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Abstract

Relative convex hulls have been suggested for multigrid-
convergent surface area estimation. Besides the existence of
a convergence theorem there is no efficient algorithmic so-
lution so far for calculating relative convex hulls. This arti-
cle discusses an approximative solution based on minimum-
length polygon calculations. It is illustrated that this ap-
proximative calculation also proves (experimentally) to pro-
vide a multigrid convergent measurement.
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1. Introduction

Surface area is one of the important three-dimensional
(3D) shape features in computer-based image analysis, and
its definition and calculation has been discussed in mathe-
matics over more than one hundred years. Recently many
papers on theoretical and algorithmic aspects of surface area
estimation have been published for 3D digital objects. Poly-
hedrization approaches are often used for approximation of
surface area, and these are also efficient ways to visualize a
surface.

The multigrid convergence problem for surface area es-
timation for 3D digital objects may be stated as follows [1]:
assume a measurable solid in 3D Euclidean space being dig-
itized with respect to finer and finer grid resolution. The
resulting digital object is used as input for a surface area es-
timation program, calculated estimates should converge to a
fixed value assuming finer and finer grid resolution, and this
fixed value should be the true surface area. In the context of
image analysis this may be stated as follows:

1. Image acquisition at higher grid resolutions should
lead to convergence for the value of surface area.

2. Convergence should be towards the true value.
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The paper [2] proposed a way to classify polyhedrization
techniques and algorithms. It expresses a general hypoth-
esis that local polyhedrization techniques such as surface
tracking (opaque cubes), marching cubes, marching tetra-
hedra etc. are failing to meet both convergence properties,
and global polyhedrization techniques such as convex hull
computation (for digitization of convex sets), digital pla-
nar segmentations, etc. are likely to meet both convergence
properties.

2. Relative Convex Hull (RCH) Theorem

The notion of a relative convex hull (RCH) is proposed
in [3]. Let V � U � R3. We define a set convU (V ) which
will be the relative convex hull of V with respect to set U .

Definition 1 Let U � R3 be an arbitrary set. A set C � U

is said to be U-convex iff for every x; y 2 C such that xy �
U it holds that xy � C .

Definition 2 Let V � U � R3 be given. The intersection
of all U-convex sets containing V is called the U-convex
hull of V and denoted by convU (V ) .

Let conv(V ) be the convex hull of set V . Three straightfor-
ward conclusions:

1. V � convU (V ) � U \ conv(V ) .

2. V = convU(V ) iff V is U-convex.

3. convU (V ) = conv(V ) iff conv(V ) � U .

We consider a polyhedral approximation of a surface @�
provided that the set � � R3 has a measurable surface area
s(�) defined in the Minkowski sense [5]. A bounded set
� is a Jordan set iff S = @� is homeomorphic to the unit
sphere. Let U = J+r (�), V = J�r (�) be the outer and in-
ner digital sets of set �, see, e.g., [1, 3]. These digitizations
are defined with respect to a regular orthogonal grid with
grid resolution r > 0. Then [3]
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is a closed polyhedral surface, and we call it relative convex
hull (RCH in brief). The multigrid convergence of surface
estimations based on relative convex hulls is ensured by the
following theorem [3]:

Theorem 1 Let � � R3 be a smooth Jordan set. Let
J+r (�), J

�

r (�), r � 0, be digitizations of this set. Then

lim
r!1

s(CHJ
+
r (�)(J

�

r (�))) = s(S);

where s(.) is defined in the Minkowski sense.

Following this theorem, surface area estimation of 3D
digital objects can meet both multigrid convergence con-
straints using the RCH polyhedrization approach. However,
the algorithmic treatment of relative convex hulls remains to
be an open problem yet.

For digital objects in 2D space, the minimum length
polygon (MLP) is uniquely defined, and the length estima-
tion of digital curves can meet both multigrid convergence
constraints using the MLP method (see, e.g. the paper [4]
for a linear-time MLP algorithm).

This paper suggests an approximative solution for RCH
calculations based on MLP calculations by slicing surfaces
of digital objects into 2D digital curves, calculating MLPs
in 2D for each of the digital curves, then accumulating the
surface area by connecting vertices of MLPs of the digital
curves in a certain manner. The class of input sets needs to
be restricted for this approximative estimation procedure.

3. Principle of MLP Approximation

Consider a bounded, closed subset � of Euclidean plane
in 2D space, its inner digital set J�r (�) and outer digital
set J+r (�) with respect to a grid resolution r. The MLP [4]
lies completely in the open r-boundary J +

r (�)n(J
�

r (�) [
@J+r (�)) of set � and circumscribing @J�r (�).

Assume X-Z coordinate system, +Z axis points up-
wards and +X axis points to the right. The sign of turn
of a vertex Pi is decided by the determinant value det(Pi�1,
Pi, Pi+1), where Pi=(xi, zi). Trace a frontier @J�r (�) in
counterclockwise direction, put the non-zero turn vertices
into a list in order. Replace each negative vertex in this list
by its corresponding negative vertex of @J +

r (�) simply by
modifying the coordinates by �1 according to the direction
of the incident edges. The resulting list contains all the ver-
tices which may become vertices of the MLP. A vertex of
the list may become an MLP-vertex if the following con-
ditions are fulfilled. Suppose that the ith vertex P i of the
list is an MLP-vertex. Another vertex Pj, with j > i, may
belong to the MLP if (see Figure 1)

� All positive vertices P +
k with i < k < j lie on the

positive side of (Pi, Pj) or are collinear with it, i.e.
det(Pi, P+

k , Pj)�0 holds.

Figure 1. Suppose that the ith vertex Pi of the
list is an MLP-vertex, another vertex Pj, with
j > i, may belong to the MLP if det(Pi, P+

k ,
Pj)�0 or det(Pi, P�k , Pj)�0 with i < k < j.

� Or all negative vertices P�
k

with i < k < j lie on the
negative side of (Pi, Pj) or are collinear with it, i.e.
det(Pi, P

�

k , Pj)�0 holds.

Suppose both a positive vertex P + and a negative ver-
tex P� satisfy the above conditions. Three situations may
occur by testing next vertex P (see Figure 2):

� Vertex P+ becomes the next MLP vertex if det(Pi,
P+, P )>0.

� Vertex P� becomes the next MLP vertex if det(Pi,
P�, P )<0.

� Vertex P becomes a candidate for MLP and must re-
place either P+ or P� corresponding to the sign of P ,
otherwise.

Figure 3 illustrates an example of MLP calculation for
a digital set J�r (�) in 2D space using linear-time MLP
algorithm in the paper [4]. Black dots represent negative
vertices, white dots represent positive vertices, the polygon
connected with black lines is the resulting MLP.

4. Relative Convex Hull (RCH) Approximation

Assume an orthogonal Cartesian coordinate system X-
Y -Z. Let � � R3 be a bounded set. The digital space
Z3 is represented using r-grid cubes C r

i;j;k, and fi; j; kg is
the centroid of C r

i;j;k, with six r-faces parallel to the co-
ordinate planes, with r-edges of length 1=r, for resolution
parameter r � 1 and integers i; j; k with 0 � i < dimx,
0 � j < dimy and 0 � k < dimz . We consider a digital



Figure 2. Suppose both a positive vertex P+

and a negative vertex P� satisfy the condi-
tions in Figure 1. Three situations may occur
by testing next vertex P .

object J�r (�) in Z3 defined by the Jordan inner digitiza-
tion, consisting of all r-cubes completely contained in the
interior of �. The surface area of � will be approximated
based on J�r (�) (i.e. a given digital object is assumed to be
a set of this type). A border r-face along position (i; j) of
J�r (�) in +Z axis direction is defined in the following def-
inition, and similar border faces are defined for �Z, +Y ,
�Y , +X, or �X axis directions.

Definition 3 A border r-face Fi;j along position (i; j) in
+Z axis direction is a shared r-face between two r-cubes
Cr
i;j;k and Cr

i;j;k+1 where Cr
i;j;k is in J�r (�), and k + 1 =

dimz or Cr
i;j;k+1 is not in J�r (�). The position (i; j)

represents a pair of values on X and Y coordinates with
0 � i < dimx, 0 � j < dimy .

According to this definition, it is possible to have zero or
more border r-faces along position (i; j) in +Z axis direc-
tion for a surface of a digital set J�r (�), e.g. an object that
possesses cavities may have more than one border r-face
along a certain position.

The surface of a digital set J�r (�) can be partioned into
six disjoint axial manifolds in their corresponding axial di-
rections, which might be indexed with +Z, �Z, +Y , �Y ,
+X, and �X. Let us define an orthogonally completely
visible surface.

Definition 4 A surface of a digital set J�r (�) is called an
orthogonally completely visible surface iff there exists at
most one border r-face along any position, for each of the
six axial manifolds.

Each border r-face Fi;j is defined by four corner points
P0, P1, P2, P3 if Fi;j exists; otherwise let Fi;j = ;. See
Figure 4.

Figure 3. Example of MLP calculation for a
digital set J�r (�) in 2D space using linear-time
MLP algorithm in the paper [4].

Our algorithm is only applicable to an orthogonally com-
pletely visible surface. All digitally convex objects and
some non-convex objects possess orthogonally completely
visible surface. Assume that a digital set J�r (�) possesses
an orthogonally completely visible surface, the surface area
estimation is the sum of all areas of all these six axial man-
ifolds. For the sake of describing our approximative RCH
algorithm simply and clearly, we will explain the area esti-
mation for the+Z-axial manifold, and processes are similar
for the other axial manifolds. The 8-neighborhood of a bor-
der r-face Fi;j is defined as follows:

Definition 5 The 8-neighborhood of a border r-face F i;j

is the set N8((i; j)) of border r-faces Fx;y such that
maxfjx� ij; jy � jjg = 1.

Each corner point Pc (0�c�3) of a border r-face Fi;j

may have a maximum of three corresponding corner points
on N8((i; j)) such that they have the same values on X and
Y axes. We define these corner points as corresponding cor-
ner points of Pc on Fi;j. Figure 4 illustrates a corner point
P3 of a border r-face Fi;j and its three corresponding cor-
ner points on N8((i; j)), i.e. P0 of Fi;j�1, P1 of Fi+1;j�1,
and P2 of Fi+1;j.

The digital space Z3 is divided into dimy slices along
the Y -axis. Each slice �y, for 0 � y < dimy, consists of
all grid cubes Cr

i;y;k, with 0 � i < dimx and 0 � k <

dimz. Two border r-faces are edge-connected if they are
8-neighbors.

Definition 6 A face run is an edge-connected component of
border r-faces within a slice of an axial manifold in Z 3.

A slice �y may contain zero or more face runs, and a
single face run may consist of just one r-face. Each face



Figure 4. The corner point P3 of a border r-
face Fi;j and its three corresponding corner
points on N8((i; j)), i.e. P0 of Fi;j�1, P1 of
Fi+1;j�1, and P2 of Fi+1;j.

run in the +Z axial manifold defines two 4-connected ver-
tex sequences (one on each side of the face run) in the X-Z
plane specifying sequences of potential vertices of an MLP
(see the paper [4]) approximating this face run. Each vertex
of the 4-connected vertex sequences is a corner point of a
border r-face by replacing the value on Z axis by the maxi-
mum value on Z axis among its corresponding corner points
and itself.

Our approximative relative convex hull (RCH) algorithm
consists of the following steps for a +Z axial manifold:

1. The digital space Z3 is divided into dimy slices along
the Y -axis.

2. For each slice in Z3, if there exists any face run, go to
the next step. Otherwise, do nothing for this slice.

3. For each face run, obtain both 4-connected vertex se-
quences in the X-Z plane which trace through poten-
tial vertices of the MLP.

4. Use the 2D MLP algorithm to calculate an MLP seg-
ment for these two sequences. Then triangulate ver-
tices of the MLP segment and accumulate all triangle
areas into a resulting surface area value for the +Z ax-
ial manifold.

5. If all slices are finished, return the surface area value
for the +Z axial manifold.

Now let us discuss the triangulation of a MLP segment
for a +Z axial manifold. Let (P (1)

0 , P (1)
1 , ���, P (1)

i , ���, P (1)
m )

and (P (2)
0 , P (2)

1 , � � �,P (2)
j , � � �,P (2)

n ) be the vertex sequences
of two MLPs, i.e. MLP1 and MLP2. Two pairs of points

Figure 5. Three situations of triangulation of
a MLP segment for a +Z axial manifold.

(P1, Q1) and (P2, Q2) taken from vertices of MLP1 and
MLP2 become a calculating unit of area. Let P (1)

k =(x(1)k ,

y
(1)

k , z(1)k ) represent a vertex of a MLP where x(1)k , y(1)k , z(1)k

are the values on X, Y , Z coordinates of the vertex P
(1)

k

respectively, and P
(2)

k =(x(2)k , y(2)k , z(2)k ) represent a vertex

of a MLP where x(2)k , y(2)k , z(2)k are the values on X, Y , Z

coordinates of the vertex P
(2)

k respectively. The process of
triangulation will be done in order, one after another, on the
two vertex sequences. Let P1=P (1)

i , Q1=P (2)
j ; the next pair

P2, Q2 depends on the following situations (see Figure 5):

1. P2 = P1, Q2 = P
(2)
j+1, if x(2)j+2 > x

(1)
i+1 .

2. P2 = P
(1)
i+1, Q2 = Q1, if x(1)i+2 > x

(2)
j+1 .

3. P2 = P
(1)
i+1, Q2 = P

(2)
j+1, otherwise .

An example of a triangulationof a MLP segment for a +Z
axial manifold is demonstrated in Figure 6. Consider a face
run of the middle slice �y, square marks and dot marks rep-
resent the vertex sequences of two MLPs, i.e. MLP1 and
MLP2 respectively. The resulting triangulation consists of
the black lines between vertices of the two MLPs, and the
sum of areas of all the triangles is the area of the face run.

Note that a face run can be a very long sequence of bor-
der r-faces if the grid resolution r goes to infinity. Our algo-
rithm uses a slidingwindow on each slice limiting the length
of face runs according to memory limitations in the pro-
gram. This allows to run this algorithm on digital sets of any
resolution r. The window size however can be any integer
specifying our algorithm as being a global polyhedrization
algorithm. The computational complexity in this algorithm



Figure 6. Example of triangulation of a MLP
segment for a +Z axial manifold.

is O(n3) where n is the maximum diameter of the digital
object under grid resolution r. No attempts have been made
at this point for optimizing the time complexity of the algo-
rithm.

5. Experimental Results

General ellipsoids with semi-axes a; b; c, cuboids and a
non-convex object are used as test objects. The relative er-
ror Erel is used to analyze and evaluate the convergence of
our polyhedrization algorithm. Let Se be the surface area
estimation of � and St be the true value of surface area of
@�, then the relative error Erel is defined as

Erel =
jSe � Stj

St
:

Figure 7 illustrates the surface area estimation of an el-
lipsoid with semi-axes 20�16�12 (axes parallel to coor-
dinate axes) if different widths w are used for the slid-
ing window in our RCH algorithm. The widths w =
100; 200; 300; 400 have been used in this experiment, and
results show that all curves illustrate similar multigrid con-
vergence behaviour. The maximum average of the absolute
deviations from the mean is 0.0009. Variations in width w
of the moving window do not make a big difference for this
algorithm. A reason may be that the resolution (or the size
of the object) is not yet large enough with respect to the
window size.

Figure 8 illustrates the impact of different orientations of
the same ellipsoid on curves of relative errors of estimated
surface areas versus grid resolution: rotating 45Æ about Z-
axis, rotating 45Æ about Z- then Y -axis, and no rotation.
The maximum average of the absolute deviations from the
mean is 0.0037. It obviously shows that all error curves

Figure 7. Impact of different widths of the slid-
ing window on relative errors of estimated
surface areas versus grid resolution for an el-
lipsoid with semi-axes 20�16�12 (orientation
parallel to coordinate axes).

match both multigrid convergence constraints, and varia-
tions of object orientations do not make a difference for the
estimated surface area using our algorithm.

Figure 8. Relative errors of surface area esti-
mation versus grid resolution in three differ-
ent positions.

Figure 9 illustrates the impact of different object shapes
on the speed of convergence. These curves show relative
errors of estimated surface areas within a family of differ-
ent objects, for four different grid resolutions. The family
of objects are ellipsoids with semi-axes 20�20�t in orien-
tation parallel to the coordinate axes, where parameter t is
the thickness of the ellipsoid ranged from 2 to 20, i.e. from
a ‘flat round plate’ to a sphere. From this figure we can
conclude that all curves have the same trend to converge
towards the true value of the surface area with increasing
of resolution, but the convergence speed for flat shapes is
faster than for a sphere.

Figure 10 illustrates a curve of relative errors of esti-



Figure 9. Relative errors of surface area esti-
mation versus a family of objects in different
grid resolution.

mated surface area versus grid resolution for a cuboid object
in three different orientations: rotating 45 Æ about Z-axis,
rotating 45Æ aboutZ- then Y -axis, and no rotation. The test
object is a cuboid with semi-axes 5�4�3. These curves ob-
viously show a trend to converge towards the true value of
surface area.

Figure 10. Relative errors of surface area es-
timation versus grid resolution for a cuboid
object in three different orientations.

Finally, Figure 11 illustrates a curve of relative errors
of estimated surface area versus grid resolution for a non-
convex object. The test object is a composition of two
blocks of frustum of a right circular cone connecting to-
gether with their small circular bases. The size of the frus-
tum of the right circular cone is: r=5, R=10, h=20. This
curve shows a trend to converge towards the true value of
surface area, however with a little bit oscillation.

6. Conclusions

From above experimental results we conclude that our
approximative calculation of relative convex hulls is a pos-

Figure 11. Relative errors of surface area es-
timation versus grid resolution for a non-
convex object.

sible approach for surface area estimation. However, the
object needs to have an orthogonally completely visible sur-
face. The described approximative RCH algorithm has time
complexity O(n3) where n is the maximum diameter with
respect to a chosen grid resolution r.
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