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Abstract

This paper discusses different topologies on the planar orthogonal grid
and shows homeomorphy between cellular models. It also points out that
graph-theoretical topologies exist defined by planar extensions of the 4-
adjacency graph. All these topologies are potential models for image
carriers.
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Abstract

This paper discusses different topologies on the planar
orthogonal grid and shows homeomor phy between cellular
models. It also discusses graph-theoretical options defined
by planar extensions of the 4-adjacency graph.
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1. Introduction

The topology of digital images, and topological prob-
lems related to image analysis have been studied over the
last thirty years. This article shows that cellular modelsin
2D, commonly discussed as possible options for image car-
riers, are topologically equivaent, and that the previously
known topology of the 4-adjacency graph aso offers ways
of defining image topologiesfor planar adjacency graphs.

A digital image / is a function defined on a set C,
which is called a carrier of the image, and its elements
are caled points. The range of a (scalar) digital image is
{0,..., Ginae } With Gpa > 1. Therange of abinary im-
ageis{0,1},i.e. Gpar = 1. Animagecarrier inthisarticle
is asubset of the two-dimensional Euclidean space, e.g. of
the orthogonal grid defined by grid points.

Let C bean arbitrary set of points, where a non-negative
number dim(p) isassigned for each p € C.

An abstract complex [C, <, dim] satisfies two axioms:
< isapartia order on C, and if p < ¢ and p # ¢ then
dim(p) < dim(q).

A definition identical by contents may be found in [2]
(page 125), and both volumes [2, 3] provide a broad cover-
age of definitionsand resultson abstract complexes. Theel-
ementsin C are named cells of the complex. If dim(p) = n
thenn isthedimension of p, and p iscalled an n-cell. O-cells
are named vertices. An n-dimensional complex [C, <, dim]
is characterized by dim(p) < n, fordl p € C, and thereis
at least onep € C withdim(p) = n.

Let [C, <, dim] be an abstract complex. If p < ¢ and
p # ¢ thenwe say that p isaproper sideof ¢. If dim(p) =
m then p isan mside of ¢. Two cellsareincident iff p < ¢
orqg <p.

Examples or models of abstract complexes are simply
caled complexes. In image anaysis, we prefer the homo-
geneous orthogona planar grid as a homogeneous image
carrier, and we discuss two models of abstract complexes
which are normally used as image carrier.

We may identify 2-cellswith open grid squares of the ho-
mogeneous orthogonal grid, 1-cells with grid edges (with-
out their endpoints), and O-cellswith grid points, see Fig. 1.
This defines a partition of R? into pairwise digoint sets.
Because we are interested in topologica characterizations
of complexes, we may a so identify 2-cellswith closed grid
squares, 1-cells with closed grid edges (i.e. with both end
points), and O-cells with grid points. This is not a parti-
tion into pairwise digoint sets anymore, but defines a Eu-
clidean complex, and it is atopologically equivaent model
of the same abstract complex. We decide for the Euclidean
complex, and let Cg2 be the set of al these (closed in the
Euclidean topology) 2-, 1- and 0-cells of the homogeneous
orthogonal grid in the Euclidean plane. For p, ¢ € Cg, let
p <gs qiff p C q. [Crs, <gs, dim] is atwo-dimensiona
compl ex.

As an dternative model of a two-dimensional abstract
complex, we may identify 2-cells with a grid point of the
homogeneous orthogonal grid, 1-cells with an undirected

Figure 1. Two-dimensional Euclidean com-
plex of the homogeneous orthogonal grid.



Figure 2. Two-dimensional graph complex of
the homogeneous orthogonal grid.

subgraph consisting of two grid points and one edge form-
ing a grid edge, and 0-cells with an undirected subgraph
consisting of four grid pointsand four edges forming agrid
square, see Fig. 2. Let Cyo be the set of dl of these cells.
Forp,q € Cgo let p <go q iff ¢ is a subgraph of p. For
example, agrid point « is a subgraph of an undirected edge
e ={x,y},i.e. e <go x. Itfollowsthat [Caeo, <go, dim]
is atwo-dimensional complex.

Theorem 1 Complexes [Cga, <g2,dim] and [Cga, <g»
, dim] are isomorphic.

Proof: Let ® be a mapping of Cgs into Cge such that
grid point (¢, j) is mapped onto a grid square having (4, j)
asitslower-1eft corner, agraph connecting grid points (4, j)
and (¢,7 + 1) is mapped onto a grid edge connecting grid
points(é,j + 1) and (¢ + 1, j + 1), agraph connecting grid
points (7, j) and (¢ 4 1, §) is mapped onto a grid edge con-
necting grid points (¢ + 1, j) and (¢ + 1, + 1), and agraph
consisting of four grid points(<, j), (i+1,7), (¢, 7 +1), (i+
1,7+ 1) and connecting grid edges is mapped onto the sin-
glegridpoint (¢+ 1, j+1). Then it holdsthat & ishijective
from Cgo onto Cg» such that for any p, ¢ € Cgo we have
p <g2 ¢ iff ®(p) <c2 ®(q). QED.

This isomorphism shows a general duality of grid-point
related (graph-theoretical) concepts and of cellular con-
cepts. Models of abstract complexes may be homoge-
neous geometric complexes such as [Cqa, <g2, dim] or
[Cga, <ga, dim], or inhomogeneous image carriers.

2 Topological Spaces

A topology of an image carrier may be defined via a
specification of alocaly finite basis. A poset is a partially
ordered set. The Aleksandrov topology of a poset [C, <] is
defined as follows: aset M C C isopeniff p € M and
p<qgimplyqge M,fordl p,q € C.

Examplel [{{i} : i € Z}U{{i,i+ 1} : i € Z},Clisa
poset. Thesets {{:},{7,i+1},{i,i—1}}and {{7,i+1}},
for i € Z, are a basis of the Aleksandrov topology [9] .

For topologies on abstract complexes see, for example,
the definition and study of open and closed subcomplexes
in[2, 12, 13]. A subset M C C of an abstract complex K
isopeniffpe M andp < gtheng € M, fordl p,q € C.

Asaconsequence, asubset M of an abstract complex A
isclosediff p € M andg < pthenq € M, fordl p,q € C.
Note that < is a partia ordering, i.e. the definition of an
Aleksandrov topology of a poset [C, <] is a generdization
of the (historically earlier) Tucker topology of an abstract
compl ex.

Example2 Consider the two-dimensional Euclidean com-
plex [Cpa, <gs, dim] or graph complex [Cas, <qo, dim]
of the homogeneous orthogonal grid. The followingis for-
mulated for the Euclidean complex, and the graph complex
may be discussed analogously.

Let p be a 2-cell. Then {p} is open in the Tucker or
Aleksandrov topology: thereisno ¢ € Cgs withp # ¢ and
p <g2 q. Let p be a 1-cel. Then there are exactly two 2-
cellsq; and ¢» withp <g» ¢; andp <g» ¢2, SeeFig. 3,i.e.
the set {p, ¢1, g2} isopen. Figure 3 also illustrates (on the
right) the case when we start with a 0-cell p.

Let [C, <, dim] be an abstract complex. For p € C let
U(p) ={¢: ¢ € CAp < q} bethesmallest neighborhood
of p in this abstract complex. This smallest neighborhood
may be understood as being the e-neighborhoodwithe = 1,
where adistance is defined with respect to the partia order-
ing <. Figure 4 illustrates the smallest neighborhoods in
the graph complex: agrid point (2-cell); asubgraph defined
by two grid pointsand one grid edge (1-cell) and both of its
grid points (2-cells); and a subgraph of a 0-cell whichisa
proper side of four 1-cells and of four 2-cells.

The application of topological spaces of homogeneous
Euclidean complexes for image analysis has been proposed
in [8], and for more generd situationsin [10].

3 Wyse Topology and a Non-Existence Theo-
rem

A mapping ¢ of atopologica space C; onto atopolog-
ica space C, is a homeomorphism or a topological map-
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Figure 3. The smallest neighborhoods of sin-
gle cells in the two-dimensional Euclidean
complex of the homogeneous orthogonal
grid.
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Figure 4. The smallest neighborhoods of sin-
gle cells in the two-dimensional graph com-
plex of the homogeneous orthogonal grid.

ping iff it is one-one (i.e. a bijection), continuous (i.e.
o HM)={peC : ®(p) € M}isopeninCy,forany
open subset M of Cy), and @~ ! iscontinuousas well. The
cell or graph complex of the homogeneous two-dimensional
grid provides one topologica space because both models
are homeomorphic (see Theorem 1).

There are further topological spaces defined on Z2.
Topologies on the two-dimensional homogeneous orthog-
ona grid may be defined by specifying a basis (as noted
earlier for the genera case):

Example3 Let As(p) = {q € Z? : di(p,q) = 1} bethe
set of 4-adjacent pointsof grid point p = (¢, j). Let

_ {r}, if i 4+ j isodd
Us(p) _{{prA4(p), ifi+jj'ise\/en.

Thefamily of all of these sets U4 (p), p € 72, defines a topo-
logical basison Z?, and a set of grid pointsis connected in
the resulting 4-topology iff it is 4-connected, see [14]. Set
U,(p) isthe smallest topological neighborhood of point p.
The neighborhood relation U/, isasymmetric. See Fig. 5.

Due to the correspondence of topological connectedness
and 4-connectedness it is obvious that the 4-topology does
not add further ‘structure’ to the concept of 4-adjacency.
However, it is possible to discuss open and closed sets in
this 4-topology, or the closure of a set (see Fig. 6). For
example, any set containing an even grid point p = (¢, j),
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Figure 5. Left: a directed graph visualizing
the asymmetric neighborhood relation U,.
Right: Indication of one possible mapping
of this graph such that exactly all odd grid
points (shown as squares) are in grid point
positions.
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Figure 6. The smallest neighborhoods of sin-
gle even grid points for the drawing shown in
Fig. 5 on the right.

with ¢ + j even, but only at most three of its 4-neighbors
(which are odd grid points), is not open, and sets containing
only even grid points are closed.

The following theorem states that 8-adjacency does not
allow such atopological model.

Theorem 2 [5] Let C be Z?2, or a finite subset of Z? con-
taining a tranglation of the set below. Then there exists no

topology on € in which connectivity would be the same as
8-connectivity.

The geometric location of thisset of grid pointsis unimpor-
tant.

The 8-adjacency graph is non-planar. Now consider a
planar adjacency graph S on Z2, e.g. an extension of the 4-
adjacency graph. The homogeneous grid used may suggest
a straightforward adaptation of the Wyse topology for such
an extension: let As(p) = {¢ € Z? : ds(p,q) = 1} bethe
set of al grid pointsbeing in distance 1, where dg isdefined
by graph S, for grid point p = (4, j). Let

_ {p}, if #+ j isodd
Us(p)—{{p}puAs(p), ifi+§iseven.

However, the family of these sets Us (p), p € Z2, does not
define a topological basis on Z?: the 6-adjacency is a spe-
cia example of an S-adjacency. Assume two ‘diagonally
adjacent’ and even grid points p and ¢. Then the intersec-
tion of Ug(p) with Ug(¢) contains exactly four grid points,
and thisis not one of the defined sets. A further intersection
with another set Us (), where - is another even ‘ diagonally
adjacent’ point to p, alowsto produce the singleton {p}. It
followsthat all subsets of Z? are open, i.e. only singletons
are connected.

This example only shows that a straightforward adapta-
tion of the Wyse topology failsin case of S-adjacency. A
more general discussionisrequired to analyze the existence
or non-existence of a topology on Z? corresponding to S-
connectivity.



4 Cédllular Mod€

We start with a simple example:

Example4 [4] The family {[z,4+o0) : « € R}isabass
of a topology on Ik, called the right topology on IR. It fol-
lows (for example) that intervals (—oo, #) areclosed. Anal-
ogously, the family {(—oco, #] : « € R} isalso a basis of
a topology on IR, called the left topology on IR. Note that
sets[x, +o0), open in theright topol ogy, are not open in the
Euclidean topology on [R.

Any subset of atopologica space induces a topological
subspace. The set 7Z C IR defines an inherited Euclidean,
right or left topology, all topologica subspaces of R, de-
pending upon whether R is considered as being endowed
with either the Euclidean, or the right or left topology as
specified in Example 4. In case of the Euclidean topology
we induce a discrete topology on Z, where any subset of Z
will be open and closed as well, and thistrivia topological
space isnot connected: any two nonempty and complemen-
tary subsets of Z define a partition of Z into two closed
subsets. In case of theright or left topol ogy we obtain con-
nected subspaces.

For a different approach for inducing a topology assume
a connected topologica space C and a surjection f : C —
M intoaset M. Equip M with thefinest topology such that
f iscontinuous. Then M isa connected topologica space.

Now consider the Euclidean topology on R and a sur-
jection f : R — Z,i.e. theset f~!(i) defines a subset of
R,fori € Z: let f(z) bethe nearest integer to z, and, if
x isahaf-integer x = i + £ thenlet f( ) = 4. It follows
f7HE) = (i— 5, i+ 5], ford e Z,i.e. f~1(i) isneither open
or closed in the Euclidean lineR. The same may be stated
if wetaken f(i + %) =i+ 1 instead. Asaresult, no proper
subset of Z may be open or closed, i.e. theinduced (finest)
topology is the trivia topology which only has the empty
set ) and Z itself as open and closed sets. This example has
been discussed in [7] for illustrating the basic idea underly-
ing theintroduction of the following alternating topology:

Example5 [6] Consider the function f asin the example
before, but choose the nearest even integer as the best ap-
proximation of a half-integer i + 3 L thistime. Thisfunction
induces an alternating topology on Z: f~Y(2i)isaclosed
subset of R inthe Euclidean topology, and f~1(2i+1) isan
open subset, i.e {27} isaclosed subset of Z and {2¢ + 1}
isan open subset of Z. In general, a subset M of Z is open
iff f/=1(M) isopen in the Euclidean topology on IR..

This alternating topology on Z combines the basic ideas
of Example 3, i.e. it uses the properties odd or even for
aternations, and of Example 4, i.e. it defines a topology
on IR by intervals. For image anaysis we are interested in
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Figure 7. Left: shaded (yellow) large dots
show closed sets {(2¢,2j)}, filled (red) large
dots indicate open sets {(2i+ 1,25+ 1)}, and
small dots show sets {(2¢,2j + 1)} or {(2¢ +
1,24)} which are neither open nor closed.
Right: use of different scaling and different
symbols for indicating the same alternating
topology.

topologieson Z", withn > 2: let C; and C; betopological
spaces, their product C; x C, is the set of ordered pairs
(p1,p2) such that p; € C; and p; € Cy, endowed with the
product topology [1]; namely, M C C; x Cs isopeniff for
each (p1, p2) € M thereareopen sets M; inC; and M5 in
C, such that (pl,pz) e My x My C M. Exampl&s4and 5
introduced topologieson Ik or 7Z which can be used to form
topologieson R™ or Z”, n > 2.

Figure7 illustratesthe product of two alternating topolo-
gies on Z, resulting into the Khalimsky plane on Z? (l€ft),
or ascaed version of it defined on {i/2 : i € Z}? (right).
A subset M C Z? of the Khalimsky planeis open iff the set

= |J o< ) (1)

(i,5)eEM

is open in the Euclidean plane.

The (infinite) Khalimsky plane is Aleksandrov because
an arbitrary intersection of open sets Sy; as specified in
formula (1) is open. For example, the smallest topologi-
cal neighborhood of an open set {(2i + 1,25 + 1)} inthe
Khalimsky plane is this set itself, and that of a closed set
{(24,2j)} isthe set containing grid point p = (2¢,2j) as
well as all of itseight 8-neighbors.

The Khalimsky plane is Kolmogorov. For example,
N(p) = {p} forpointp = (2i+ 1,25 + 1) doesnot contain
any of itseight 8-neighbors.

Figures 1 and 7 indicate a bijection between the base set
Cg2 of the two-dimensional Euclidean complex of the or-
thogonal grid, and the base set {i/2 : i € Z}? of the
scaled aternating topology. Earlier we already realized
that the two-dimensiona complexes [Cgs, <ga, dim] and
[Ca2, <G, dim] are homeomorphic (see Theorem 1), and
that this topology on the two-dimensional homogeneous
grid is an example of an Aleksandrov topology of a poset.
The Euclidean complex [Cg2, <g2, dim] endowed with the
Tucker topology has been popularized by [11] in image



analysis as an option of a homogeneous image carrier, also
known as Koval evsky plane.

Theorem 3 Khalimsky and Kovalevsky plane are homeo-
morphic.

Proof: We define a bijection & as indicated by Figs. 1
and 7: O-cells (grid points) a (¢,j) are mapped onto
points (24, 27), 2-cells(grid cells) with reference point (i, )
(which is assumed to be the lower left corner of the grid
square) are mapped onto points (2¢ + 1,25 + 1), 1-cdls
(grid edges) between (¢, j) and (¢ + 1, j) are mapped onto
points (2¢ + 1, 25), and 1-cells (grid edges) between (i, j)
and (¢, j + 1) are mapped onto points (2¢, 25 + 1).

® is continuous. let A C Z? be an open st in the
aternating topology, i.e. set Sy (see Equ. 1) is an open
set in R?, and assume that there exists a pair of points
pe® Y (M)andgq ¢ &~1(M) withp < ¢,i.e. D~1(M)
is not open in the Tucker topol ogy.

gisann-cdl, 0 < n < 2, and p is one of its m-sides,
0 <m < n.Casen = misimpossiblebecause thisimplies
p =g, ie itwouldbep € ®~1(M)andp ¢ =1 (M).
Letn = 2andm = 1. Then ¢ is an open grid square s,
which can berepresented ass = f~1(i) x f~1(j),and pis
agrid edge e (without both of its endpoints) which can be
represented ase = f=1 (k) x f~(I). Because e bounds s
we have that (k,1) is an 8-neighbor of (¢, j). p € ®~1(M)
implies (k,I) € M,ande C S. ¢ ¢ ® (M) implies
(i,7) ¢ M,and s ¢ S. This means that .S cannot be open
in contradiction to our assumption, i.e. the assumed pair of
points p, ¢ cannot exist. - Casesn = 2 and m = 0, and
n = 1 and m = 0 may be treated anal ogoudly.

&~ iscontinuous: let M be an open subset of the Ko-
valevsky plane. Assume that ® (/) isnot open inthe alter-
nating topology, i.e.

Sepry =

(4,7)€S(M)

FHO) = F7H0)

is not open in the Euclidean topology, i.e. thereis one set
So = f71(4) x f=1(j) such that at least one of its frontier
subsets 51 = f~1(k) x f~(l) iscontained in Sq sy, but
Sp isnot. Let Sy be an open square ¢ and S; be an edge p
of this square (without both of itsendpoints). S1 C Sg(ar)
implies (k,1) € ®(M),andp = ®~' € M. Sy € So(m)
implies (i,j) ¢ ®(M),and g = ®~1 ¢ M withp < q.
It followsthat A is not an open set. This contradicts our
assumption on A/, and & (M) needs to be openin the ater-
nating topology. - The remaining cases (5, isa vertex, or
Sp isan edge and S, isavertex) follow by using anal ogous
arguments. Q.E.D.

Due to this theorem we may speak from the Khalimsky-
Kovalevsky planeif we liketo refer to this special example,
eg. intheform [Cgs, <gs, dim] orintheform [Ceaa, <ao

, dim], of aTucker or Aleksandrov topology. Note that any
scaling operation, suchason {i/2 : i € Z}?inFig. 7, may
be incorporated into the definition of the homeomorphism
given inthe proof of the Theorem. In[9] it was a so pointed
out that Theorem 3 may be obtained asacorollary of amore
general theorem, saying that the product of the Aleksandrov
topol ogiesof any two posetsisthe Aleksandrov topol ogy of
the product of those posets.

4.1 Conclusion

Altogether we have two different topologica spaces
for the orthogonal planar grid: 4-adjacency and the cor-
responding 4-topology as defined in Example 3; and the
graph complex [Cga, <g2,dim] or Euclidean complex
[Cga, <go,dim], in image anaysis literature aso known
as Khalimsky-Kovalevsky plane defined by one of two
equivaent topologies, the Tucker topology on Cg- of ab-
stract complexes, or the product topol ogy of two aternating
topologiesdefined in Example 5.

Both provide aternative options for discussing topolog-
ical problems at the lowest (initial) layer of image analysis
approaches.

6-adjacency or aplanar S-adjacency graphin genera re-
quiresfurther studies on existence or non-existence of acor-
responding topol ogy.
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