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Abstract

This paper discusses different topologies on the planar
orthogonal grid and shows homeomorphy between cellular
models. It also discusses graph-theoretical options defined
by planar extensions of the 4-adjacency graph.
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1. Introduction

The topology of digital images, and topological prob-
lems related to image analysis have been studied over the
last thirty years. This article shows that cellular models in
2D, commonly discussed as possible options for image car-
riers, are topologically equivalent, and that the previously
known topology of the 4-adjacency graph also offers ways
of defining image topologies for planar adjacency graphs.

A digital image I is a function defined on a set C ,
which is called a carrier of the image, and its elements
are called points. The range of a (scalar) digital image is
f0; : : : ; Gmaxg with Gmax � 1. The range of a binary im-
age is f0; 1g, i.e. Gmax = 1. An image carrier in this article
is a subset of the two-dimensional Euclidean space, e.g. of
the orthogonal grid defined by grid points.

Let C be an arbitrary set of points, where a non-negative
number dim(p) is assigned for each p 2 C .

An abstract complex [C ;�; dim] satisfies two axioms:
� is a partial order on C , and if p � q and p 6= q then
dim(p) < dim(q).

A definition identical by contents may be found in [2]
(page 125), and both volumes [2, 3] provide a broad cover-
age of definitions and results on abstract complexes. The el-
ements in C are named cells of the complex. If dim(p) = n

thenn is the dimension of p, and p is called an n-cell. 0-cells
are named vertices. An n-dimensional complex [C ;�; dim]

is characterized by dim(p) � n, for all p 2 C , and there is
at least one p 2 C with dim(p) = n.

Let [C ;�; dim] be an abstract complex. If p � q and
p 6= q then we say that p is a proper side of q. If dim(p) =

m then p is an m-side of q. Two cells are incident iff p � q

or q � p.
Examples or models of abstract complexes are simply

called complexes. In image analysis, we prefer the homo-
geneous orthogonal planar grid as a homogeneous image
carrier, and we discuss two models of abstract complexes
which are normally used as image carrier.

We may identify 2-cells with open grid squares of the ho-
mogeneous orthogonal grid, 1-cells with grid edges (with-
out their endpoints), and 0-cells with grid points, see Fig. 1.
This defines a partition of R2 into pairwise disjoint sets.
Because we are interested in topological characterizations
of complexes, we may also identify 2-cells with closed grid
squares, 1-cells with closed grid edges (i.e. with both end
points), and 0-cells with grid points. This is not a parti-
tion into pairwise disjoint sets anymore, but defines a Eu-
clidean complex, and it is a topologically equivalent model
of the same abstract complex. We decide for the Euclidean
complex, and let CE2 be the set of all these (closed in the
Euclidean topology) 2-, 1- and 0-cells of the homogeneous
orthogonal grid in the Euclidean plane. For p; q 2 CE2 let
p �E2 q iff p � q. [CE2 ;�E2; dim] is a two-dimensional
complex.

As an alternative model of a two-dimensional abstract
complex, we may identify 2-cells with a grid point of the
homogeneous orthogonal grid, 1-cells with an undirected
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Figure 1. Two-dimensional Euclidean com-
plex of the homogeneous orthogonal grid.
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Figure 2. Two-dimensional graph complex of
the homogeneous orthogonal grid.

subgraph consisting of two grid points and one edge form-
ing a grid edge, and 0-cells with an undirected subgraph
consisting of four grid points and four edges forming a grid
square, see Fig. 2. Let CG2 be the set of all of these cells.
For p; q 2 CG2 let p �G2 q iff q is a subgraph of p. For
example, a grid point x is a subgraph of an undirected edge
e = fx; yg, i.e. e �G2 x. It follows that [CG2 ;�G2; dim]

is a two-dimensional complex.

Theorem 1 Complexes [CG2 ;�G2; dim] and [CE2 ;�E2
; dim] are isomorphic.

Proof: Let � be a mapping of CG2 into CE2 such that
grid point (i; j) is mapped onto a grid square having (i; j)

as its lower-left corner, a graph connecting grid points (i; j)
and (i; j + 1) is mapped onto a grid edge connecting grid
points (i; j + 1) and (i+ 1; j + 1), a graph connecting grid
points (i; j) and (i + 1; j) is mapped onto a grid edge con-
necting grid points (i+1; j) and (i+ 1; j+1), and a graph
consisting of four grid points (i; j); (i+1; j); (i; j+1); (i+

1; j + 1) and connecting grid edges is mapped onto the sin-
gle grid point (i+1; j+1). Then it holds that � is bijective
from CG2 onto CE2 such that for any p; q 2 CG2 we have
p �G2 q iff �(p) �C2 �(q). Q.E.D.

This isomorphism shows a general duality of grid-point
related (graph-theoretical) concepts and of cellular con-
cepts. Models of abstract complexes may be homoge-
neous geometric complexes such as [CG2 ;�G2; dim] or
[CE2 ;�E2; dim], or inhomogeneous image carriers.

2 Topological Spaces

A topology of an image carrier may be defined via a
specification of a locally finite basis. A poset is a partially
ordered set. The Aleksandrov topology of a poset [C ;�] is
defined as follows: a set M � C is open iff p 2 M and
p � q imply q 2M , for all p; q 2 C .

Example 1 [ffig : i 2 Zg [ ffi; i + 1g : i 2 Zg;�] is a
poset. The sets ffig; fi; i+1g; fi; i�1gg and ffi; i+1gg,
for i 2Z, are a basis of the Aleksandrov topology [9].

For topologies on abstract complexes see, for example,
the definition and study of open and closed subcomplexes
in [2, 12, 13]. A subset M � C of an abstract complex K

is open iff p 2M and p � q then q 2M , for all p; q 2 C .
As a consequence, a subset M of an abstract complex K

is closed iff p 2M and q � p then q 2M , for all p; q 2 C .
Note that � is a partial ordering, i.e. the definition of an
Aleksandrov topology of a poset [C ;�] is a generalization
of the (historically earlier) Tucker topology of an abstract
complex.

Example 2 Consider the two-dimensional Euclidean com-
plex [CE2 ;�E2; dim] or graph complex [CG2 ;�G2; dim]

of the homogeneous orthogonal grid. The following is for-
mulated for the Euclidean complex, and the graph complex
may be discussed analogously.

Let p be a 2-cell. Then fpg is open in the Tucker or
Aleksandrov topology: there is no q 2 CE2 with p 6= q and
p �E2 q. Let p be a 1-cell. Then there are exactly two 2-
cells q1 and q2 with p �E2 q1 and p �E2 q2, see Fig. 3, i.e.
the set fp; q1; q2g is open. Figure 3 also illustrates (on the
right) the case when we start with a 0-cell p.

Let [C ;�; dim] be an abstract complex. For p 2 C let
U (p) = fq : q 2 C ^ p � qg be the smallest neighborhood
of p in this abstract complex. This smallest neighborhood
may be understood as being the "-neighborhood with " = 1,
where a distance is defined with respect to the partial order-
ing �. Figure 4 illustrates the smallest neighborhoods in
the graph complex: a grid point (2-cell); a subgraph defined
by two grid points and one grid edge (1-cell) and both of its
grid points (2-cells); and a subgraph of a 0-cell which is a
proper side of four 1-cells and of four 2-cells.

The application of topological spaces of homogeneous
Euclidean complexes for image analysis has been proposed
in [8], and for more general situations in [10].

3 Wyse Topology and a Non-Existence Theo-
rem

A mapping � of a topological space C 1 onto a topolog-
ical space C 2 is a homeomorphism or a topological map-

Figure 3. The smallest neighborhoods of sin-
gle cells in the two-dimensional Euclidean
complex of the homogeneous orthogonal
grid.



Figure 4. The smallest neighborhoods of sin-
gle cells in the two-dimensional graph com-
plex of the homogeneous orthogonal grid.

ping iff it is one-one (i.e. a bijection), continuous (i.e.
��1(M ) = fp 2 C 1 : �(p) 2Mg is open in C 1 , for any
open subset M of C 2), and ��1 is continuous as well. The
cell or graph complex of the homogeneous two-dimensional
grid provides one topological space because both models
are homeomorphic (see Theorem 1).

There are further topological spaces defined on Z2.
Topologies on the two-dimensional homogeneous orthog-
onal grid may be defined by specifying a basis (as noted
earlier for the general case):

Example 3 Let A4(p) = fq 2 Z2 : d1(p; q) = 1g be the
set of 4-adjacent points of grid point p = (i; j). Let

U4(p) =

�
fpg ; if i + j is odd

fpg [A4 (p) ; if i + j is even :

The family of all of these sets U4(p), p 2Z2, defines a topo-
logical basis onZ2, and a set of grid points is connected in
the resulting 4-topology iff it is 4-connected, see [14]. Set
U4(p) is the smallest topological neighborhood of point p.
The neighborhood relation U4 is asymmetric. See Fig. 5.

Due to the correspondence of topological connectedness
and 4-connectedness it is obvious that the 4-topology does
not add further ‘structure’ to the concept of 4-adjacency.
However, it is possible to discuss open and closed sets in
this 4-topology, or the closure of a set (see Fig. 6). For
example, any set containing an even grid point p = (i; j),
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Figure 5. Left: a directed graph visualizing
the asymmetric neighborhood relation U4.
Right: Indication of one possible mapping
of this graph such that exactly all odd grid
points (shown as squares) are in grid point
positions.

Figure 6. The smallest neighborhoods of sin-
gle even grid points for the drawing shown in
Fig. 5 on the right.

with i + j even, but only at most three of its 4-neighbors
(which are odd grid points), is not open, and sets containing
only even grid points are closed.

The following theorem states that 8-adjacency does not
allow such a topological model.

Theorem 2 [5] Let C be Z2, or a finite subset of Z2 con-
taining a translation of the set below. Then there exists no

topology on C in which connectivity would be the same as
8-connectivity.

The geometric location of this set of grid points is unimpor-
tant.

The 8-adjacency graph is non-planar. Now consider a
planar adjacency graph S onZ2, e.g. an extension of the 4-
adjacency graph. The homogeneous grid used may suggest
a straightforward adaptation of the Wyse topology for such
an extension: let AS(p) = fq 2Z2 : dS(p; q) = 1g be the
set of all grid points being in distance 1, where dS is defined
by graph S, for grid point p = (i; j). Let

US (p) =

�
fpg ; if i+ j is odd

fpg [AS (p) ; if i+ j is even :

However, the family of these sets US(p), p 2Z2, does not
define a topological basis on Z2: the 6-adjacency is a spe-
cial example of an S-adjacency. Assume two ‘diagonally
adjacent’ and even grid points p and q. Then the intersec-
tion of US(p) with US(q) contains exactly four grid points,
and this is not one of the defined sets. A further intersection
with another set US(r), where r is another even ‘diagonally
adjacent’ point to p, allows to produce the singleton fpg. It
follows that all subsets of Z2 are open, i.e. only singletons
are connected.

This example only shows that a straightforward adapta-
tion of the Wyse topology fails in case of S-adjacency. A
more general discussion is required to analyze the existence
or non-existence of a topology on Z2 corresponding to S-
connectivity.



4 Cellular Model

We start with a simple example:

Example 4 [4] The family f[x;+1) : x 2 Rg is a basis
of a topology on R, called the right topology on R. It fol-
lows (for example) that intervals (�1; x) are closed. Anal-
ogously, the family f(�1; x] : x 2 Rg is also a basis of
a topology on R, called the left topology on R. Note that
sets [x;+1), open in the right topology, are not open in the
Euclidean topology onR.

Any subset of a topological space induces a topological
subspace. The set Z� R defines an inherited Euclidean,
right or left topology, all topological subspaces of R, de-
pending upon whether R is considered as being endowed
with either the Euclidean, or the right or left topology as
specified in Example 4. In case of the Euclidean topology
we induce a discrete topology on Z, where any subset of Z
will be open and closed as well, and this trivial topological
space is not connected: any two nonempty and complemen-
tary subsets of Zdefine a partition of Zinto two closed
subsets. In case of the right or left topology we obtain con-
nected subspaces.

For a different approach for inducing a topology assume
a connected topological space C and a surjection f : C !
M into a set M . EquipM with the finest topology such that
f is continuous. Then M is a connected topological space.

Now consider the Euclidean topology on R and a sur-
jection f : R! Z, i.e. the set f�1(i) defines a subset of
R, for i 2 Z: let f(x) be the nearest integer to x, and, if
x is a half-integer x = i + 1

2
then let f(x) = i. It follows

f�1(i) = (i� 1
2
; i+ 1

2
], for i 2Z, i.e. f�1(i) is neither open

or closed in the Euclidean lineR. The same may be stated
if we taken f(i+ 1

2
) = i+ 1 instead. As a result, no proper

subset ofZmay be open or closed, i.e. the induced (finest)
topology is the trivial topology which only has the empty
set ; andZitself as open and closed sets. This example has
been discussed in [7] for illustrating the basic idea underly-
ing the introduction of the following alternating topology:

Example 5 [6] Consider the function f as in the example
before, but choose the nearest even integer as the best ap-
proximation of a half-integer i + 1

2
this time. This function

induces an alternating topology on Z: f�1(2i) is a closed
subset ofRin the Euclidean topology, and f�1(2i+1) is an
open subset, i.e. f2ig is a closed subset of Zand f2i + 1g
is an open subset ofZ. In general, a subset M ofZis open
iff f�1(M ) is open in the Euclidean topology onR.

This alternating topology onZcombines the basic ideas
of Example 3, i.e. it uses the properties odd or even for
alternations, and of Example 4, i.e. it defines a topology
on R by intervals. For image analysis we are interested in
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Figure 7. Left: shaded (yellow) large dots
show closed sets f(2i; 2j)g, filled (red) large
dots indicate open sets f(2i+ 1; 2j + 1)g, and
small dots show sets f(2i; 2j + 1)g or f(2i +
1; 2j)g which are neither open nor closed.
Right: use of different scaling and different
symbols for indicating the same alternating
topology.

topologies onZn, with n � 2: let C 1 and C 2 be topological
spaces; their product C 1 � C 2 is the set of ordered pairs
(p1; p2) such that p1 2 C 1 and p2 2 C 2 , endowed with the
product topology [1]; namely, M � C 1 � C 2 is open iff for
each (p1; p2) 2M there are open sets M1 in C 1 and M2 in
C 2 such that (p1; p2) 2M1 �M2 � M . Examples 4 and 5
introduced topologies onRorZwhich can be used to form
topologies onRn orZn, n � 2.

Figure 7 illustrates the product of two alternating topolo-
gies on Z, resulting into the Khalimsky plane on Z2 (left),
or a scaled version of it defined on fi=2 : i 2Zg2 (right).
A subset M �Z2 of the Khalimsky plane is open iff the set

SM =
[

(i;j)2M

f�1(i) � f�1(j) (1)

is open in the Euclidean plane.
The (infinite) Khalimsky plane is Aleksandrov because

an arbitrary intersection of open sets SM as specified in
formula (1) is open. For example, the smallest topologi-
cal neighborhood of an open set f(2i + 1; 2j + 1)g in the
Khalimsky plane is this set itself, and that of a closed set
f(2i; 2j)g is the set containing grid point p = (2i; 2j) as
well as all of its eight 8-neighbors.

The Khalimsky plane is Kolmogorov. For example,
N (p) = fpg for point p = (2i+1; 2j+1) does not contain
any of its eight 8-neighbors.

Figures 1 and 7 indicate a bijection between the base set
CE2 of the two-dimensional Euclidean complex of the or-
thogonal grid, and the base set fi=2 : i 2 Zg2 of the
scaled alternating topology. Earlier we already realized
that the two-dimensional complexes [CE2 ;�E2; dim] and
[CG2 ;�G2; dim] are homeomorphic (see Theorem 1), and
that this topology on the two-dimensional homogeneous
grid is an example of an Aleksandrov topology of a poset.
The Euclidean complex [CE2 ;�E2; dim] endowed with the
Tucker topology has been popularized by [11] in image



analysis as an option of a homogeneous image carrier, also
known as Kovalevsky plane.

Theorem 3 Khalimsky and Kovalevsky plane are homeo-
morphic.

Proof: We define a bijection � as indicated by Figs. 1
and 7: 0-cells (grid points) at (i; j) are mapped onto
points (2i; 2j), 2-cells (grid cells) with reference point (i; j)
(which is assumed to be the lower left corner of the grid
square) are mapped onto points (2i + 1; 2j + 1), 1-cells
(grid edges) between (i; j) and (i + 1; j) are mapped onto
points (2i + 1; 2j), and 1-cells (grid edges) between (i; j)

and (i; j + 1) are mapped onto points (2i; 2j + 1).
� is continuous: let M � Z2 be an open set in the

alternating topology, i.e. set SM (see Equ. 1) is an open
set in R2, and assume that there exists a pair of points
p 2 ��1(M ) and q =2 ��1(M ) with p � q, i.e. ��1(M )

is not open in the Tucker topology.
q is an n-cell, 0 � n � 2, and p is one of its m-sides,

0 � m � n. Case n = m is impossible because this implies
p = q, i.e. it would be p 2 ��1(M ) and p =2 ��1(M ).
Let n = 2 and m = 1. Then q is an open grid square s,
which can be represented as s = f�1(i)� f�1(j), and p is
a grid edge e (without both of its endpoints) which can be
represented as e = f�1(k) � f�1(l). Because e bounds s
we have that (k; l) is an 8-neighbor of (i; j). p 2 ��1(M )

implies (k; l) 2 M , and e � S. q =2 ��1(M ) implies
(i; j) =2 M , and s 6� S. This means that S cannot be open
in contradiction to our assumption, i.e. the assumed pair of
points p; q cannot exist. - Cases n = 2 and m = 0, and
n = 1 and m = 0 may be treated analogously.

��1 is continuous: let M be an open subset of the Ko-
valevsky plane. Assume that �(M ) is not open in the alter-
nating topology, i.e.

S�(M) =
[

(i;j)2�(M)

f�1(i) � f�1(j)

is not open in the Euclidean topology, i.e. there is one set
S0 = f�1(i) � f�1(j) such that at least one of its frontier
subsets S1 = f�1(k) � f�1(l) is contained in S�(M), but
S0 is not. Let S0 be an open square q and S1 be an edge p
of this square (without both of its endpoints). S1 � S�(M)

implies (k; l) 2 �(M ), and p = ��1 2 M . S0 6� S�(M)

implies (i; j) =2 �(M ), and q = ��1 =2 M with p � q.
It follows that M is not an open set. This contradicts our
assumption on M , and �(M ) needs to be open in the alter-
nating topology. - The remaining cases (S1 is a vertex, or
S0 is an edge and S1 is a vertex) follow by using analogous
arguments. Q.E.D.

Due to this theorem we may speak from the Khalimsky-
Kovalevsky plane if we like to refer to this special example,
e.g. in the form [CE2 ;�E2; dim] or in the form [CG2 ;�G2

; dim], of a Tucker or Aleksandrov topology. Note that any
scaling operation, such as on fi=2 : i 2Zg2 in Fig. 7, may
be incorporated into the definition of the homeomorphism
given in the proof of the Theorem. In [9] it was also pointed
out that Theorem 3 may be obtained as a corollary of a more
general theorem, saying that the product of the Aleksandrov
topologies of any two posets is the Aleksandrov topology of
the product of those posets.

4.1 Conclusion

Altogether we have two different topological spaces
for the orthogonal planar grid: 4-adjacency and the cor-
responding 4-topology as defined in Example 3; and the
graph complex [CG2 ;�G2; dim] or Euclidean complex
[CE2 ;�E2; dim], in image analysis literature also known
as Khalimsky-Kovalevsky plane defined by one of two
equivalent topologies, the Tucker topology on CE2 of ab-
stract complexes, or the product topology of two alternating
topologies defined in Example 5.

Both provide alternative options for discussing topolog-
ical problems at the lowest (initial) layer of image analysis
approaches.

6-adjacency or a planar S-adjacency graph in general re-
quires further studies on existence or non-existence of a cor-
responding topology.

References

[1] P. Alexandroff, H. Hopf: Topologie. Chelsea Publ., Bronx,
NY (1935).

[2] P. S. Aleksandrov: Combinatorial Topology, Volume 1.
Graylock Press, Rochester (1956).

[3] P. S. Aleksandrov: Combinatorial Topology, Volume 2.
Graylock Press, Rochester (1957).

[4] N. Bourbaki: Topologie générale. 3rd edition, Hermann,
Paris (1961).

[5] J.-M. Chassery: Connectivity and consecutivity in digi-
tal pictures. Computer Graphics and Image Processing 9
(1979) 294–300.

[6] E. Khalimsky: Pattern analysis of N-dimensional digital im-
ages. Proc. IEEE Int. Conf. Systems, Man and Cybernetics
(1986) 1559–1562.

[7] C. O. Kiselman: Digital Jordan curve theorem. In: Discrete
Geometry for Computer Imagery (G. Borgefors, I. Nyström,
G. Sanniti di Baja, eds.) LNCS 1953, Springer, Berlin
(2000).

[8] R. Klette: Grundbegriffe der digitalen Geometrie. AUT-
BILD’83, Univ. Jena, (1983), 94–126.

[9] T. Y. Kong: private communication.
[10] W. Kovalevski: Strukturen der Bildträger und Bilder. AUT-
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