systematic) directional bias into
the resulting 6-components. Figure 3 illustrates the pair
(4,4) and the good pair (6,6). Both, (4; 4) and (6; 6)

are planar graph structures. The connectedness approach
defined by the pair (4; 4) is used in several major commer-
cial image processing systems sold worldwide, see Fig. 4:
pixels are shown again as squares; an 8-curve 4-separates
one interior 4-component from one exterior 4-component,
but the 8-curve itself is not connected according to the
system.

2 Switches

Undirected grid edges represent a symmetric and ir-
reflexive adjacency relation.

We use all isothetic grid edges representing 4-adjacency,
plus selected diagonals in grid squares specified in the fol-
lowing definition.

Definition 1 Take the lower left corner of a grid square as
the reference point for a switch which is a grid diagonal

Figure 4. Connected components (right) as
produced by a major commercial image pro-
cessing system for input image shown on the
left.

being either in an on-, or in an off-state, see Fig. 5. The
state of a switch needs to be such that the grid diagonal
connects grid points being in the same equivalence class
(i.e. having identical image values) if there is such a pair of
diagonal points in the given grid square; if both diagonals
connect grid points in identical equivalence classes then a
state may be chosen.

Note that we only allow one grid diagonal per grid square.
The resulting (inhomogeneous in general) planar graphs are
examples of adjacency graphs as studied in [2], examples
of two-dimensional strongly normal digital picture spaces
in the sense of [4], and also examples of planar generic ax-
iomatized digital surface-structures (GADSs) as discussed
in [1],

Figure 5 shows on the right all possible 2�2 image value
configurations: filled dots illustrate pixels (p; I(p)) belong-
ing to one equivalence class C, and hollow dots illustrate
pixels belonging to different equivalence classes (not nec-
essarily just to one category different to C). The state of
the switch is unimportant in cases (a) (both diagonals con-
nect points in class C), (e) and (f) (both diagonal pairs
are points in different classes). The state of the switch is
uniquely defined in cases (b), (c) and (d) because there is
just one diagonal pair of points which are in the same class.
In situation (h) we choose the off-state because the con-
nected diagonal pair might be in the same class.

2.1 Switch State Matrix

The only remaining problem is the flip-flop case (g) (in
fact absolutely analogously to the Euclidean plane when
two curves intersect at one point, and the assignment of
the intersection point decides how these two curves subdi-
vide the Euclidean plane!): if both diagonal points shown
by hollow dots are in different classes then the switch will
be in on-state. Otherwise we call a procedure SetSwitches
to chose either the on- or the off-state. Important is that the

switch is on

switch is off

?

a b c d

e f g h

Figure 5. The reference point is at the lower
left corner: states of a switch (left), and for
all possible image value assignments on a
grid square, there is only flip-flop case (g)

where the position of the switch needs to be
decided. The cross stands for a don’t-care-
situation.
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Figure 6. States of switches are uniquely de-
fined, or can be chosen randomly in most
of the cases. Just a few flip-flop switches
(12 in this example) are decided by a proce-
dure SetSwitches defined by the local templates
shown in Fig. 7. The binary matrix S on the
right encodes the states of all switches.

state can’t be changed again during one topological opera-
tion on a picture after it has been set.

The procedure SetSwitches may, for example, analyze
larger neighborhoods of the reference point for defining the
state of its switch. See Fig. 6 for a possible specification of
switches, where a procedure SetSwitches has been used in
a bottom-up, left-to-right fashion: assigning switches ran-
domly in don’t-care situations, and using the local templates
shown in Fig. 7 for the flip-flop case (g). These templates
are such that the state of the switch in the grid square be-
low is simply copied as the new state of the switch in the
recent grid square. The example shows that it is possi-
ble to assign switches such that both V-shapes remain con-
nected. Of course, more advanced procedures SetSwitches
may be designed, using larger neighborhoods for enforced
control about switch settings. In an implementation of the
approach a binary image may be used with value 0 at point
p iff the switch at reference point p is in off-state, and value
1 otherwise (see left of Fig. 6). The topology of a digital
image is then specified by such an accompanying binary
switch state matrix S, which defines an S-adjacency be-
tween grid points and, subsequently, S-connectedness. Fig-
ure 8 shows the resulting subgraph of valid adjacencies be-
tween S-adjacent grid points p, q having identical image
values, i.e. I(p) = I(q), where S as shown in Fig. 6.

Figure 7. Set of simple templates for defining
flip-flop switches.

Figure 8. Valid S-adjacencies for the planar
adjacency graph shown in Fig. 6.

2.2 Practical Aspects

The discussed switches ensure that the resulting S-adja-
cency graph is always planar. Any image processing step,
e.g. a simple local filter, contrast enhancement, or an inter-
active modification of single image values, will/may create
a need to update the switch state matrix S of a given image.
Of course, matrix S is only needed if a topological opera-
tion is called, and its calculation is very simple. The switch-
approach can be summarized as follows: every grid square
contains one grid diagonal only, as in case of the good pair
(6,6). However, to avoid a directional bias, or to reflect the
given image data, the diagonals (switches) may be either set
randomly or based on rules as discussed above. Figure 10
shows two possible results depending on the chosen set of
templates for defining switches.

Figure 9. Upper left: this 2014� 1426 picture,
i.e. 2,872,964 pixels, with Gmax = 255, pos-
sesses 14,359 flip-flop cases, i.e. 0.50 % of all
grid points. Upper right: 0.38 %. Lower left:
0.38%. Lower right: 0.22 %.



Figure 10. Possible components.

A switch state matrix S needs to be available at the time
of a topological operation in an image such as contour trac-
ing or thinning. The matrix S ensures that only planar adja-
cency graphs are used, and it can be

(i) always the same switch state matrix (look-up table
Sm;n), just defined by the size m � n of the image
and calculated by using a random number generator,

(ii) a function which produces a binary pseudo-random
number based on the coordinates of the reference point
p = (i; j), allowing that actually no switch state ma-
trix is needed, just a local calculation of the pseudo-
random switch state (e.g., if the size of the images
varies frequently),

(iii) an updated switch state matrix S using the rules as dis-
cussed for Fig. 5 and an image data-dependent proce-
dure for dealing with the flip-flop cases (which, in fact,
appear very rarely in captured images, see Fig. 9, i.e.
this option might be of interest for cases of very high-
precision image capturing only).

Due to a certain degree of randomness in captured image
data (due to sensor noise, uncertainties in image data, il-
lumination changes etc. and the low percentage of locally
(i.e. in a 2 � 2 window) undecidable flip-flop states (note:
typically less than 0.5% for grayscale images, see Fig. 9,
and less than 0.2% for color images) it is normally appro-
priate to use one of the first two options. Of course, just a
small number n of flip-flops at the border of an image com-
ponent defines 2n different ways of allowing connections to
neighboring components etc.

3 Concluding Remarks

This report informed about the switch-approach which
is a simple, data-dependent method for specifying adjacen-
cies in multi-level images. The switch-approach has shown
that context-dependent connectivities may be achieved by
adding more structural elements (namely grid diagonals) to
the 4-adjacency graph. Experimental studies have shown
that additional needs in computing time are minor. Differ-
ent sets of templates support different models for defining

connected components (e.g. a preference towards line-like
components): the SetSwitches procedure may be designed
such that curve-like patterns are preferably connected, for
example using larger neighborhoods than in the simple set
of templates shown in Fig. 7. The switch-approach is not
designed for extreme cases such as ‘chessboard-like’ binary
image segments.

References

[1] S. Fourey, T. Y. Kong, G. T. Herman: Generic axiom-
atized digital surface-structures. In: Electronic Notes
in Theoret. Comp. Science 46 (2001) 20 pages.

[2] R. Klette, K. Voss, P. Hufnagl: Theoretische Grund-
lagen der digitalen Bildverarbeitung. Part II. Nach-
barschaftsstrukturen. Bild und Ton 38 (1985) 325–331.

[3] R. Klette: Digital topology for image analysis - Part 1.
CITR-TR-101, The University of Auckland (2001).

[4] T. Y. Kong, A. W. Roscoe, A. Rosenfeld: Concepts
of digital topology. Topology and Its Applications 46
(1992) 219–262.

[5] V. Kovalevsky: Finite topology as applied to image
analysis. CVGIP 46 (1989) 141–161.

[6] S. Rital, A. Bretto, D. Aboutajdine, H. Cherifi: Ap-
plication of adaptive hypergraph model to impulsive
noise detection. Proc. CAIP 2001, Springer, Berlin
LNCS 2124 (2001) 555–562.

[7] A. Rosenfeld, J. L. Pfaltz: Sequential operations in
digital picture processing. J. ACM, 13 (1966) 471–
494.

[8] A. Rosenfeld: Connectivity in digital pictures. J. ACM
17 (1970) 146–160.


