Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www:.citr.auckland.ac.nz)

CITR-TR-104 November 2001

An Approximative Calculation of Relative Convex
Hulls for Surface Area Estimation

Linjiang Yu and Reinhard Klette?

Abstract

Relative convex hulls have been suggested for multigrid-convergent
surface area estimation. Besides the existence of a convergence theorem
there is no efficient algorithmic solution so far for calculating relative
convex hulls. This article discusses an approximative solution based on
minimum-length polygon calculations. It is illustrated that this
approximative calculation also proves (experimentally) to provide a
multigrid convergent measurement.

1 Center for Image Technology and Robotics Tamaki Campus, The University of Auckland, Auckland,
New Zealand. lyu011@ec.auckland.ac.nz and r.klette@auckland.ac.nz

You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report
in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that
this technical report is still available from the CITR Tamaki web site under terms that include this permission. All other rights
are reserved by the author(s).



An Approximative Calculation of Relative Convex Hulls
for Surface Area Estimation

Linjiang Yu and Reinhard Klette*

Abstract

Relative convex hulls have been suggested for multigrid-
convergent surface area estimation. Besides the existence of
a convergence theorem there is no efficient algorithmic so-
lution so far for calculating relative convex hulls. Thisarti-
cle discusses an approxi mative sol ution based on minimum-
length polygon calculations. It is illustrated that this ap-
proximative cal culation also proves (experimentally) to pro-
vide a multigrid convergent measurement.
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1. Introduction

Surface area is one of the important three-dimensional
(3D) shape features in computer-based image anaysis, and
its definition and calculation has been discussed in mathe-
matics over more than one hundred years. Recently many
papers on theoretical and algorithmic aspects of surface area
estimation have been published for 3D digital objects. Poly-
hedrization approaches are often used for approximation of
surface area, and these are also efficient waysto visuaize a
surface.

The multigrid convergence problem for surface area es-
timation for 3D digital objects may be stated as follows[1]:
assume amesasurable solid in 3D Euclidean space being dig-
itized with respect to finer and finer grid resolution. The
resulting digital object is used asinput for a surface area es-
timation program, cal culated estimates should converge to a
fixed value assuming finer and finer grid resolution, and this
fixed value should be the true surface area. In the context of
image analysisthis may be stated as follows:

1. Image acquisition at higher grid resolutions should
lead to convergence for the value of surface area.

2. Convergence should be towards the true value.
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The paper [2] proposed away to classify polyhedrization
techniques and agorithms. It expresses a general hypoth-
esis that local polyhedrization techniques such as surface
tracking (opague cubes), marching cubes, marching tetra-
hedra etc. are failing to meet both convergence properties,
and global polyhedrization techniques such as convex hull
computation (for digitization of convex sets), digital pla-
nar segmentations, etc. are likely to meet both convergence
properties.

2. Relative Convex Hull (RCH) Theorem

The notion of a relative convex hull (RCH) is proposed
in[3]. Let V C U C R3. We define aset convy (V') which
will be the relative convex hull of 1V with respect to set U.

Definition 1 Let U C R3 beanarbitrary set. Aset C C U
issaid to be U-convex iff for every =,y € C such that 7y C
U itholdsthat zy C C .

Definition 2 Let V C U C R? be given. The intersection
of all U-convex sets containing V' is called the U-convex
hull of V" and denoted by convy (V) .

Let conv(V) bethe convex hull of set V. Three straightfor-
ward conclusions:

1 V Cceonvg (V) CUNeonv(V) .
2. V = conuy (V) iff V isU-convex.
3. convy (V) = conv(V) iff conv(V) C U .

We consider apolyhedral approximation of a surface 00
provided that theset © C R3 has ameasurable surface area
5(©) defined in the Minkowski sense [5]. A bounded set
© isaJordan set iff S = 0O is homeomorphic to the unit
sphere. Let U = J(©), V = J(©) bethe outer and in-
ner digital sets of set ©, see, e.g., [1, 3]. These digitizations
are defined with respect to a regular orthogonal grid with
grid resolution » > 0. Then [3]

CH j+9)(J;(©)) = dconv s o) (/7 (0))



isaclosed polyhedral surface, and we call it relative convex
hull (RCH in brief). The multigrid convergence of surface
estimations based on relative convex hullsis ensured by the
following theorem [3]:

Theorem 1 Let © C R3 be a smooth Jordan set. Let

J¥(©), J7(©), r > 0, bedigitizationsof thisset. Then
lim S(CHJ+( )(J_(G)))) = s(9),

r—00
where §(.) is defined in the Minkowski sense.

Following this theorem, surface area estimation of 3D
digital objects can meet both multigrid convergence con-
straints using the RCH polyhedrization approach. However,
the algorithmic treatment of relative convex hullsremainsto
be an open problem yet.

For digital objects in 2D space, the minimum length
polygon (MLP) is uniquely defined, and the length estima-
tion of digital curves can meet both multigrid convergence
congtraints using the MLP method (see, e.g. the paper [4]
for alinear-time MLP agorithm).

This paper suggests an approximative solution for RCH
calculations based on MLP calculations by slicing surfaces
of digital objects into 2D digital curves, calculating MLPs
in 2D for each of the digita curves, then accumulating the
surface area by connecting vertices of MLPs of the digital
curves in a certain manner. The class of input sets needs to
be restricted for this approximative estimation procedure.

3. Principle of MLP Approximation

Consider abounded, closed subset © of Euclidean plane
in 2D space, itsinner digital set J,(©) and outer digital
set J;F (©) with respect to agrid resolution 7. The MLP [4]
lies completely in the open r-boundary J,F (©)\(J,~ (©) U
d.J,F(©)) of set © and circumscribing 9.J,~ (©).

Assume X-Z coordinate system, +7 axis points up-
wards and +X axis points to the right. The sign of turn
of avertex P; isdecided by the determinant value det(P; 1,
P;, P;y1), where Pi=(z;, z;). Trace afrontier 8J(©) in
counterclockwise direction, put the non-zero turn vertices
into alist in order. Replace each negative vertex in thislist
by its corresponding negative vertex of 9./, (©) simply by
modifying the coordinates by +1 according to the direction
of the incident edges. The resulting list containsall the ver-
tices which may become vertices of the MLP. A vertex of
the list may become an MLP-vertex if the following con-
ditions are fulfilled. Suppose that the ith vertex P; of the
listis an MLP-vertex. Another vertex P;, with j > 4, may
belong to the ML P if (see Figure 1)

e All positive vertices P;” withi < k < j lie on the
positive side of (P;, £;) or are collinear with it, i.e.
det(F;, P,;I—, Pj)ZO holds.
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Figure 1. Suppose that the ith vertex £ of the
list is an MLP-vertex, another vertex P;, with
j > i, may belong to the MLP if det(?;, P,
P;)>0or det(F;, P, , P))<0with ¢ < k < j.

o Or al negative vertices P~ withi < k < j lieon the
negetive side of (£;, P;) or are collinear with it, i.e.
det(F;, Pk_' Pj)go holds.

Suppose both a positive vertex P+ and a negative ver-
tex P~ sdtisfy the above conditions. Three situations may
occur by testing next vertex P (see Figure 2):

e Vertex Pt becomes the next MLP vertex if det(2;,
Pt, P)>0.

o Vertex P~ becomes the next MLP vertex if det(7;,
P~, P)<O0.

e Vertex P becomes a candidate for MLP and must re-
place either P+ or P~ corresponding to thesign of P,
otherwise.

Figure 3 illustrates an example of MLP calculation for
a digital set J (©) in 2D space using linear-time MLP
algorithm in the paper [4]. Black dots represent negative
vertices, white dots represent positive vertices, the polygon
connected with black linesis the resulting MLP.

4. Relative Convex Hull (RCH) Approximation

Assume an orthogonal Cartesian coordinate system X -
Y-Z. Let © C R? be abounded set. The digital space
Z3 isrepresented using r-grid cubes C'7 jpand{i g k}is
the centroid of 7, ., with six r-faces parallel to the co-
ordinate planes, W|th r-edges of length 1/, for resolution
parameter » > 1 and integers i, j, k with0 < ¢ < dim,,
0<j<dimyand0 <k < dim,. We consider adigital
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Figure 2. Suppose both a positive vertex Pt
and a negative vertex P~ satisfy the condi-
tions in Figure 1. Three situations may occur
by testing next vertex P.

object J~(©) in Z3 defined by the Jordan inner digitiza-
tion, consisting of all »-cubes completely contained in the
interior of ©. The surface area of © will be approximated
based on J~ (©) (i.e. agiven digital object isassumed to be
aset of thistype). A border r-face along position (i, j) of
J7(©) in+Z axisdirectionis defined in the following def-
inition, and similar border faces are defined for — 7, +Y,
-Y,+X, or —X axisdirections.

Definition 3 A border »-face I; ; along position (4, j) in
+Z axis direction is a shared r-face between two r-cubes
Clik and(]”k“where(]’“]k isinJ - (@),andk +1 =
dim; or C7 ;14 is not in J,~(®©). The position (3, j)
represents a pair of values on X and Y coordinates with
0<i<dimg,0<j<dim,.

According to this definition, it is possible to have zero or
more border r-faces along position (4, j) in+7 axis direc-
tion for a surface of adigital set J,~ (©), e.g. an object that
possesses cavities may have more than one border »-face
along a certain position.

The surface of a digital set J,~ (©) can be partioned into
six digoint axial manifoldsin their corresponding axial di-
rections, which might be indexed with +7, — 7, +Y, -V,
+X, and —X. Let us define an orthogonally completely
visible surface.

Definition 4 A surface of a digital set J,~ (©) iscalled an
orthogonally completely visible surface iff there exists at
most one border »-face along any position, for each of the
six axial manifolds.

Each border r-face F; ; is defined by four corner points
Py, P, P, Psif Fi,j exists; otherwise let Fiyj = 0. See
Figure4.
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Figure 3. Example of MLP calculation for a
digital set J (0)in 2D space using linear-time
MLP algorithm in the paper [4].

Our agorithmisonly applicableto an orthogonally com-
pletely visible surface. All digitaly convex objects and
some nhon-convex objects possess orthogonally completely
visible surface. Assume that a digital set J, (©) possesses
an orthogonally completely visible surface, the surface area
estimation is the sum of all areas of all these six axial man-
ifolds. For the sake of describing our approximative RCH
algorithm simply and clearly, we will explain the area esti-
mation for the +7-axial manifold, and processes are similar
for the other axial manifolds. The 8-neighborhood of a bor-
der r-face F; ; is defined as follows:

Definition 5 The 8-neighborhood of a border »-face [ ;
is the set Ns((¢,j)) of border r-faces F,, such that

maz{|z — i, ly — jl} = 1.

Each corner point . (0<c<3) of a border r-face £ ;
may have a maximum of three corresponding corner points
on Ng((4, j)) such that they have the same valueson X and
Y axes. We define these corner pointsas corresponding cor-
ner pointsof P. on I; ;. Figure 4 illustrates a corner point
P35 of aborder r-face F; ; and its three corresponding cor-
ner pointson Ng((7, j)), i.e. Py of F; ;_1, P1 of Fiqq ;_1,
and P; of Fi-l-l,j'

The digital space Z? is divided into dim,, slices aong
the Y-axis. Each dlicell,,, for 0 < y < dim,, consists of
all grid cubes C7, ,, with0 < i < dim, and 0 < k <
dim,. Two border r-faces are edge-connected if they are
8-neighbors.

Definition 6 A facerun isan edge-connected component of
border r-faces within a slice of an axial manifoldin Z 3.

A dlice II,, may contain zero or more face runs, and a
single face run may consist of just one r-face. Each face
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Figure 4. The corner point P of a border r»-
face F;; and its three corresponding corner
points on Ng((4,j)), i.e. Py of F;;_1, P, of
FZ'_|_17]'_1, and Py of Fi+1,j'

run in the 47 axial manifold defines two 4-connected ver-
tex sequences (one on each side of the face run) inthe X -7
plane specifying sequences of potential vertices of an MLP
(see the paper [4]) approximating thisface run. Each vertex
of the 4-connected vertex sequences is a corner point of a
border »-face by replacing the value on Z axis by the maxi-
mum value on Z axis among its corresponding corner points
and itself.

Our approximative relative convex hull (RCH) algorithm
consists of the following steps for a+ 2 axial manifold:

1. Thedigital space Z? is dividedinto dim,, slices along
the Y'-axis.

2. For each slicein 23, if there exists any face run, go to
the next step. Otherwise, do nothing for thisdlice.

3. For each face run, obtain both 4-connected vertex se-
guences in the X -7 plane which trace through poten-
tial vertices of the MLP.

4. Use the 2D MLP algorithm to calculate an MLP seg-
ment for these two sequences. Then triangulate ver-
tices of the MLP segment and accumulate al triangle
areas into aresulting surface area value for the +7 ax-
ial manifold.

5. If dl dlices are finished, return the surface area value
for the -7 axial manifold.

Now let us discuss the triangulation of a MLP segment
fora+Z axial manifold. Let (P\V, P, ..., POV ... pib)
and (P, P*), -, P\, ..., P{*) bethevertex sequences
of two MLPs, i.e. M LP, and M LP,. Two pairs of points
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Figure 5. Three situations of triangulation of
a MLP segment for a +Z axial manifold.

(P1, @1) and (P2, @)2) taken from vertices of MLP1 and
MLPz become a calculating unit of area. Let P (

y,i ), EN )repr%ntavertex ofaMLPwhereae,(C ), y,i ), ,gl)
are the values on X Y Z coordi nateﬁ of the vertex P(l)
respectively, and P ( , yk , zk ) represent a vertex
of aMLPwhereaefC ), y,i ), ( ) arethevalueson X, Y, 7
coordinates of the vertex P respectlvely The process of
triangulation will be donein order one after another, on the
two vertex sequences. Let P, =P Q P ): the next pair
P», Q2 depends on the followi ng stuatlons (see Figure5):

1. Pz—Pl,Qz ]+)1,|fl“§_|_)2>l‘l(+)1.

2. P2 = Pz(-ll—)ll Qz = Ql, if l‘l(_ll_)z > l‘;i}l .

3. Py= Pi(i)l, Q2 = Pj(i)l, otherwise .

Anexample of atriangulationof aMLP segment fora+Z
axial manifold is demonstrated in Figure 6. Consider a face
run of themiddleslicell,, square marks and dot marks rep-
resent the vertex sequences of two MLPs, i.e. M LP, and
M L P, respectively. The resulting triangulation consists of
the black lines between vertices of the two MLPs, and the
sum of areas of all thetrianglesisthe area of the face run.

Note that a face run can be a very long sequence of bor-
der r-facesif thegrid resolution » goesto infinity. Our algo-
rithm usesaslidingwindow on each dicelimitingthelength
of face runs according to memory limitations in the pro-
gram. Thisalowsto run thisalgorithm ondigita setsof any
resolution ». The window size however can be any integer
specifying our algorithm as being a global polyhedrization
algorithm. The computational complexity in thisalgorithm
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Figure 6. Example of triangulation of a MLP
segment for a +Z axial manifold.

is O(n?®) where n is the maximum diameter of the digital
object under grid resolution r. No attempts have been made
at this point for optimizing the time complexity of the algo-
rithm.

5. Experimental Results

General ellipsoids with semi-axes «, b, ¢, cuboids and a
non-convex object are used as test objects. The relative er-
ror E,.; isused to analyze and evaluate the convergence of
our polyhedrization algorithm. Let S. be the surface area
estimation of © and S; be the true value of surface area of
00, then the relative error E,..; isdefined as

|Se—St|

Ere =
l St

Figure 7 illustrates the surface area estimation of an el-
lipsoid with semi-axes 20x 16x 12 (axes parallel to coor-
dinate axes) if different widths w are used for the did-
ing window in our RCH agorithm. The widths w =
100, 200, 300, 400 have been used in this experiment, and
results show that all curves illustrate similar multigrid con-
vergence behaviour. The maximum average of the absolute
deviations from the mean is 0.0009. Variationsin width w
of the moving window do not make a big difference for this
algorithm. A reason may be that the resolution (or the size
of the object) is not yet large enough with respect to the
window size.

Figure8illustratestheimpact of different orientations of
the same ellipsoid on curves of relative errors of estimated
surface areas versus grid resolution: rotating 45° about 7 -
axis, rotating 45° about Z- then Y'-axis, and no rotation.
The maximum average of the absolute deviations from the
mean is 0.0037. It obviously shows that all error curves

e’ w1 B
RN e TR ||
108 4 4 Aoy Byalth XL

ek il 3K

T L o ¢ 2

2O15x12 eMpead in differert window width, 0 o

Figure 7. Impact of different widths of the slid-
ing window on relative errors of estimated
surface areas versus grid resolution for an el-
lipsoid with semi-axes 20x16x 12 (orientation
parallel to coordinate axes).

match both multigrid convergence constraints, and varia-
tions of object orientations do not make a difference for the
estimated surface area using our agorithm.
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Figure 8. Relative errors of surface area esti-
mation versus grid resolution in three differ-
ent positions.

Figure 9 illustrates the impact of different object shapes
on the speed of convergence. These curves show relative
errors of estimated surface areas within a family of differ-
ent objects, for four different grid resolutions. The family
of objects are ellipsoids with semi-axes 20x 20xt in orien-
tation parallel to the coordinate axes, where parameter ¢ is
the thickness of the ellipsoid ranged from 2 to 20, i.e. from
a ‘flat round plate’ to a sphere. From this figure we can
conclude that all curves have the same trend to converge
towards the true value of the surface area with increasing
of resolution, but the convergence speed for flat shapes is
faster than for a sphere.

Figure 10 illustrates a curve of relative errors of esti-
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Figure 9. Relative errors of surface area esti-
mation versus a family of objects in different
grid resolution.

mated surface area versusgrid resolutionfor acuboid object
in three different orientations. rotating 45° about 7-axis,
rotating45° about - then Y'-axis, and no rotation. The test
object isa cuboid with semi-axes 5x 4x 3. These curves ob-
viously show a trend to converge towards the true value of
surface area.
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Figure 10. Relative errors of surface area es-
timation versus grid resolution for a cuboid
object in three different orientations.

Finally, Figure 11 illustrates a curve of relative errors
of estimated surface area versus grid resolution for a non-
convex object. The test object is a composition of two
blocks of frustum of a right circular cone connecting to-
gether with their small circular bases. The size of the frus-
tum of the right circular cone is. »=5, R=10, h=20. This
curve shows a trend to converge towards the true value of
surface area, however with alittle bit oscillation.

6. Conclusions

From above experimental results we conclude that our
approximative calculation of relative convex hullsis a pos-
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Figure 11. Relative errors of surface area es-
timation versus grid resolution for a non-
convex object.

sible approach for surface area estimation. However, the
object needs to have an orthogonally completely visible sur-
face. The described approximative RCH algorithm hastime
complexity O(n?) where n is the maximum diameter with
respect to achosen grid resolution .
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