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A New Algorithm for Gradient Field Integration

Tiangong Wei and Reinhard Klette�

Abstract

This paper proposes two improvements for re-


ectance based shape recovery. First, it is shown that

albedo-independent photometric stereo allows albedo

computation. This computation is based on photomet-

ric equations that relate surface normals to triplets of

the image irradiances. Second, the paper also presents

as the main result a new algorithm for depth recov-

ery from surface normals. In order to improve the ac-

curacy and robustness and to strengthen the relation

between the depth map and surface normals, two new

constraints are added into the associated cost function.

They constrain the behavior of high-order change rate

between the variables. Therefore, the changes of depth

maps will be more regular. The Frankot-Chellappa-

algorithm is a special case of our algorithm in the sense

that it uses a subset of constraints only.

1 Introduction

Measured image irradiances of a 3-D object depend

upon its shape, its re
ectance properties, and the illu-

mination. Accordingly, there are three possible ways of

analyzing measured image irradiances: recovering the

surface shape from the surface re
ectance and illumina-

tion of the scene (i.e re
ectance-based shape recovery),

recovering the illumination from the surface shape and

the surface re
ectance of the scene (i.e. re
ectance-

based light source modeling or calibration), and recov-

ering the surface re
ectance from the surface shape and

illumination of the scene (i.e. shape-based re
ectance

recovery). The �rst and second tasks have been very

actively researched in computer vision, e.g. for shape

recovery see Horn [5], Klette et. al [7, 8], Wei and

Klette [9, 11], and for light source modeling see Zheng

and Chellappa [13]. However, there has been not much

activity so far on the re
ectance recovery, which is of

importance for MPEG4 related surface modeling.
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In this paper, we analyze one (basically previously

known) algorithm for re
ectance recovery from sur-

face normals and present one new algorithm for depth

recovery from surface normals. The basic steps in

our re
ectance recovery approach are as follows: (i)
�rst, the surface normals are determined using albedo-

independent analysis (Klette et. al [7, 8]), e.g. pho-

tometric stereo method with three light sources (3S

PSM). Then (ii) the surface normals (i.e. the dis-

crete gradient vector �eld) are integrated, as normally

in shading-based shape recovery. The obtained sur-

face data are then used (iii) to achieve better gradient
�elds via discrete di�erentiation. Finally, (iv) accord-
ing to the image irradiance equation, the computation

of albedo is carried out by using these improved surface

normals.

We will use images captured under constrained en-

vironment where background is surrounded with black

cloth. The scene object will only illuminated with con-

trollable light with known intensity and direction. We

also assume that there are no interre
ections and shad-

ows on the surface of the scene object, that is, the scene

object do not act as secondary light sources.

The organization of the rest of the paper is as fol-

lows. In Section 2 we analyze the computation of

the albedo from the surface normals. In Section 3 we

present our new algorithm for depth recovery from sur-

face normals. The experimental results and conclusions

are given in Section 4 and 5, respectively.

2 Surface normals and albedo compu-

tation

In this section, we describe steps (i) and (iii), i.e.
the computation of surface normals and albedo. We

assume that the surface function Z(x; y) of the scene

object is formed by an orthographic (parallel) projec-

tion of the surface into the xy-image plane, and de�ned

in the image plane over a compact domain 
. �(x; y)

is the albedo of the surface material at that surface

point which is projected into image point (x; y) 2 
.

In the following, it will assumed that the albedo �(x; y)
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stays unknown, and it varys across the object surface

with 0 � �(x; y) � 1, where 1 means the object is fully

re
ective or bright and 0 represents that the object is

black at this surface point. Denote the gradient of the

surface by (p; q) = (p(x; y); q(x; y)) with

p(x; y) =
@Z(x; y)

@x
= Zx;

and

q(x; y) =
@Z(x; y)

@y
= Zy:

Then the normal of the surface is written as n =

n(x; y) = (p; q;�1)T .

Suppose that E1(x; y); E2(x; y) and E3(x; y) are the

three images of the scene object, which are measured

with respect to three known illumination directions

s1; s2 and s3. E01; E02 and E03 are the three known il-

lumination intensities, respectively. According to Lam-

bert's cosine law, we have three image irradiance equa-

tions:

E1(x; y) = E01�(x; y)
nT s1

knkks1k
; (1)

E2(x; y) = E02�(x; y)
nT s2

knkks2k
; (2)

E3(x; y) = E03�(x; y)
nT s3

knkks3k
; (3)

where k � k represents the Euclidean norm. >From

the associated irradiance equations for the image pairs

E1(x; y) and E2(x; y), E1(x; y) and E3(x; y), E2(x; y)

and E3(x; y), we can deduce the following relations,

respectively,

�(x; y)nT (E01E2ks2ks1 � E02E1ks1ks2) = 0;

�(x; y)nT (E01E3ks3ks1 � E03E1ks1ks3) = 0;

�(x; y)nT (E02E3ks3ks2 � E03E2ks2ks3) = 0:

If the albedo �(x; y) 6= 0 at any image point (x; y) 2 
,

then �(x; y) can be eliminated from the above equa-

tions, and it follows,

nT s12 = 0; nT s13 = 0; and nT s23 = 0; (4)

where

sab = E0aEbksbksa � E0bEaksaksb (5)

for a; b 2 f1; 2; 3g, which consists of the linear combi-

nation of the known quantities of the light sources and

lies in the symmetry plane de�ned by the illumination

directions sa and sb. Equation (4) means that the sur-

face normal n is orthogonal to the vectors s12; s13 and
s23. In other words, the surface normal n is collinear

to the cross product of any two of the vectors s12; s13
and s23. Therefore, n = �v(x;y), and

v(x; y) = s12 � s13

= (E01E2ks2ks1 � E02E1ks1ks2)

�(E01E3ks3ks1 � E03E1ks1ks3);

where � represents the cross product of the vectors.

The scaling factor � must have such a sign that normal

vectors n have a negative z-component. The albedo

�(x; y) at image point (x; y) 2 
 can be found by sub-

stituting the surface normaln into the image irradiance

equations. The steps involved are summarized as fol-

lows

Theorem 1 (Albedo Computation) Let �(x; y) 6=

0 be the albedo at any image point (x; y) 2 
. If n =

�v(x; y) is the surface normal, where � is a scaling

factor, and v(x; y) is the cross product of the vectors

s12; s13 and s23, then the albedo �(x; y) can be calculated

by any one of the three image irradiance equations(1),

(2) and (3).

The main advantage of the above algorithm is that

the surface normals can be found without knowledge

of the surface re
ectance property. So far this is the

ideal case in theory. When v(x; y) is divided by one of

the three irradiances of the light sources, for example,

by E01, then the direction of the calculated vector

v�(x; y) = (E2ks2ks1 �
E02

E01

E1ks1ks2)

�(E3ks3ks1 �
E03

E01

E1ks1ks3)

does not change with respect to v(x; y). This property
means that only the ratios of the irradiances of the light

sources have to be known, but this leads to a di�erent

scaling of the albedo value.

3 Depth recovery from surface normals

In this section, we present a new algorithm for depth

recovery from surface gradients in order to obtain im-

proved surface normals. The gradient values of this

surface at discrete points (x; y) 2 
 are only available

as input data. Essentially there are two main classes of

integration techniques for �nding depth Z(x; y) from

gradients p(x; y) and q(x; y): local integration tech-

niques and global integration techniques (for a review,

see Klette and Schl�uns [6]).

Local integration methods ( Coleman and Jain [1],

Healey and Jain [3], Wu and Li [12]) are conceptually
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simple and based on the following curve integrals:

Z(x; y) = Z(x0; y0) +

Z



p(x; y)dx+ q(x; y)dy:

where 
 is an arbitrarily speci�ed integration path from

(x0; y0) to (x; y) 2 
. Starting with initial height val-

ues, the methods propagate height values according

to a local approximation rule (e.g., based on the 4-

neighborhood) using the given gradient data. Such a

calculation of relative height values can be repeated

by using di�erent scan algorithms. Finally, resulting

height values can be determined by averaging opera-

tions. However, initial depth values have to be pro-

vided. The locality of the computations propagates

errors, i.e. this approach strongly depends on data ac-

curacy. Therefore, local integration techniques perform

badly when the data are noisy.

Global integration techniques for gradients vector

�elds (Horn and Brooks [4], Frankot and Chellappa [2],

Horn [5], Wei and Klette [10]) are based on the opti-

mization process minimizing the following functional

(cost function):

W =

ZZ



[jZx � pj2 + jZy � qj2]dxdy; (6)

where p and q denote the given gradient �eld com-

ponents. Zx and Zy denote the unknown gradi-

ent �eld components which have to be reconstructed.

Comparing with the local integration methods (previ-

ously known in 1998), the Frankot-Chellappa algorithm,

based on the results of the paper [2] and presented in

Klette et. al [7], leads to better results for the task of

calculating depth from gradients. Nevertheless, errors

at locations of very low albedo result in reconstruc-

tion errors. Also,the algorithm is very sensitive to the

abrupt changes in orientation, i.e. there are large errors

at the object boundary.

In this paper, we apply the Fourier transform theory

to derive a new algorithm for solving the depth from

gradients. In order to improve the accuracy and ro-

bustness, and to strengthen the relation between the

estimated surface and the original image, we introduce

two new constraints as

Zxx =
@2Z

@x2
= px;

and

Zyy =
@2Z

@y2
= qy:

The two new constraints model the behavior of the

second-order derivatives change rate between the vari-

ables. Therefore, the changes of depth maps will be

more regular. Having the new constraints, the cost

function can be rede�ned as

W =

ZZ



�
jZx � pj2 + jZy � qj2

�
dxdy +

+ �

ZZ



�
jZxx � pxj

2 + jZyy � qyj
2
�
dxdy; (7)

where the non-negative parameter � establishes a

trade-o� between the constraints, i.e. it is used to ad-

just the weighting between them. The above new cost

function re
ects the relations among Z(x; y); p(x; y)

and q(x; y) more e�ectively, and make the best use of

the information provided by the surface normals. The

following objective is to solve the unknown Z(x; y) sub-

ject to an optimization process which minimizes the

cost function W . Instead of using the calculus of vari-

ations to derive the Euler equations for the solution

to the cost function (7), we use the Fourier transform

theory.

Suppose that the Fourier transform of the surface

function Z(x; y) is

ZF (u; v) =

ZZ



Z(x; y)e�j(ux+vy)dxdy; (8)

and the inverse Fourier transform is

Z(x; y) =
1

2�

ZZ



ZF (u; v)e
j(ux+vy)dudv: (9)

According to the di�erentiation properties of the

Fourier transform, we have

Zx(x; y)$ juZF (u; v);

Zy(x; y)$ jvZF (u; v);

Zxx(x; y)$�u2ZF (u; v);

Zyy(x; y)$�v2ZF (u; v):

Let P (u; v) and Q(u; v) be the Fourier transforms of

gradients p(x; y) and q(x; y), respectively. Taking the

Fourier transform in the functional (7), and using the

above di�erentiation properties and the following Par-

seval's formulaZZ



jZ(x; y)j2dxdy =
1

2�

ZZ



jZF (u; v)j
2dudv;

we obtain

1

2�

ZZ



h
jjuZF (u; v)� P (u; v)j

2
+

+ jjvZF (u; v)� Q(u; v)j
2
i
dudv+

+
�

2�

ZZ



h���u2ZF (u; v)� juP (u; v)
��2+

+
���v2ZF (u; v)� jvQ(u; v)

��2i dudv
! minimum;
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The left side of the above expression can be expanded

as

1

2�

ZZ



�
u2ZFZ

�

F
� juZFP

� + juZ�
F
P+

+PP � + v2ZFZ
�

F
� jvZFQ

� + jvZ�
F
Q+

+QQ�] dudv+
�

2�

ZZ



�
u4ZFZ

�

F
� ju3ZFP

�

+ju3Z�
F
P + u2PP � + v4ZFZ

�

F
�

�jv3ZFQ
� + jv3Z�

F
Q+ v2QQ�

�
dudv;

where � denotes the conjugate. Di�erentiating the

above expression with respect to ZF and Z�
F
, we can

deduce the following minimal conditions for the cost

function (7)�
u2 + �u4

�
Z� � j

�
u+ �u3

�
P � +

+
�
v2 + �v4

�
Z� � j

�
v + �v3

�
Q� = 0;

and �
u2 + �u4

�
Z � j

�
u+ �u3

�
P +

+
�
v2 + �v4

�
Z � j

�
v + �v3

�
Q = 0:

Adding the above two equations together, then sub-

tracting the second one from the �rst one, this results

in the following equations�
u2 + v2 + �

�
u4 + v4

��
(ZF + Z�

F
) +

+j
�
u+ u3

�
(P � P �) + j

�
v + v3

�
(Q� Q�) = 0;

and �
u2 + v2 + �

�
u4 + v4

��
(ZF � Z�

F
) +

+j
�
u+ u3

�
(P + P �) + j

�
v + v3

�
(Q+ Q�) = 0:

Solving the above equations except for (u; v) 6= (0; 0),

we obtain

ZF (u; v) =
�1

u2 + v2 + � (u4 + v4)
� [

j
�
u+ �u3

�
P (u; v) + j

�
v + �v3

�
Q(u; v)

�
; (10)

where (u; v) 6= (0; 0). The main result is summarized

in the following theorem.

Theorem 2 (Depth Recovery) The cost function

(7) is minimized by taking the Fourier transform of

surface Z(x; y) as in the formula (10).

The Frankot-Chellappa algorithm [2] as formulated

in [7], is a special case when parameter � = 0 in (7).

Therefore, let � = 0 in (10), we obtain that the objec-

tive functional (6) is minimized by taking the Fourier

transform of the surface Z(x; y) as

ZF (u; v) =
�1

u2 + v2
[juP (u; v) + jvQ(u; v)] ; (11)

where (u; v) 6= (0; 0). The solution calculated by the

Frankot-Chellappa algorithm is optimal in the sense of

the quadratic error function between ideal and given

gradient values. It only provides a relative depth func-

tion up to an additive constant.

The formula (11) can also be derived using the above

process directly. If so, the process deriving (11) is much

simpler than the one used by Frankot-Chellappa in [2].

On the other hand, our new algorithm is capable of

dealing with additional constraints taking second order

derivatives into account.

The following algorithm shows our proposed method

for the task of calculating depth from gradients, which

use the transformation as speci�ed in Theorem 2 af-

ter having the Fourier transforms of the given gradi-

ent �eld. Then an inverse Fourier transform leads to

the desired depth map, which allows us to reconstruct

object surfaces in 3D space within a subsequent com-

putation step of a general back projection approach.

Algorithm 1 New algorithm for depth recovery

1: input gradients p(x; y); q(x; y) and �

2: for 0 � x; y � N � 1 do
3: if (jp(x; y)j < maxpq & jq(x; y)j < maxpq) then
4: P1(x,y)=p(x,y); P2(x,y)=0;

5: Q1(x,y)=q(x,y); Q2(x,y)=0;

6: else
7: P1(x,y)=0; P2(x,y)=0;

8: Q1(x,y)=0; Q2(x,y)=0;

9: end if
10: end for
11: Calculate the Fourier transforms of P1(x,y) and

P2(x,y): P1(u,v), P2(u,v);

12: Calculate the Fourier transforms of Q1(x,y) and

Q2(x,y): Q1(u,v), Q2(u,v);

13: for 0 � u; v � N � 1 do
14: if (u 6= 0 & v 6= 0) then
15: � = u2 + v2 + �(u4 + v4);

16: �1 = (u+ �u3)P2(u; v) + (v + �v3)Q2(u; v);

17: �2 = �(u+�u3)P1(u; v)� (v+�v3)Q1(u; v);

18: H1(u; v) = �1=�;

19: H2(u; v) = �2=�;

20: else
21: H1(0; 0) = something; H2(0; 0) = 0;

22: end if
23: end for
24: Calculate the inverse Fourier transforms of H1(u,v)

and H2(u,v): H1(x,y), H2(x,y);

25: for 0 � x; y � N � 1 do
26: Z(x; y) = H1(x; y)+ BackgroundValue;

fe.g. LSE optimization g

27: end for
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Figure 1. Image triplet of Beethoven statue.

Figure 2. Recovered surfaces: left - using the Frankot-Chellappa integration method, right - using
our new method.

If the gradient vectors of any length are used as in-

put to the algorithm, then the reconstructed surface

is distorted. To avoid this, the value maxpq = 4 was

used in the experiments that are described in the next

section.

4 Experimental results

This short note only allows us a very brief report on

experimental results. Figure 1 shows three captured

images of a Beethoven plaster statue. The gradients

were generated using photometric stereo method with

three light sources (3S PSM). 3S PSM shape recovery

results have been discussed in [7] for this statue.

Figure 2 illustrates both recovered surfaces.The left

surface was calculated using the Frankot-Chellappa al-

gorithm and the right one was done using our new algo-

rithm with � = 0:5. 3D plots such as shown in Figure 2

actually demonstrated that our new integration algo-

rithm improves recovered shapes in the face region.
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5 Conclusions

We brie
y sketched a way to recover albedo from

surface normals, which may be determined using

albedo-independent 3S PSM. As an importantmodel in

this approach, we designed a new algorithm for depth

recovery from surface normals or gradients. The appro-

priateness of the approach has been illustrated through

experiments using real object, and these experiments

will be reported in a longer paper.
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