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Abstract. This report is about basic material on digital topology within

the context of image analysis. This �rst part informs about basics in

topology, and di�erent options for two-dimensional homogeneous image
carriers. It discusses adjacency graphs more in detail as a possible unify-

ing approach for modelling and applying homogeneous or inhomogeneous

planar image carriers. The second part of the report will focus on three-
dimensional image carriers with a special treatment of complexes.
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1 Introduction

The topology of digital images, and topological problems related to image ana-

lysis have been studied over the last thirty years. Pioneering papers from around

1970 stand at the beginning of this very vivid research process, and we recall

such early contributions in Section 3, as a start into topological approaches for

image analysis. But before proceeding to these subjects, this introductory section

provides a few basic de�nitions and comments on digital images, and Section 2

is a compressed guide to fundamentals in topology.

De�nition 1. A digital image I is a function de�ned on a set C , which is called
a carrier of the image, and its elements are called points. The range of a (scalar)
digital image is f0; : : : ; Gmaxg with Gmax � 1. The range of a binary image is
f0; 1g, i.e. Gmax = 1.

Any image I de�nes di�erent equivalence classes Cu of points p 2 C by its values

I(p) = u, 0 � u � Gmax: points p and q are I-equivalent i� (read: `if and only

if') I(p) = I(q) (we recall: an equivalence relation is re
exive, transitive and

symmetric), i.e. all points p 2 C with I(p) = u are in the same I-equivalence
class Cu ; for any �xed value u.

An image carrier is normally a subset of the two- or three-dimensional Eu-

clidean space, e.g. of the orthogonal grid de�ned by grid points1 p 2 Zn, grid
edges bounded by two grid points, grid squares bounded by four grid edges, and

(if n = 3) grid cubes bounded by six grid squares. Time-series of digital images

may be described in higher dimensions, but the study of dynamic objects is

outside of the scope of this report.

An n-dimensional image carrier is homogeneous, n � 1, i� it is either of in�-

nite extent and there exist n linearly independent translations all transforming

it into itself again, or it is a connected substructure of �nite extent (de�ned

by �nite intervals of non-zero length) of such an homogeneous image carrier of

in�nite extent. An important aspect of topological problems in image analysis

is the fact that the homogeneous carrier of input images,

(i) typically the orthogonal grid endowed with a topological structure, for ex-

ample (in case of the planar grid): two grid points p and q are adjacent i�

p 6= q and both are endpoints of one grid edge (the so-called 4-adjacency
[69]);

is mapped into inhomogeneous carriers at more advanced layers of image analysis

approaches: for example,

(ii) segmentation of images leads to carriers where an (abstract) point p repre-

sents a region (i.e. a component of an I-equivalence class of grid points) of

1 Some publications call the geometric element p 2Zn already a `pixel' (if n = 2) or a

`voxel' (if n = 3). In this report it is preferred that such geometric elements do not

need to be renamed, and a picture element (pixel) is a geometric element p labeled
by an image value I(p) de�ned at this element.
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Fig. 1.Magni�ed image without (left) and with (right) drawing of assumed adjacencies.

the original image and the value I(p) stands for the label of this region p

(see Fig. 2, left); two regions are adjacent i� they contain grid points being

on the same grid edge;

(iii) a set of grid points C = fp1; : : : ; png in the original image leads to a carrier

where a point pi represents a Voronoi cell

V (pi) = fq 2 R2 : d2(pi; q) � d2(pj; q); for 1 � j � ng ;

two points pi and pk are adjacent i� pi 6= pk and V (pi)\ V (pk) is a straight
segment (of �nite or in�nite extent); all the edges of all Voronoi cells form

the Voronoi diagram or Voronoi tessellation,

(iv) an approximation of image data may lead to two-dimensional polygonal or

three-dimensional polyhedral sets; a subdivision of such a polygonal or poly-

hedral set into simplexes (which are points, edges, triangles, or tetrahedra) is
regular i� two non-identical simplexes of this subdivision are either disjoint,

or adjacent, i.e. they share either a triangular face, an edge or a vertex; the

union of all simplexes is the originally given polygonal or polyhedral set;

Fig. 2. Left: a region adjacency graph resulting from a four-valued image. Right: a

Voronoi adjacency graph de�ning an inhomogeneous image carrier.
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and a point p 2 C represents a simplex where I(p) stands for a category of

simplexes

- just to cite a few occurrences of inhomogeneous image carriers. The notions

point p, carrier C , and image I will be used for all types of approaches.

De�nition 2. An adjacency relation A on C is irre
exive (i.e. never pAp) and
symmetric (i.e. if pAq then qAp). A neighborhood relation N on C is re
exive
(i.e. always pNp, also denoted by (p; p) 2 N).

We say, p is adjacent to q i� pAq. For a symmetric relation such as A we also

write fp; qg 2 A instead of pAq. The examples above specify di�erent options

for de�ning such an adjacency relation. We say q is a neighbor of p i� qNp. In

case of the degenerated neighborhood relation f(p; p) : p 2 Cg any point is only a

neighbor of itself. Let N (p) = fq : qNpg be the neighborhood of point p, always

containing point p itself, and A(p) = fq : qApg be the adjacency set of point p,
never containing point p itself. We have:

A to N: Assume an adjacency relation A on C . Let q 2 NA(p) i� p = q

or pAq. Then NA is a symmetric neighborhood relation on C .

N to A: Assume a neighborhood relation N on C . Let fp; qg 2 AN i�

p 6= q and q 2 N (p) or p 2 N (q). Then AN is an adjacency relation on

C .

Note that AN = ; if N is the degenerated neighborhood relation. Adjacency

and neighborhood relations are not always dual approaches for introducing an

algebraic structure on C (see Fig. 3): assume that a neighborhood relation N

is not symmetric on C ; the induced adjacency relation AN induces a symmetric

neighborhood relation NAN
not equal to the asymmetric relation N . We call

NAN
the (smallest) symmetric closure of relation N .

An algebraic structure on C is crucial for de�ning image analysis procedures

such as tracing of borders. The notation [C ; N ] speci�es a base set C and a (not

necessarily symmetric) neighborhood relation de�ned on C . From now on we will

always assume that an image carrier is such a pair of a base set and a neighbor-

hood relation de�ned on this base set. Following the axiomatic approach in [36]

we will specify further constraints for characterizing image carriers throughout

this report (axioms C1 ... C5). We start with:

Axiom C1: N (p) is �nite for any point p 2 C of an image carrier

[C ; N ].

These algebraic concepts of neighborhood or adjacency relation allow to in-

troduce an algebraic de�nition of connectedness. Let AN be an adjacency relation

on C induced by a neighborhood relation N . An (algebraic) path g in M � C

(de�ned by relation AN ) is a sequence g = hp1; p2; : : : ; pni of points pi 2M with

n � 1 and fpi; pi+1g 2 AN for i = 1; 2; : : : ; n� 1. We omit AN or N in general

if the context allows.
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Fig. 3. A periodic neighborhood relation N de�ned on the in�nite orthogonal grid

shown as directed graph: if all directed edges are changed into undirected edges then

the resulting undirected graph represents the homogeneous adjacency relation AN and

the smallest symmetric closure NAN
(p) of N . Sets NAN

have cardinalities 4, 5, 6, 7 or

9.

De�nition 3. Two points p; q 2 C are (algebraically) connected with respect to
M � C and relation N i� there is a path hp1; p2; : : : ; pni (de�ned by relation
AN) which is either completely in M or completely in M = C nM , with p1 = p

and pn = q. A set M � C is (algebraically) connected with respect to N i� M

is not empty and all points in M are pairwise connected with respect to set M
and relation N .

We say that p and q are in relation �M i� they are connected with respect to

M � C . This relation �M � C � C satis�es �M = �
M
, for any set M � C . �M

is an equivalence relation on C because it is re
exive, symmetric, and transitive.

Therefore it de�nes equivalence classes �M(p) = fq : q 2 C ^ fp; qg 2 �Mg, for
a representative p 2 C and M � C . We have fp; qg 2 �M i� �M(p) = �M (q). It

is p 2 �M(p), for any p 2 C .
It follows that the equivalence classes �M(p) are connected and pairwise

disjoint subsets ofM or ofM , called (algebraic) components ofM or (algebraic)

complementary components ofM , respectively. �M(p) is the component of point

p 2 C . Note that the previous does not necessarily imply that C is connected

itself. We claim:

Axiom C2: An image carrier [C ; N ] is (algebraically) connected with

respect to relation N .

Later on we will also discuss the topological concept of connectedness based

on de�nitions of topological smallest neighborhoods. We will be interested in

characterizing those adjacencies where the de�ned algebraic concept of connect-

edness coincides with a topological concept of connectedness.
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Adjacencies de�ned for a (`basic') homogeneous image carrier have direct

impact on the design of programs for image analysis on such an image carrier.

Important topological problems include

(i) the separation problem (closely related to the problem of de�ning curves [60]

or surfaces [2]), e.g. how to de�ne frontiers of subsets M of C separating the

topologically de�ned interior of M from the topological exterior of M , and

how to turn that into eÆcient algorithms tracing these frontiers, and

(ii) the shape equivalence problem, e.g. characterize transformations of subsets

of C which do not change the topology of these subsets, e.g. for the purpose

of `shape simpli�cation' or `shape matching', and provide eÆcient algorithms

for performing these transformations.

Terms such as `interior', `frontier', `topology of a set of grid points' etc. need

to be de�ned for discussing the separation problem or the shape modi�cation

problem.

A calculation of qualitative properties or topological invariants (characteriz-

ing the topology of a subset of an image carrier) is a very desirable result in many

applications of digital image analysis. Images are typically corrupted by noise,

and an expectation of capturing exactly identical `shapes' (say, silhouettes of

`
at objects' in the two-dimensional case) is unrealistic. Geometry provides (for

example) the concept of congruent sets, corresponding to such identical shapes,

which is a quantitative approach, re
ecting features such as size or diameter.

Topological invariants are more general: congruent sets are topologically equiv-

alent (homeomorphic, see de�nition below), but congruency cannot be expected

for topologically equivalent sets.

Topology has more than 150 years of history, and it is of course of interest to

look for approaches and methods provided there, allowing to derive qualitative

properties based on images de�ned on homogeneous or inhomogeneous image

carriers. We will see that combinatorial topology is very relevant, but models of

point-set topology may be useful as well, actually leading to a combined use of

point-set and combinatorial topology models.

EXERCISES

1.1. We consider the Euclidean space En = [Rn; d2], for n � 1, characterized

by the Euclidean metric

d2(p; q) =
p
(x1 � y1)2 + : : :+ (xn � yn)2

for points p = (x1; x2; : : : ; xn) and q = (y1; y2; : : : ; yn) in R
n. Let

U"(p) = fq 2 Rn : d2(p; q) < "g
be the "-neighborhood of p 2 Rn, for " > 0. For " > 0 assume a set of "-grid

points

C " = f(i1 �
p
2 � "; i2 �

p
2 � "; : : : ; in �

p
2 � ") : (i1; i2; : : : ; in) 2Zng :
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Now de�ne that pN"q i� U"(p) \ U"(q) 6= ;, for points p; q 2 C " . What is the

cardinality of neighborhoods N"(p) in C " , for p 2 C "?

1.2. A function f : R! R is continuous at z 2 R i� f is de�ned on an open

interval containing z, f(x) tends to a limit as x tends to z, and that limit is

equal to f(z). Function f is continuous on R i� it is continuous for all z 2 R. In
[4] it is shown that

any closed curve 
 in the Euclidean plane may be circumscribed by a

square (i.e. such that any of the four sides of the square has a non-empty

intersection with the curve)

using the following property of a function f which is continuous on R: if there

are values x and y with f(x) > 0 and f(y) < 0 then there is a value z (a

zero-crossing) between x and y with f(z) = 0:

We start with one straight line l which does not intersect 
. Consider a

parallel straight line l0 such that 
 is in the stripe between l and l0. Move both

lines by parallel translation towards 
 until they intersect 
 for the �rst time.

The resulting straight lines are two lines of support of 
. Consider two additional
lines of support which are orthogonal to l. All four lines of support de�ne a

circumscribing rectangle for the given curve 
, having side lengths a(l) and b(l).

The rectangle is a square i� a(l) � b(l) = 0. Let l? be a straight line orthogonal

l

l

*

to l which does not intersect 
. We also obtain a circumscribing rectangle, with

a(l?) = b(l) and b(l?) = a(l). Now rotate straight line l until it coincides with

straight line l?. The resulting circumscribing rectangle is changing its shape

continuously, and the di�erence a(l) � b(l) is a continuous function on R with

respect to the slope of line l. This function changes its sign between l and l?, i.e.

there is a line producing the value 0, i.e. producing a circumscribing square.

Let M � E
n . Assume that the diameter of M , i.e. the upper limit of the

Euclidean distance between any two points in M , is less or equal to d. Case

n = 2: show that there exists a square with side length d which contains M .

Case n = 3: show that there is a regular (i.e. all edges of constant length)

octahedron which contains M where the distance between opposite planar faces

of the octahedron is equal to d.
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1.3. Let n � 3. A (�nite, connected) polygonal chain in the Euclidean plane

E
2 is a �nite sequence of points hp1; p2; :::; pni forming n�1 line segments pipi+1,

i = 1; 2; :::; n� 1. The polygonal chain forms a circuit if we also take the nth

line segment pnp1. The points pi are called the vertices of the chain and the

line segments are termed its edges. A simple polygon P is de�ned by a �nite,

connected polygonal chain, forming a circuit, where no point of the plane belongs

to more than two edges of the chain, and the only points of the plane that belong

to precisely two edges are the vertices of the chain; and P consists of all points

on this chain as well as of all points in the interior of this chain. Specify an

p

algorithm for deciding whether a given point p of the Euclidean plane is in P

based on a sequence of points hp1; p2; :::; pni de�ning the frontier of P .

1.4. Specify the class of all geometric transforms which map any set in the

Euclidean plane into a congruent set in this plane. A property of a set in the

Euclidean plane is an invariant with respect to congruency i� a value of this

property is not changed applying one of these transforms. Consider the following

properties of simple polygons: the contents of the polygon, the contents of the

smallest circumscribing rectangle of the polygon, and the contents of the convex

hull of the polygon. Show that these three properties are invariant with respect

to congruency.

1.5. A set M in the Euclidean plane is polygonally connected i� for any two

points p; q 2M there is a �nite, connected polygonal chain hp1; p2; :::; pni, with
p = p1 and q = qn, such that all edges of this chain are contained inM . (i) Show

that any simple polygon is polygonally connected. (ii) Consider the following

four squares inside of the large (black) square (picture on the left):

Specify a condition that either both shaded squares, or both white squares are

polygonally connected. Can you specify a condition that all shaded squares in

the upper n rows of the chessboard pattern (right) are polygonally connected as

well as all white squares in the lower m rows, for 4 � m;n � 8?
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1.6. A set M in the Euclidean plane E2 is continuously connected i� for any

two points p; q 2 M there is a continuous function f : [0; 1] ! E
2 such that

f(0) = p, f(1) = q, and f(x) 2 M for any real x in the closed interval [0; 1].

Specify a set M � E
2 which is continuously connected, but not polygonally

connected.

1.7. Consider the neighborhood relation N as de�ned in Fig. 3. Specify the

symmetric closure N� = NAN
of N by listing all elements in sets N�(p), for

p = (i; j), with respect to coordinates i and j.

1.8. Sets NAN
(p) in Fig. 3 have cardinalities 4,5,6,7 or 9, and there is an

upper Euclidean distance bound of
p
8 for grid points being in relation N . The

maximal possible cardinality would be 25 for this upper bound. In general let us

consider symmetric homogeneous neighborhood relations Nm on Z2, for m � 3

and m odd, such that (1) points being in relation Nm are in Euclidean distance

less or equal
p
(m2 � 2m + 1)=2, and (2) the resulting adjacency graph is planar

and connected. It follows that card(Nm(p)) � m2. Let fn1; : : : ; nkg be the set

of all cardinalities of sets Nm(p). We say that two neighborhood relations N
f1g
m

and N
f1g
m are identical i� they have the same sets of cardinalities of sets Nm(p).

Specify all equivalence classes of neighborhood relations Nm, for (i) m = 3 and

(ii) m = 5. For example, f5g represents the equivalence class of 4-adjacency for

m = 3, and f4; 5; 6; 7; 9g de�nes one equivalence class for m = 5.
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2 Combinatorial and Point-Set Topology

J. B. Listing was the �rst to use the word topology since 1837 in his correspon-

dence.2 In [52], page 109, he writes that

"topologische Eigenschaften (solche sind), die sich nicht auf die Quantit�at
und das Maass der Ausdehnung, sondern auf den Modus der Anordnung

und Lage beziehen." (translation: Topological properties are those which
are not related to quantity or contents, but on the mode of spatial order

and position.)

Being �rst a student and then a close friend of C. F. Gauss [7] it seems not

unlikely that his research followed the advice or example of Gauss himself. It

is interesting to note that his work remained often unnoticed. For example, the

historic review in [1] cites Listing's more unimportant �rst note [51], but not [52]

which contains the Listing band (see below) and his important contributions, e.g.

on geometric complexes, or on skeletons of a set.

6

3

1

45

2

Fig. 4. Figure 15 in [52]: Assume that we cut the shown solid at the labeled six posi-

tions. There are 720 di�erent orders of such cuts. In most cases, the resulting solid is
simply connected after three cuts. In 24 cases (start sequences 136, 145, 235, 246 and

their permutations), the third cut separates the solid into two parts where one is not

yet simply connected. The genus of this set is 3.

The term topology (replacing Leibniz's `geometria situs' or `analysis situs')

was introduced to distinguish qualitative geometry from those geometric studies

focussing on quantitative relations. For example, the (topological) genus of a

set, de�ned in [52], is the minimum number of cuts to transform this set into a

(topologically) simply connected set3; see Fig. 4. The genus is such a qualitative

property characterizing the topological degree of connectedness of a given set;

see Fig. 5 for more examples.

2 He is also well known in physiological optics (Listings's Law), see [75].
3 This will be de�ned later as a set which is topologically connected and where its

fundamental group is trivial. Informally speaking, a simply connected set is connected
and does not have any (proper) holes.
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Fig. 5. Three sets of genus 0, 1 or 2.

2.1 Curves

A planar Jordan curve 
 as de�ned by C. Jordan in 1893 is a subset of the

Euclidean plane where there exists (note: not `where we know') a continuous

function � : [a; b]! R2, with a 6= b, �(a) = �(b), where


 = f(x; y) : �(t) = (x; y) ^ a � t � bg ;

with �(s) 6= �(t), for all s; t with a � s < t < b (i.e. � is a bijection on the

open interval (a; b)), and the inverse function ��1 is continuous as well. Such

a parametric and continuity-related curve de�nition is appropriate for image

analysis situations where parametric shape descriptors are used, e.g. for smooth

approximation of frontiers. A planar Jordan curve is topologically equivalent (in

the Euclidean topology) to the unit circumference. Topological equivalence will

be speci�ed later on as `homeomorphy'.

Non-parametric curve characterizations based on topological connectedness

approaches correspond to local (neighborhood based) approaches of curve tracing

or curve detection. Digital topology is often concerned about this case. G. Can-

tor was the �rst who suggested a topological de�nition of curves [60], but which

had to be revised, and P. Urysohn [81] (also, independently, K. Menger [54]) pro-

vided a solution. An Urysohn-Menger curve is a one-dimensional topologically

connected compact set. In case of planar curves in the Euclidean plane, both

de�nitions, Jordan curves and simple Urysohn-Menger curves, specify the same

class of objects. We will discuss the topological approach towards curve de�ni-

tions in detail. Note that a Urysohn-Menger curve is more general than a Jordan

curve: it may be a simple (i.e. forming a circuit, without any self-intersection)

curve, but also a union of �nitely many arcs, each of �nite extent. The topolog-

ical branching point de�nition (see below) of Urysohn-Menger curves is also of

relevance for image analysis situations where line patterns (e.g. skeletons) need

to be processed.

Urysohn-Menger Curves: For the exact de�nition of these curves we recall

a few basic notions de�ned for sets in a Euclidean space En = [Rn; d2]: a set

M � Rn is of �nite extent i� there is a real number r > 0 such that M is

completely contained in a disk of radius r. A point p 2 Rn is a frontier point
of M � R

n i� any "-neighborhood U"(p) of p contains points of M as well as

points ofM = RnnM , for " > 0. The frontier ofM � Rn consists of all frontier



Digital Topology for Image Analysis - Part 1 11

p

q

Fig. 6. A reduction of " allows to analyze the situations at point p.

points of M . A set M � Rn is closed i� M contains all of its frontier points. A

set M � Rn is a compactum i� it is closed and of �nite extent.4

A point p 2 Rn is a point of accumulation ofM � Rn i� any "-neighborhood

U"(p) of p contains a point q 6= p, q 2M , for " > 0. A setM � Rn is topologically
connected in the Euclidean space i� for any partition of M into two disjoint

subsets A and B (i.e.M = A[B) there is at least one point in one of these two

subsets which is a point of accumulation of the other subset. Finally, a continuum
is a non-empty subset of Rn which is compact and topologically connected in

the Euclidean space.

The following de�nition of curves has been proposed and studied in [54,80,

81]. Let M � A � Rn. A point p 2 Rn is an A-frontier point of M � Rn i�

any "-neighborhood U"(p) of p contains points of M as well as points of A nM ,

for " > 0. The A-frontier of M � Rn consists of all A-frontier points of M .

A continuum M � Rn is one-dimensional at point p 2 M i� there is a value

" > 0 such that any continuum C contained in the M -frontier of U"(p)\M is a

single-elemented set C = fqg, see Fig. 6. A continuumM is one-dimensional i�
it is one-dimensional at any of its points p 2M .

De�nition 4. (P. Urysohn, 1923, K. Menger, 1932) A curve 
 � Rn is a one-
dimensional continuum.

For example, an isolated point satis�es this de�nition. It de�nes a component on

its own and does not need any further discussions. S. Mazurkiewicz [55] de�ned

local topological connectedness, and a curve is locally topologically connected.

P. S. Alexandro� proved that curves de�ned this way may also be characterized

by polygonal chains [60]:

Theorem 1. (P. S. Alexandro�, year unknown) A compactum 
 � Rn is a
curve i� for arbitrarily small " > 0 there is a mapping � of 
 onto a polygonal
chain such that d2(p; �(p)) < ", for any p 2 
.
In other words, the Hausdor� distance5 between 
 and a polygonal chain is less

than ". Note that this approximation of a curve by polygonal chains with respect

4 A more general de�nition, not just for the Euclidean topology, is: A topological space
M is compact i� every open covering of M contains a �nite open covering of M .

5 The Hausdor� distance for sets of points A, B,

d2 (A;B) = max

�
sup
p2A

inf
q2B

d2 (p; q) ; sup
p2B

inf
q2A

d2 (p; q)

�
;
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Fig. 7. Upper row: polygonal chains converging towards the diagonal of the square.

Lower row: convergence towards a straight segment having a slope of 22:5Æ.

to the Hausdor� metric (see Fig. 7) does not automatically imply that the length

of these polygonal chains converges to the length of curve 
 assuming that 
 is

a measurable curve [41].

Simple Curves and Arcs: A curve 
 has branching index m � 0 at point

p 2 
 i� for any r > 0 there is a positive real " < r such that the cardinality of

the 
-frontier of U"(p) \ 
 is less or equal to m, and for a suÆciently small real

r > 0 it follows that for any positive real " < r the cardinality of the 
-frontier

of U"(p) \ 
 is greater or equal to m. Note that the de�nition of curves allows

[60] that m may be equal to in�nity (to be precise, to countable in�nity @0).
De�nition 5. (P. Urysohn, 1923, K. Menger, 1932) A simple curve is a curve
where every point p on this curve has branching index 2. A simple arc is either
a curve where every point p on this curve has branching index 2 with the only
exception of two endpoints having branching index 1, or a simple curve with one
point on this curve dividing it into a simple arc with one endpoint only.

See Fig. 8, left, for an elementary curve which is a union of simple arcs. A

regular point has branching index 2 and is not an endpoint. A branch point has
a branching index greater or equal to 3. A singular point is either an endpoint

or a branch point.

An elementary curve [2] is the union of a �nite number of simple arcs having

by pairs at most a �nite number of points in common. It consists of a �nite

number of singular points and regular components, the latter are either simple

curves or simple arcs: every regular point p 2 
 is on a uniquely determined

subcurve 
p � 
 which is either a simple curve (the component of p in 
), or a

simple arc having one endpoint only, or a simple arc having two endpoints.

generalizes the Euclidean distance d2 between points to a metric between sets of
points.
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Fig. 8. Left: an elementary curve with Euler characteristic zero, having nine singular

points and nine regular components. Right: two di�erent partitionings of the same

curve into one-dimensional geometric complexes (both with Euler characteristic zero).

The Euler characteristic of a simple curve is de�ned (see, e.g., [2]) to be zero,

and of an elementary curve equal to the di�erence between the number of all

singular points minus the number of all regular components which contain at

least one singular point. For example, a simple arc having only one end point,

has Euler characteristic zero.

Separation Theorems: The Jordan-Veblen curve theorem of Euclidean topol-

ogy says that not only the (unit) circumference decomposes the Euclidean plane

into two disjoint sets, but also any set which is topologically equivalent (i.e.

homeomorphic) to the unit circumference:

Theorem 2. (C. Jordan, 1887, O. Veblen, 1905) Let 
 be a Jordan curve in the
Euclidean plane E2 . The complementary open set R2 n 
 consists of two disjoint
topologically connected open sets whose common frontier is 
.

This theorem was �rst stated in [31]. However, the proof in [31] is completely

wrong (it attempts to use a sequence of polygons converging towards the given

parametric planar curve), and a �rst correct proof of the Jordan curve theorem

was given by O. Veblen in 1905 [82] based on the parametric characterization

of the planar Jordan curve itself. This proof left open the question of whether

the inside and outside of such a curve is always topologically equivalent to the

inside and outside of the unit circumference in R2 (or any other circumference

of non-zero radius). The stronger Sch�on
ies-Brouwer Curve Theorem says that

Theorem 3. (A. Sch�on
ies, 1906, L. E. J. Brouwer, 1910) For any planar Jor-
dan curve 
, there is a bijective mapping � of the Euclidean plane into itself,
where � and ��1 are continuous functions, such that �(
) is the unit circum-
ference.

The proof by A. Sch�on
ies in 1906 contains some errors which were �xed in [8, 9].

Note that planar simple (Urysohn-Menger) curves are exactly the same sets as

planar Jordan curves, i.e. both theorems also apply (in E2 ) to these topologically

de�ned simple curves.

2.2 Early Work in Combinatorial Topology

As far as we know, L. Euler was the �rst mathematician able to think about poly-

hedra without limiting his studies to measurements. This step towards abstrac-

tion allowed him to build up fundamentals of topology by combinatorial studies
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Fig. 9. Three di�erent representations of the K�onigsberg (left: city at the time of Euler)

bridge situation.

of geometric objects. His consideration of the bridge situation in K�onigsberg (see

Fig. 9) is one example: would it be possible to cross all bridges just once during

a walk through this city? Today a �nite undirected graph is called Eulerian i�

there exists a path (i.e. a sequence of consecutive edges) through this graph,

starting and ending at the same vertex, and containing all edges just once. Such

a path is also called Eulerian if it exists. Undirected graphs are often repre-

sentations of geometric one-dimensional complexes. Geometric complexes have

been introduced into the mathematical literature by J. B. Listing [51, 52]; see

also the review [40] on the history of complexes. Complexes are the subject of

combinatorial (or algebraic) topology.

One-dimensional Geometric Complexes: For analyzing elementary curves


 we may partition them into one-dimensional geometric complexes C which

consist of mutually non-intersecting open arcs (i.e. obtained by deleting all end-

points from a simple arc) and their endpoints (called isolated points). Note that

any elementary curve has a �nite number of branch points having only �nite

branching indices. We obtain a �nite set C containing open arcs (also called

1-cells) and isolated points (also called 0-cells).

For a one-dimensional geometric complex C , let �0 be the number of all 0-

cells in C , and �1 be the number of all 1-cells of C which contain at least one

0-cell. The di�erence � = �0 � �1 is the Euler characteristic of the given one-

dimensional geometric complex [2]. It follows that this number is equal to the

Euler characteristic of the (original) elementary curve, for any one-dimensional

geometric complex which is a partition of the same elementary curve (see Fig. 8).

Finite undirected graphs are an adequate representation of one-dimensional

geometric complexes. See Fig. 10 for an example, where we have �0 = 4 vertices,

�1 = 6 edges, and � = �2. A simple arc with only one endpoint would be
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Fig. 10. Figures 26-28 in [52]: the elementary curve in the three-dimensional Euclidean

space on the left is topologically equivalent to both graph representations.

represented by a circuit in such a �nite undirected graph.

Let �0 be the number of components of a complex. The connectivity �1 of a

one-dimensional geometric complex is de�ned as follows:

�1 = ��0 + �0 � �1 ;

and it is equal to the number of inner cycles (i.e. sets of regular components

whose union is a simple curve) of the complex. Figure 11 shows an example with

four 0-cells, six 1-cells, two components, and four inner cycles.

Two-dimensionalGeometricComplexes: Two-dimensional geometric com-
plexes [52] contain a �nite number of subsets of E2 which may be faces (of �nite

extent), curves, arcs (of �nite extent), or isolated points (e.g. endpoints of arcs).

The complement of the union of all of these sets is the exterior of in�nite extent.
A two-dimensional geometric complex is topologically equivalent to surfaces in

E
3 . For example, a single face may be represented by a simple polygonal area,

and a two-dimensional complex by faces, edges and vertices of a simple polyhe-
dron (which is topologically equivalent to the surface of a sphere), where one face

of the polyhedron corresponds to the exterior of in�nite extent of the originally

given two-dimensional complex.

L. Euler studied convex polyhedra (i.e. simple polyhedra where for any two

points in such a polyhedron also the line segment having these two points as

endpoints is contained in the polyhedron) and proved (in the second paper in

[18]) the formula

�0 � �1 + �2 = 2 ; (1)

Fig. 11. Example of a one-dimensional geometric complex with four inner cycles.
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Fig. 12. Two topologically equivalent rectangular gratings formed by a �nite number

of segments across a rectangle, parallel to its sides.

where �0 denotes the number of vertices, �1 the number of edges, and �2 the

number of faces.6

Example 1. (Newman 1939) Two-dimensional geometric complexes in the form

of (subsets of) rectangular gratings, see Fig. 12 (it is �2 = 37 also counting the

face of in�nite extent), are considered in [58]. These complexes de�ne a parti-

tion of a given rectangle into disjoint sets of vertices, edges without endpoints,

and open (in the Euclidean topology) rectangles. The grating indicates that the

speci�c geometric size of the cells is unimportant for topological studies of these

complexes in the Euclidean plane.

Two-dimensional geometric complexes are used for modelling a partition of

a surface of a three-dimensional set (see part 2 of this report).

Three-dimensional Geometric Complexes: A. Cauchy [10] generalized in

1813 the Descartes-Euler polyhedron theorem (1) by introducing intercellular

faces into the given simple polyhedron which replaces 2 by D + 1,

�0 � �1 + �2 = D + 1 (2)

where D is the number of polyhedral cells, see Fig. 13, left. L. Euler and

A. Cauchy considered convex polyhedra only.

A.-J. Lhuilier [50] suggested a generalization allowing `tunnels' and `bubbles'.

He claimed that

�0 � �1 + �2 = 2(b� t+ 1) + p (3)

where b denotes the number of `bubbles' within a given simple polyhedron, t

denotes the number of `tunnels', and p is the number of polygons (`exits of

tunnels') within faces of the given simple polyhedron. However, his (simplifying)

induction about the number of `tunnels' does not cover the full range of possible

topological complexity. For example, Fig. 16 shows a simple polyhedron and

illustrates the problem of de�ning a `tunnel'.

Three-dimensional geometric complexes are used for modelling a partition of

a three-dimensional set (see part 2 of this report).

6 This formula appeared already in an earlier, but unpublished fragment by R. Des-
cartes, see [1] where it is called the Descartes-Euler polyhedron theorem.
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Fig. 13. Left: a cube partitioned into eight subcubes has �0 = 27 vertices, �1 = 54
edges, �2 = 36 faces and D = 8 subpolyhedra. Right: a cube with b = 3 `bubbles' (all

of the shape of a cube), t = 2 `tunnels', p = 4 polygons within the original cube's faces,

and it holds �0 = 48, �1 = 72, and �2 = 32.

Euclidean Complexes: Euclidean complexes are a generalization of geometric

complexes [66], having convex sets as its elements. A set C � En is convex i� for

any pair of points a; b 2 C we have that the straight segment ab is completely

contained in C.

The notion of dimension played an important role in the examples before.

The dimension of a set allows to separate isolated points from straight segments,

or curves from faces. Later on we will provide a topological de�nition of the di-

mension dim(M ) of a setM . In Euclidean space, the dimension of a set coincides

with the maximumnumber of linearly independent directional vectors contained

in this set.

Let C � En be a convex set, and let P be a hyperplane (i.e. any m-

dimensional subspace, m < n) in En . If dim(P \ C) = n � 1 then P \ C
is an (n � 1)-side of C, which is also a convex set. The intersection of �nitely

many (n � 1)-sides of an n-dimensional convex set C is, if not empty, a proper
side of C. If a proper side has dimension m it is also called an m-side of C. The

0-sides are the vertices of C. The set C itself is an improper side of itself, i.e.

also a side of C. It follows that every (n � 2)-side of an n-dimensional convex

set C is a side of exactly two (n� 1)-sides of C. A convex cell is a convex set of

�nite extent.

De�nition 6. An Euclidean complex C is de�ned to be a nonempty, at most
enumerable family of convex cells of a Euclidean space En , satisfying the follow-
ing axioms:

Axiom E1: If p 2 C and q is a side of p then q 2 C .
Axiom E2: The intersection of two cells of C is either empty or a joint side of
both cells.

Axiom E3: Each point in a cell of C has an "-neighborhood which has points in
only a �nite number of cells of C .

See Fig. 14 for an illustration of this de�nition. Di�erent cells are not assumed to

be disjoint; however, this is just a formal aspect and could be resolved if desired.

A Euclidean complex is simplicial if all of its cells are simplexes (i.e. points, edges,

triangles, or tetrahedra in case of E3 ). Rinow introduced Euclidean complexes for

the discussion of polyhedral complexes (analogous to [64]), and they are called
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Fig. 14. Rinow [66]: Both sketched sets, consisting of in�nitely many vertices and

edges, are not Euclidean complexes. Axioms E1 and E2 are satis�ed but E3 is not.

The set on the right would satisfy E3 if the limit edge (on the left) and its vertices are
omitted.

convex complexes in [22]. Note that the union of all cells of an Euclidean complex

needs not to be topologically connected with respect to the Euclidean topology.

A subset of an Euclidean complex C is not necessarily an Euclidean complex

again.

Two results from [66]: Each point of the Euclidean space En is contained in

only a �nite number of cells of such an Euclidean complex C . Each cell of an

Euclidean complex C is a side of �nitely many cells of C .

Following [2] we de�ne a triangulation C as a �nite family of triangles (i.e.

the union of the interior of a triangle and its frontier), line segments (i.e. line seg-

ments with endpoints) and individual points in a Euclidean space En , satisfying

axioms E1 and E2.

De�nition 7. A polyhedron is the union of all sets in a triangulation C .

See Fig. 15 for three examples of triangulations. The triangulation on the right

allows the construction of surfaces by identi�cation of vertices: identify points

P5, P8, P11 and P14 (all four corners of the large square) as being just one point

(say, by moving all four corners into one position on top of the plane), where

as a result the directed side from P5 to P14 is identi�ed with (`clued to') the

directed side from P8 to P11, and the directed side from P5 to P8 is identi�ed

with the directed side from P14 to P11:

P
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Fig. 15. Figures 19, 22 and 29 in [2]: Example of a triangulation in the plane (left),
a polyhedron homeomorphic to the surface of a torus (middle), and triangulation of a

rectangle (right).
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(i) then proceed with identifying P6 and P13, then P7 with P12, then P9 with

P16, and �nally P10 with P15; all the remaining vertices (i.e. 1, 2, 3, 4, 17,

18 and 19) remain separate; the resulting triangulation is homeomorphic to

the surface of a torus; or

(ii) proceed with identifying P6 and P12, then P7 with P13, then P9 with P16,

and �nally P10 with P15; all the remaining vertices (i.e. 1, 2, 3, 4, 17, 18

and 19) remain separate; the resulting triangulation is homeomorphic to the

surface of a Klein bottle.

An identi�cation of vertices f1; 2; 3; 4; 17; 18; 19g,f5; 11g, f6; 12g, f7; 13g, f8; 14g,
f9; 15g, and f10; 16g de�nes a triangulation of the projective plane [2].

It follows from De�nition 7 that any polyhedron is a compactum, i.e. a closed

subset of Rn of �nite extent. A simple polygon (as de�ned in Exercise 1.3) is

an example of a union of a one-dimensional triangulation, i.e. also a polyhedron

following this de�nition.

The maximum dimension of elements in a triangulation C is the dimension
of the triangulation. A two-dimensional triangulation C is pure i� every point

or line segment in C precedes some triangle in C with respect to the side-of

relation. A simple polyhedron is an example of a union of a pure two-dimensional

triangulation.

A chain of sets hM1;M2; : : : ;Mni is a �nite sequence of sets such that Mi \
Mi+1 6= ;, for i = 1; : : : ; n � 1. Such a chain connects set M1 with set Mn. A

polygonal chain is a chain of line segments. A pure two-dimensional triangulation

C is strongly connected i� every two triangles T1 and T2 in C can be connected

by a chain of triangles, where all these triangles are in C . Simple polyhedra are

de�ned by strongly connected triangulations. In image analysis we are interested

in analyzing simple polygons and simple polyhedra, and this may be done via

partitionings into triangulations.

Abstract Complexes: Studies on collections of polyhedral cells stimulated a

development of a general theory of abstract complexes. A poset is a partially or-
dered set. We recall that a partial order is re
exive, transitive and anti-symmetric

(i.e. if p � q and q � p then p = q).

Let C be an arbitrary set of points, where a non-negative number dim(p) is

assigned for each p 2 C . The history of the following de�nition, which goes back

on axiomatic de�nitions of geometric complexes in [74] and topological spaces

of abstract complexes in [77], has been discussed in [40].

De�nition 8. An abstract complex [C ;�; dim] satis�es two axioms:
Axiom A1: � is a partial order on C and

Axiom A2: if p � q and p 6= q then dim(p) < dim(q).

A de�nition identical by contents may be found in [2] (page 125), and both

volumes [2,3] provide a broad coverage of de�nitions and results on abstract

complexes. [66] contains a more recent but shorter discussion of abstract com-

plexes - just to cite a few related texts in combinatorial topology. The elements



20 Reinhard Klette

Fig. 16. Figures 59 and 60 in [52]: a three-dimensional complex (left) and its linear
skeleton.

in C are named cells of the complex. If dim(p) = n then n is the dimension of p,

and p is called an n-cell. 0-cells are named vertices. An n-dimensional complex
[C ;�; dim] is characterized by dim(p) � n, for all p 2 C , and there is at least one
p 2 C with dim(p) = n. Note that studies of abstract complexes may proceed

without interpreting cells by geometric objects such as shown in Fig. 16: this �g-

ure shows one (geometric) three-dimensional complex with 88 vertices (0-cells),

132 edges (1-cells), 36 faces (2-cells) and 2 volumes (3-cells, where one volume

is a simple polyhedron, and the other one is its exterior of in�nite extent). The

linear skeleton of a set M � En is de�ned by continuous contractions on points

or lines.7 For example, the linear skeleton of a topologically simply connected

set is a point (and not a set de�ned by local maxima of a distance transform

[61], or a set [28] de�ned by connectivity-preserving thinning and further con-

straints) and that of a torus is a simple closed curve. Figure 16 may be suÆcient

to indicate the potential topological complexity of abstract complexes.

Let [C ;�; dim] be an abstract complex. If p � q and p 6= q then we say that

p is a proper side of q. If dim(p) = m then p is an m-side of q.

Two cells are incident i� p � q or q � p. This incidence relation is re
exive

and symmetric, and thus a symmetric neighborhood relation N�. Let (p; q) = 1

i� p and q are incident. This notation has been used in combinatorial formulas

on abstract complexes, e.g. in generalizations of the Descartes-Euler polyhedron

theorem, starting with [74].

Examples or models of abstract complexes are simply called complexes. Eu-
clidean complexes are models of abstract complexes, and the grating discussed

in Example 1 is another example (of a �nite two-dimensional complex). In image

analysis, we prefer the homogeneous orthogonal planar grid as a homogeneous

image carrier, and we discuss two models of abstract complexes which are nor-

mally used as image carrier.

7 Listing introduced the linear skeleton under the name of cyclomatic diagram (in

German: cyclomatisches Diagramm) of M , see page 116 in [52]. Listing's work on

linear skeletons is, for example, brie
y discussed in [76]. Due to the fact that the
notion `skeleton' became very popular in image analysis in the context of distance

transforms, thinning operations etc. it might be useful to return to Listing's origi-

nal notion of a cyclomatic diagram for denoting the topological concept of a linear
skeleton.
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Fig. 17. Two-dimensional Euclidean complex of the homogeneous orthogonal grid.

Example 2. We may identify 2-cells with open grid squares of the homogeneous

orthogonal grid, 1-cells with grid edges (without their endpoints), and 0-cells

with grid points, see Fig. 17. This de�nes a partition of R2 into pairwise disjoint

sets. Because we are interested in topological characterizations of complexes,

we may also identify 2-cells with closed grid squares, 1-cells with closed grid

edges (i.e. with both end points), and 0-cells with grid points. This is not a

partition into pairwise disjoint sets anymore, but de�nes a Euclidean complex,

and it is a topologically equivalent model of the same abstract complex. We

decide for the Euclidean complex, and let CE2 be the set of all these (closed

in the Euclidean topology) 2-, 1- and 0-cells of the homogeneous orthogonal

grid in the Euclidean plane. For p; q 2 CE2 let p �E2 q i� p � q. Let N�
E2 be

the symmetric neighborhood relation de�ned by cell incidence. [CE2 ;�E2; dim]

is a two-dimensional complex, and [CE2 ; N
�
E2] satis�es axioms C1 and C2 as

formulated in the Introduction.8

0 1 2 3

0

1

0-cell

2-cell

Fig. 18. Two-dimensional graph complex of the homogeneous orthogonal grid.

As an alternative model of a two-dimensional abstract complex, we may

identify 2-cells with a grid point of the homogeneous orthogonal grid, 1-cells

with an undirected subgraph consisting of two grid points and one edge forming

a grid edge, and 0-cells with an undirected subgraph consisting of four grid points

and four edges forming a grid square, see Fig. 18. Let CG2 be the set of all of

8 The three-dimensional case (3-cells are open or closed grid cubes in the Euclidean

topology of E2 ) is discussed in [26, 27]. Generalizations to orthogonal grids in arbi-

trary dimensions, or applications of cell complex models for image analysis are the

subject in [16, 34, 35]. The application of regular, but not necessarily homogeneous
cell complexes for image analysis is proposed in [45].
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these cells. For p; q 2 CG2 let p �G2 q i� q is a subgraph of p. For example, a grid

point x is a subgraph of an undirected edge e = fx; yg, i.e. e �G2 x. Let N
�
G2 be

the symmetric neighborhood relation de�ned by cell incidence. It follows that

[CG2 ;�G2; dim] is a two-dimensional complex, and [CG2 ; N
�
G2] satis�es axioms

C1 and C2 as formulated in the introduction.9 ut

Theorem 4. Complexes [CG2 ;�G2; dim] and [CE2 ;�E2; dim] are isomorphic.

Proof. Let � be a mapping of CG2 into CE2 such that grid point (i; j) is mapped

onto a grid square having (i; j) as its lower-left corner, a graph connecting grid

points (i; j) and (i; j + 1) is mapped onto a grid edge connecting grid points

(i; j + 1) and (i+ 1; j + 1), a graph connecting grid points (i; j) and (i+ 1; j) is

mapped onto a grid edge connecting grid points (i+ 1; j) and (i+ 1; j + 1), and

a graph consisting of four grid points (i; j); (i+ 1; j); (i; j + 1); (i+ 1; j + 1) and

connecting grid edges is mapped onto the single grid point (i + 1; j + 1). Then

it holds that � is bijective from CG2 onto CE2 such that for any p; q 2 CG2 we

have p �G2 q i� �(p) �C2 �(q). ut

This isomorphismshows a general duality of grid-point related (graph-theore-

tical) concepts and of cellular concepts, and this isomorphism generalizes to

arbitrary dimensions, see [34,35], or page 48 in [88] for the three-dimensional

case.

Models of abstract complexes may be homogeneous geometric complexes such

as [CG2 ;�G2; dim] or [CE2 ;�E2; dim], or inhomogeneous image carriers (e.g. the

cells of the adjacency graphs shown in Fig. 2).

2.3 Point-set Topology

In the last third of the 19th century, H. Poincar�e [63] and others (see [59])

established topology as a branch of modern mathematics. Point-set topology
studies topological spaces. The base set C used to be a Euclidean space in early

topological publications (e.g. in [52]), but modern topology considers (abstract)

sets of points.

Topological Spaces: A system of neighborhoods (a topology) is the preferred
way for de�ning topological connectedness between sets of points in C , and it is

a family of subsets of points satisfying just three axioms:

De�nition 9. [C ;Z] is a topological space i� Z is a family of subsets of set C
satisfying

Axiom T1: f;; Cg � Z,
Axiom T2: Z is closed under arbitrary unions and

Axiom T3: Z is closed under �nite intersections.

9 For generalizations to orthogonal grids in arbitrary dimensions see [34, 35].
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Fig. 19. Illustration of basic topological notations as used in this report.

The family Z of sets is a topology on C . If the context allows we also say that

C is a (topological) space. The elements of Z are open sets. A subset M � C

is closed i� the complementary subset M = C nM is open. It follows that the

family of closed subsets of C is closed under �nite unions and under arbitrary

intersections.

A topological space C is called an Aleksandrov space i� the intersection of

any number of open subsets of C is open. A �nite space C is always Aleksandrov.

The discrete topology is given if every subset of C is open.

ForM � C , the interior MÆ ofM in C is the union of all subsets ofM which

are open in C . The closure M� ofM in C is the intersection of all closed subsets

of C which contain M . The frontier @M of M in C is M� \ (C nM )�. See the

graphical sketch of these three important topological notations in Fig. 19.

Example 3. Assume that d is a metric on set C , such as the Euclidean metric d2
on Rn, n � 1. The pair [C ; d] is called a metric space. Any metric space de�nes

a topology as follows, called the topology induced by the metric space:

for M � C and p 2 C , let d(p;M ) be the greatest lower bound of all

nonnegative numbers d(p; q), with q 2 M . The value d(p;M ) de�nes

the distance between point p and set M . The set of all points p 2 C

with d(p;M ) = 0 de�nes the closure of set M , and a set is closed i� it

coincides with its closure. A set N is open i� there is a closed set M

such that N = C nM .

The Euclidean metric d2 induces the Euclidean topology on Rn, n � 1. For

example, in case n = 1 we have that the closure of an open interval (x; y) =
fz 2 R : x < z < yg, x; y 2 R and x < y, is equal to the closed interval
[x; y] = fz 2 R : x � z � yg. ut
De�nition 10. A collection of open sets Z0 � Z is called a basis of the space
[C ;Z] i� any nonempty open set in Z is an arbitrary union of sets in Z0.

A basis uniquely speci�es the topology Z on C . For example, the set of all open

intervals on R is a basis of the Euclidean topology E1 . A topological space has

a countable basis i� it has a basis of cardinality less or equal @0, where @0 is

the cardinality of the set N of natural numbers. For example, the set of all open

intervals with rational endpoints is a countable basis of E1 . A topology of an

image carrier may be de�ned via a speci�cation of a locally �nite basis.
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Example 4. We recall that a poset is a partially ordered set. The Aleksandrov10

topology of a poset [C ;�] is de�ned as follows:

a set M � C is open i� p 2M and p � q imply q 2M , for all p; q 2 C .
For example, [ffig : i 2Zg[ ffi; i+ 1g : i 2Zg;�] is a poset, and a basis of the

Aleksandrov topology are the sets ffig; fi; i+ 1g; fi; i� 1gg and ffi; i+ 1gg, for
i 2Z[44]. For an early example of an Aleksandrov topology, speci�ed in 1935,

see exercise 40, page 26, in [1]11. ut
Let C be a triangulation of a surface. For two sets T1; T2 2 C let T1 � T2 i�

T1 is a side of T2 or T1 = T2. This de�nes a partial ordering on C . Consider the

Aleksandrov topology of a poset on C . A space C was de�ned to be topologically

connected i� it is not the union of two nonempty disjoint closed subcomplexes.

In [2] it is shown that a triangulation C is connected i� for any pair of vertices

in C there is a chain of simple arcs connecting this pair of vertices in C .

For topologies on abstract complexes see, for example, the de�nition and

study of open and closed subcomplexes in [2, 64, 77]:

De�nition 11. (A. W. Tucker 1933) A subset M � C of an abstract complex
K is open i� p 2M and p � q then q 2 M , for all p; q 2 C .
As a consequence, a subset M of an abstract complex K is closed i� p 2M and

q � p then q 2 M , for all p; q 2 C . Note that � is a partial ordering, i.e. the

de�nition of an Aleksandrov topology of a poset [C ;�] is a generalization of the

(historically earlier) Tucker topology of an abstract complex.

Example 5. Consider the two-dimensional Euclidean complex [CE2 ;�E2; dim]

or graph complex [CG2 ;�G2; dim] of the homogeneous orthogonal grid. The fol-

lowing is formulated for the Euclidean complex, and the graph complex may be

discussed analogously.

Let p be a 2-cell. Then fpg is open in the Tucker or Aleksandrov topology:

there is no q 2 CE2 with p 6= q and p �E2 q. Let p be a 1-cell. Then there are

10 Di�erent transcriptions of his name: `P. S. Alexandro�' [1] in German, and
`P. S. Aleksandrov' [2] in English.

11 \Wir unterziehen die Ebene einer Einteilung in kongruente achsenparallele Quadrate

(etwa von der Seitenl�ange 1). Die Elemente der Menge R seien: a) die Quadrate
dieser Einteilung, b) diejenigen geradlinigen Strecken, die als Seiten dieser Quadrate

auftreten, c) die Punkte, die als Eckpunkte dieser Quadrate auftreten. Es sei p ein

Element von R. Ist p ein Quadrat, so soll die abgeschlossene H�ulle p der aus dem
einzigen Element p bestehenden Teilmenge von R aus neun Elementen bestehen: aus

p selbst und as den vier Seiten und den vier Eckpunkten des Quadrates p; ist p eine

Strecke, so bestehe p aus drei Elementen: aus p selbst und den beiden Endpunkten
von p; ist schlie�lich p ein Eckpunkt, so sei p = p gesetzt. Des weiteren de�nieren

wir f�ur eine beliebige Teilmenge M = (p1; p2; :::) von R

M =
X

p
i
:
00



Digital Topology for Image Analysis - Part 1 25

Fig. 20. The smallest neighborhoods of single cells in the two-dimensional Euclidean

complex of the homogeneous orthogonal grid.

exactly two 2-cells q1 and q2 with p �E2 q1 and p �E2 q2, see Fig. 20, i.e. the set

fp; q1; q2g is open. Figure 20 also illustrates (on the right) the case when we start
with a 0-cell p. Every cell de�nes its smallest neighborhood. The application of

topological spaces of homogeneous Euclidean complexes for image analysis has

been proposed in [34], and for more general situations in [45].

Figure 21 illustrates the smallest neighborhoods in the graph complex: a grid

point (2-cell); a subgraph de�ned by two grid points and one grid edge (1-cell)

and both of its grid points (2-cells); and a subgraph of a 0-cell which is a proper

side of four 1-cells and of four 2-cells. ut

De�nition 12. (A. W. Tucker 1933) Let [C ;�; dim] be an abstract complex.
For p 2 C let U (p) = fq : q 2 C ^ p � qg be the smallest neighborhood of p in
this abstract complex.

This smallest neighborhood may be understood as being the "-neighborhood

with " = 1, where a distance is de�ned with respect to the partial ordering �.
Because � is re
exive we have that U is a neighborhood relation as de�ned in

De�nition 2, which induces an adjacency relation AU on C . An abstract complex

is a potential option for modelling an image carrier [C ; U ].

Topological Connectedness, Neighborhoods, and Dimensions: Let M

be a subset of a topological space C . The family fA \M : A 2 Zg of subsets of
M is the inherited topology on M , and M is a topological subspace of C .

De�nition 13. A topological space (or subspace) is said to be topologically con-

nected i� it is not the union of two disjoint nonempty closed sets.

Topological components of a subset M of a topological space are maximum con-

nected subsets of M . In Axiom C2 we have claimed that an image carrier is

(algebraically) connected. With respect to topological concepts we claim:

Fig. 21. The smallest neighborhoods of single cells in the two-dimensional graph com-

plex of the homogeneous orthogonal grid.
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Fig. 22. Diagrams for relations U (directed edges on the left) and AU in the two-

dimensional homogeneous orthogonal Euclidean complex de�ned in Example 2.

Axiom C3: A topological image carrier [C ; N ] allows the introduction

of a topology on C such that algebraic connectedness coincides

with topological connectedness;

i.e. any M � C should be connected w.r.t. relation N i� it is connected in the

corresponding topology. This axiom formalizes our claim that an image carrier

supports topological concepts. [CE2 ; N
�
E2] and [CG2 ; N

�
G2] satisfy axiom C3.

De�nition 14. A topological neighborhood of a point p in a topological space

C is any set containing an open subset of C which contains p.

For example, a closed interval [x; y] is a topological neighborhood of z 2 [x; y]

in the Euclidean topology R i� z 6= x and z 6= y. Aleksandrov spaces allow to

de�ne the intersection of all topological neighborhoods of a point p, which is the

smallest topological neighborhood U (p) of p. It follows that U (p) is an open set.

As in the case of algebraic neighborhoods and adjacencies we de�ne:

De�nition 15. Two points p and q of an Aleksandrov space C are topologically

adjacent i� p 6= q, and p 2 U (q) or q 2 U (p).
Adjacency in the two-dimensional homogeneous orthogonal complexes in Exam-

ple 2 coincides with incidence, see Fig. 22. The discrete topology is Aleksandrov

with U (p) = fpg, for all points, and does not support any adjacency. The small-

est topological neighborhood of a 0-cell in a two-dimensional complex, endowed

with the Tucker topology, is the set of all 1- and 2-cells incident with the given

0-cell.12

A topological space C is a Kolmogorov space (see [5]), also called a T0-space,
i� for any two distinct points of C , at least one of them has a topological neigh-

borhood not containing the other point.13 The discrete topology is a T0-space.

12 Such a smallest topological neighborhood has been earlier called a triangle star in

[83], and the 0-cell is the center of the triangle star, resembling a focus on simplicial
complexes.

13 For the sake of completeness, let us also mention that a topological space C is a

T1-space i� for any two distinct points of C , each of the points has a topological
neighborhood not containing the other point. This implies that N(p) = fpg, and

such a space would not be of value for de�ning topological adjacencies. A topological

space C is a T2-space or Hausdor� space i� any two distinct points of C have disjoint
topological neighborhoods. For example, the Euclidean plane is a Hausdor� space.
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The important notion of the dimension dim(M ) of a subset M of an Aleksan-

drov space [C ;Z] may be answered using the given (see De�nition 15) adjacency

relation A. For p 2 C let N (p) = fq 2 C : p = q _ pAqg. The relation N is the

smallest symmetric extension of relation U .

De�nition 16. Let M be a subset of an Aleksandrov space [C ;Z]. The dimen-

sion dim(M ) of set M is de�ned as follows:

(i) dim(M ) = �1, if M = ;;
(ii) dim(M ) = 0, if M is a non-empty topologically totally disconnected set

(i.e. no pair of adjacent points in M),
(iii) dim(M ) = 1, if card((N (p) n fpg) \M ) � 2 for all p 2M , and there is at

least one p 2M with card((N (p) n fpg) \M ) > 0, and
(iv) dim(M ) = max

p2M
dim((N (p) n fpg) \M ) + 1 otherwise.

The dimension of a set is a topological invariant. The relevance of this de�nition

for image analysis has already been discussed in [57]. Axiom C3 ensures that

the dimension of M at a point p 2 M may be speci�ed by considering the

symmetric closure of its (algebraic) neighborhood, because this coincides then

with neighborhoods N as used in De�nition 16.

2.4 Topological Equivalence and Invariants

Now we arrive at the central notion of topology which is topological equivalence

or homeomorphy.This will be the main tool for discussing topological properties

of sets.

Homeomorphy, Isotopy and Homotopy: Let � be a mapping of a topolog-

ical space C 1 into a topological space C 2 . The mapping � is continuous i� the

set ��1(M ) = fp 2 C 1 : �(p) 2 Mg is open in C 1 , for any open subset M of

C2 .

De�nition 17. (H. Poincar�e, 1895) A mapping � of a topological space C 1 in
a topological space C 2 is a homeomorphism or a topological mapping i� it is
one-one (i.e. an injection), onto C 2 (i.e. even a bijection), continuous, and ��1

is continuous as well.

Two topological spaces are homeomorphic i� one of them can be mapped by a

homeomorphism onto the other. Two subsets M and N of a topological space

C are considered to be identical with respect to the topological point of view

(topologically equivalent) i� they are homeomorphic, i.e. if there exists a home-

omorphism from M onto N .

The Euclidean plane R2 is homeomorphic to an open halfsphere. The gnomo-

nic azimuthal projection (perspective projection from the center onto a plane

tangential to the surface) of the open halfsphere de�nes a homeomorphism onto

the Euclidean plane, see left of Fig. 23. A triangular line is homeomorphic to
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p

q

p

q

Fig. 23. Left: gnomonic azimuthal projection of an open halfsphere (point p) onto the

Euclidean plane (point q). Right: projection of a triangle onto a circumference.

a circumference, see right of Fig. 23. Homeomorphisms are one way to prove

topological equivalence between subsets of topological spaces. The surfaces of

a sphere, a cube, and a cylinder are pairwise homeomorphic, but they are not

homeomorphic to the surface of a torus. Non-homeomorphy may be shown by

comparing topological invariants (see De�nition 18): if two sets possess di�erent

instances of a topological invariant (for example, di�erent genus values) then

they cannot be homeomorphic.

An isomorphism between two posets de�nes a homeomorphism between the

Aleksandrov topologies of these posets. From Theorem 4 it follows:

Corollary 1. The cell and the graph complex of the homogeneous two-dimensio-
nal grid are topologically equivalent.

But note that the graph complex is more than just the set of grid points.

Theorem 4 may be generalized to arbitrary dimensions, see [34, 35], and this

corollary as well. The corollary points out that we may either prefer the cellular

approach (e.g. in [46]) or the graph-theoretical approach (e.g. in [88]) in image

analysis, but both are topologically identical, and algorithmic concepts may be

`translated' accordingly from one model to the other.

Isotopy denotes the identity of positions of two sets M;N within one topo-

logical space C . Isotopic sets not only have to be homeomorphic, there has to

be a homeomorphism � with �(C ) = C such that �(M ) = N and �(N ) = M .

For example, if we have 05 (as a non-connected elementary curve) and 70 (also

as an elementary curve) in the plane then both sets are isotopic, but the set 92

is not isotopic to these two sets because 9 (as an elementary curve) is already

not homeomorphic to simple curve 0. The two bands on the left of Fig. 24 are

homeomorphic subsets of the Euclidean space E3 , but they are not isotopic in

E3 . The two curves g1 (a meridian) and g2 (a parallel of latitude) on the surface

of a torus (right of Fig. 24) are isotopic in the surface of the torus. Curves g1
and g3 are isotopic in E

3, but not in the surface of the torus.

Any two simple Urysohn-Menger (or Jordan) curves in E2 are isotopic (see

Sch�on
ies-Brouwer theorem above), and this is a stronger result than the Jordan-

Veblen theorem.

We conclude this subsection with a brief introduction into the important

notion of the fundamental group of a subset M of a topological space [C ;Z],
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which allows a precise de�nition of simply connected sets. Let � : [0; 1] ! M

be a continuous function with �(0) = p and �(1) = q. This function describes

a topological path 
 from p to q in M . Two topological paths 
1, 
2 in M with

identical endpoints are called homotopic i� 
1 may be continuously transformed

into 
2 within M . To be precise, let 
1, 
2 be two paths de�ned by functions

�1 : [0; 1] ! M and �2 : [0; 1] ! M . A continuous transformation of 
1 into


2 means that there exists a continuous function  : [0; 1]� [0; 1] ! M with

 (x; 0) = �1(x) and  (x; 1) = �2(x), for any real x in [0; 1]. If 
2 is a single

point then we speak about a contraction of 
1 in M into a single point.
Homotopy de�nes an equivalence relation on the class of all paths in set M .

Figure 25 shows three curves: 
1 and 
2 are homotopic, but 
3 is not homotopic

to these two curves.

Now consider two paths 
1, 
2 in M which both start and end at the same

point p0 2 M . The product 
1 
 
2 of these two paths is their concatenation,

i.e. both functions '1 : [0; 1]! M and '2 : [0; 1]! M for these two paths are

combined into one function

' (x) =

�
'1 (2x) ; if 0 � x < :5

'2 (2x� 1) ; if :5 � x � 1 :

Let [
] be the class of all paths homotopic in M to a path 
 inM (with respect

to point p0). Let �(M ) be the set of all of these classes (with respect to p0).

The set of all homotopy classes �(M ) and the operation 
 de�ne a (in general

non-abelian, i.e. non-commutative) algebraic group: zero-homotopic are all paths
which are contractable inM into a single point, i.e. into point p0 2 M which was

chosen for de�ning the homotopy classes. The set of all of these paths de�nes

the unit � in �(M ), i.e. for any class � 2 �(M ) we have � 
 � = � 
 � = �.

Furthermore, for a curve 
 de�ning a class [
] 2 �(M ) and de�ned by a function

� : [0; 1] ! M , let  (x) = �(1 � x), for any real x in [0; 1]. This function  

de�nes a curve 
�1 such that [
] 
 [
�1] = [
�1]
 [
] = �. The operation 
 is

also associative on �(M ).

Example 6. The fundamental group of a circumference is the free cyclic group:
consider a curve which encircles the circumference n � 0 times in clockwise

orientation. This curve de�nes a homotopy class �n. If the curve encircles the

circumference m � 0 times in counter-clockwise orientation than it de�nes a

homotopy class ��m. The class �0 is the unit �. ut

g1

g
2

g3

Fig. 24. Left: two homeomorphic bands, the one below is twisted twice. Right: three
curves on a torus.
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γ
γ γ1

2
3

p

q

M

Fig. 25. Three paths in a set M .

If points p0 and p1 may be connected by a path inM then both fundamental

groups, de�ned with respect to p0 or with respect to p1, are isomorphic. It

follows that for any topologically connected set M the fundamental group is

uniquely de�ned, independent upon point p0. For example, the surface of a torus

has a fundamental group which contains the unit, classes of meridians, classes

of parallels, and classes de�ned by products of these classes. The fundamental

group is the most important topological invariant in homotopy theory.

Theorem 5. (M. Dehn, P. Heegard, 1907) Two connected, closed sets in the
Euclidean topology of the plane are homeomorphic i� they have isomorphic fun-
damental groups.

This theorem [14] is based on work by C. Jordan (1866, introduction of

homotopy) and by H. Poincar�e (1892, de�nition of the fundamental group).

A subsetM of a topological space is topologically simply connected i� �(M ) =

f�g. In other words, any simple curve in M is contractible in M into a single

point.

Topological Invariants: In the remainder of this subsection we illustrate

topological concepts using solely the Euclidean space for examples. Starting with

Section 3 we will also have topologies related to (`popular') image carriers at

hand, and the question arises how topological concepts apply to these topologies

on image carriers. The provided de�nition of topological equivalence may also

be applied to these topologies (to some extent: the constraint of asking for a

one-one mapping is not appropriate anymore for �nite sets of discrete points).

De�nition 18. (H. Poincar�e, 1895) A property of a subset M of a topological
space C is a topological invariant i� the same property is also valid for set �(M ),
for any homeomorphism �.

For example, being the empty set is a topological invariant as well as being a

non-empty set (for any topological space C ). The genus and the dimension (both

de�ned above) are non-trivial examples of topological invariants. The speci�ca-

tion of topological invariants is the core problem in combinatorial and point-set

topology. In digital topology it is the calculation of topological invariants for the

purpose of image analysis. Of, course, this at �rst requires that invariants are

well de�ned.
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A B C D E F G H I J K L

M N O P Q R S T U V W

X Y Z   

Fig. 26. Capitals of the German alphabet: assume that all letters are given as elemen-

tary curves having endpoints or branch points as indicated on the right for letters A

and B.

We recall: components of a subset M of a topological space are maximum

connected subsets of M . The number of components is a topological invariant:

assume set M has n components and � is a homeomorphism of M onto set

N = �(M ); then the homeomorphic set N has n components as well.

Figure 26 shows the capitals of the German alphabet (example discussed in

[4]), where letters are assumed to be elementary curves (Note: a rectangle of

non-zero width, i.e. a rectangular line and its interior, is not homeomorphic to

a line segment.). The three (pairwise non-homeomorphic!) letters �A, �O and �U

have three components compared to only one component for all of the remaining

letters, i.e. these three letters cannot be homeomorphic to any of the other letters.

The homeomorphy of letters in Fig. 26 depends upon whether we consider

a letter as a set being not one-dimensional at any of its points, or as an ele-

mentary curve. Figure 27 shows both options for two letters. The elementary

curve of letter E has one decomposition vertex (a deletion of this point from the

given set causes a partition into more than just two connected segments), and

the elementary curve of letter M has no decomposition vertex. The number of

decomposition vertices is another topological invariant: if � is a homeomorphism

ofM onto N and p is a decomposition vertex inM then �(p) is a decomposition

vertex in N = �(M ).

Branching indices have been introduced for curves and partitions of these

curves into one-dimensional geometric complexes. The list of branching indices

of an elementary curve, or of one-dimensional geometric complexes representing

such a curve, is another example of a topological invariant; see Fig. 28 for an

example.

Fig. 27. Both sets on the left are homeomorphic, but both elementary curves on the
right (which are not linear skeletons of the sets on the left, but which might be con-

sidered to be `skeletons' in an image-analysis context) are not.
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Fig. 28. The index list is (0,4,1,2,4): no 0-cell with index 0, four 0-cells with index 1

etc.

2.5 Surfaces

We conclude our short tour through basics in topology with a topological de�-

nition of the important notion of a surface, and a few results related to surfaces.

Part II of the report deals with three-dimensional sets, and there will be more

material on surfaces in this second part of the report.

n-Manifolds: Consider a topological space [C ;Z]. A subset M � C is locally
compact i� every point p 2 M has a topological neighborhood in M whose

closure in M is compact. The following de�nition introduces one of the basic

objects in topology:

De�nition 19. The set M is an n-manifold i� it is locally compact, has a
countable basis, and each point p 2 M has a topological neighborhood in M

which is homeomorphic to the open n-sphere (i.e. the interior of a unit sphere
in En), for n � 1.

Note that we could also ask for homeomorphy to the whole Rn because Rn and

the open n-sphere are homeomorphic sets, for any n � 1. Note that 2-manifolds

may be of �nite or in�nite extent, e.g. the set R2 is a 2-manifold. A 2-manifold

of �nite extent in E2 is an open set.

The Euclidean space has a countable basis. Let M � Rm. The claim that

M is locally compact and has a countable basis avoids topologically extreme

situations. Basically we say that set M is an n-manifold i� for any point p 2M
there is an " > 0 such that U"(p) \M is homeomorphic to an open n-sphere,

for 1 � n � m. A 1-manifold M is a simple (Urysohn-Menger arc) without its

endpoints, de�ned by homeomorphy of U"(p) \M to an open line segment, for

all points p 2M .

In three-dimensional image analysis we are interested in analyzing 2-mani-

folds de�ned by homeomorphisms with the open disc. If this set U"(p) \M is

homeomorphic to three open halfcircular areas as shown in Fig.29 then p is

called a bifurcation point of set M . Of course, a 2-manifold cannot have such a

bifurcation point.

An n-manifold is closed i� it is compact, i.e. of �nite extent and topologically

closed. For example, the surface of a sphere is a closed 2-manifold, and the surface

of a torus as well. We have [21]:

Theorem 6. (I. Gawehn, 1927) Every closed 2-manifold is homeomorphic to
some polyhedron.
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This allows to introduce and study triangulations of closed 2-manifolds (see

[2]): for a given 2-manifoldM assume a homeomorphism� on such a homeomor-

phic polyhedron �(M ). Consider a triangulation C de�ning this polyhedron as

the union of all sets in C . All sets ��1(T ), T 2 C , de�ne a triangulation on the
2-manifold M , consisting of curvilinear triangles, their sides (which are simple

arcs) and vertices (points).

Closed Surfaces and Surfaces with Frontiers: The following de�nition is

one possible option for de�ning surfaces, following [2]. A Jordan surface [31] is de-
�ned by a parametrization, establishing a homeomorphism to the unit sphere. In

image analysis we are normally not interested in calculating such a parametriza-

tion of a surface. The following topological approach, analogously to the topo-

logical de�nition by Urysohn and Menger of a curve, seems to be better suited

for our purposes:

De�nition 20. A closed surface is a closed 2-manifold. A surface with frontiers

is a compactum S homeomorphic to a polyhedron, where S is partitioned into
two non-empty subsets SÆ and #S: all points in SÆ have a neighborhood in S

which is homeomorphic to the open disc (or the Euclidean plane), and all points
p 2 #S have a neighborhood in S which is homeomorphic to the union of the
interior of a triangle and one of its sides (without both endpoints) where p is
mapped onto this side of the triangle. Points in SÆ are interior points of S, and
points in #S are frontier points of S.

A surface without frontiers (i.e. #S = ;) is a closed surface. A surface is either

a closed surface or a surface with frontiers. A simple closed surface is a closed

surface which is homeomorphic to the surface of a sphere, i.e. it is a Jordan

surface.

The frontier #S of S is the set of all frontier points, the interior SÆ of S

is the set of all interior points. It is S = S� = SÆ [ #S, where S� denotes the

closure of set S.

The frontier #S of a surface S with frontiers is an elementary curve which

is the union of pairwise disjoint simple curves. Figure 30 shows two examples:

the surface of a sphere without a few circular areas, and the surface of a torus

without one circular area (called a handle). Every frontier point of a surface with
frontiers is an interior point relative to some simple curve contained in #S. The

p

Fig. 29. A bifurcation point.
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Fig. 30. The surface of a sphere without a few circular areas (left) and the surface of

a torus without one circular area (right), called a handle.

surface of a sphere with r circular holes, whose frontiers are pairwise disjoint, is

a normal simple surface with r contours. A simple surface with r contours is a

surface with frontiers which is homeomorphic to a normal simple surface with r

contours.

Above we already discussed triangulations of closed 2-manifolds, containing

points, simple arcs or curvilinear triangles. In the sequel we also assume that any

surface with frontiers may be de�ned by a triangulation, i.e. it is equal to a union

of �nitely many points, simple arcs and curvilinear triangles. As a generalization

(by forming faces as unions of �nitely many elements of a triangulation) we

de�ne that a �nite or in�nite connected graph drawn on a surface S de�nes a

tiling of this surface i� every edge of this graph is on a circuit (encircling a face),

there is a vertex at any intersection point of edges, and #S is contained in the

point set de�ned by the union of all edges and faces of this graph. We identify

a tiling with its set of faces (2-cells), edges (1-cells) and vertices (0-cells). The

side-of relation speci�es a partial ordering on this set of all 0-, 1- and 2-cells of

a tiling. It follows that

Corollary 2. A tiling of a surface and the side-of relation between its cells
de�nes a complex (i.e. a model of an abstract complex).

Triangulations are examples of tilings. A �nite or in�nite connected graph

drawn on a surface de�nes a homogeneous tiling of this surface i� every face

of this tiling is an n-gon (i.e. a simple polygon having n � 1 vertices on its

frontier), and every vertex is incident with exactly k � 1 faces. Topologically

homogeneous tilings de�ne complexes which are of special interest for specifying

homogeneous image carriers.

Example 7. Assume a homogeneous �nite tiling of a Jordan surface, de�ned by

n � 1 and k � 1. Following Theorem 6 we know that a Jordan surface is

homeomorphic to some polyhedron, and we may actually assume that faces and

vertices of this polyhedron are de�ned by faces and vertices of the given tiling,

i.e. we may apply the Descartes-Euler polyhedron theorem �0 � �1 + �2 = 2,

where �0 denotes the number of vertices, �1 the number of edges, and �2 the

number of faces. It follows that 2 � �1 = k � �0 (because every vertex is incident
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with exactly k edges, and an edge is de�ned by two vertices) and 2 ��1 = n ��2
(because every edge is incident with two faces, and each face has exactly n edges),

i.e. we obtain a Diophantine equation

1

k
+

1

n
=

2 + �1

2�1

for positive integers k,n and �1. However, solutions are only given by the �ve

regular polyhedra, i.e. there are no positive integers k and n solving this equation

for �1 > 30, i.e. there is no homogeneous �nite tiling on a Jordan surface which

might be of interest for de�ning an image carrier. Of course, there are (for

example) triangulations of a Jordan surface (i.e. n = 3) for �1 > 30, but there is

no constant value k for the degree of vertices of such a triangulation. There are

homogeneous �nite tilings on the surface of a torus, which is another example of

a closed 2-manifold, without limitations on �1, see [87], i.e. �nite and non-trivial

(i.e. �1 > 30) homogeneous image carriers may be de�ned on the surface of a

torus, but not on a sphere.

Let C be a triangulation of a closed surface, or of a surface with frontiers.

With the relation �, de�ned via the side-of relationship, we have a poset with

its Aleksandrov topology. We recall: for T 2 C we have that UC(T ) = fS :2
C ^ T � Sg is the smallest neighborhood of T in C . Let P 2 C be a point.

The smallest neighborhood UC(P ) of P in C contains P , and may also contain

curvilinear triangles PR1R2 and simple arcs PQ. The set of all of the vertices

Q of these simple arcs, and of all of the simple arcs R1R2 of these triangles

speci�es a subcomplex FC(P ), called the outer frontier of UC(P ). The smallest

neighborhood UC(P ) is cyclic i� its outer frontier FC(P ) only contains simple

arcs whose union is a simple curve. It follows that UC(P ) is homeomorphic to a

closed circular area if it is cyclic.

In [2] there are several theorems about surface triangulations:

(i) The triangulation C is a triangulation of a closed surface i� C is connected

and for every point P 2 C it follows that UC(P ) is cyclic.

(ii) Every simple arc in a triangulation C of a closed surface is a side of exactly

two triangles in C .

(iii) Any triangulation of a surface is strongly connected14.

Note that statement (i) provides a local criteria for testing a global property of

a given triangulation.

Oriented Surfaces: A simple arc with endpoints p, q is denoted by [p; q],

and the corresponding open arc by (p; q). A simple arc is homeomorphic to the

14 We recall that a pure two-dimensional triangulation C is strongly connected i� every

two triangles T1 and T2 in C can be connected by a chain of triangles, where all these
triangles are in C .
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closed interval [0; 1]. The direction of a simple arc is de�ned by a homeomorphism

� : [0; 1]! [p; q] with �(0) = p and �(1) = q: for r1; r2 2 [p; q] let

r1 / r2 i� r1 = �(x1) ^ r2 = �(x2) ^ x1 < x2 :

The relation / de�nes an order on the simple arc [p; q], and it can be shown that

this order is independent upon the chosen homeomorphism� with �(0) = p and

�(1) = q. Analogously we can de�ne a direction for a simple curve. For example,

the frontier of a triangle in R2 is a simple curve. A direction on a simple curve

induces a direction for simple arcs contained in this curve.

An oriented triangle is a triangle with a prescribed direction (called the

orientation of this triangle) of describing its frontier, say, `either clockwise or

counter-clockwise'. The orientation of a triangle induces orientations for its sides.

Two adjacent triangles (i.e. with a joint edge) of one triangulation are coherently
oriented if they induce opposite orientations on their common side.

De�nition 21. (P. S. Aleksandrov, 1956) A triangulation of a surface is ori-

entable i� it is possible to orient all the triangles in such a way that every two
adjacent triangles are coherently oriented (the orientations of all these triangles
specify an orientation of the triangulation. Otherwise the triangulation is called
nonorientable.

If C is an orientable, strongly connected triangulation then the orientation

of one triangle speci�es already the orientation of the (whole) triangulation.

This shows that any orientable, strongly connected triangulation has exactly

two orientations.

Theorem 7. (P. S. Aleksandrov, 1956) If C 1 and C 2 are two di�erent triangu-
lations of the same surface, then C 1 is orientable i� C 2 is orientable.

This invariance of orientability with respect to the chosen triangulation of a

surface allows us to de�ne that a surface is orientable i� any triangulation of

the surface is orientable. Theorem 7 implies that orientability of a surface is a

topological invariant.

Example 8. (J. B. Listing, 1861, A. F. M�obius, 1865) A famous example of a

non-orientable surface is the Listing Band originally described by J. B. Listing in

[52], see Fig. 31. Traditionally this band has been called the `M�obius Band' after

A. F. M�obius who discovered it independently of Listing a few years later, see

[56]. The Listing band is a surface with frontiers. Its frontier is exactly one simple

curve, homeomorphic to a circumference. By identifying this frontier with one

of the frontiers of the surface of a sphere without circular areas (Fig. 30) we are

able to cover one of these holes, and by doing this for all holes we may transform

the surface with frontiers into a closed surface which is not homeomorphic to

the surface of a unit sphere, i.e. it is not a Jordan surface. ut
The example may act as a preliminary illustration of the topological com-

plexity of surfaces, which will be further discussed in part II of this report. Of



Digital Topology for Image Analysis - Part 1 37

a p d

b q c

b=d

a=c

p q

Fig. 31. Listing Band as drawn in [83]: the rectangle (left) is transformed into the

Listing Band (right) if a corresponds to c and b to d.

course, we could also cover one or all of these holes with copies of the handle

(torus with one hole). This process of glueing one surface to the other requires

that both frontiers used in the process are homeomorphic, and the result may

also depend on the chosen orientations of both frontiers. For example, we may

glue two handles together and obtain a closed surface which is homeomorphic to

the result of glueing two handles to a normal simple surface with two contours.

Connectivity and Euler Characteristics: Above we already brie
y dis-

cussed the Descartes-Euler polyhedron theorem and Euler characteristics of ele-

mentary curves. Let �0, �1, �2 be the number of points, simple arcs and curvilin-

ear triangles, respectively, of a triangulation of a surface. The Euler characteristic
of a triangulation C of a surface is equal to �(C ) = �0 � �1 + �2.

Theorem 8. (P. S. Aleksandrov, 1956) If C 1 and C 2 are two di�erent triangu-
lations of the same surface, or of two homeomorphic surfaces, then their Euler

characteristics are equal.

The theorem allows that we speak about the Euler characteristic �(S) of a

surface S. It also follows that the Euler characteristic of any �nite tiling of a

surface S (for example, also of a homogeneous tiling), where �0, �1, �2 be the

number of vertices, edges and faces, respectively, of this tiling, is equal to �(S).

For example, every face of a cube may be triangulated by two triangles. This

results in 8 points, 18 edges and 12 triangles, i.e. the Euler characteristic is equal

to 2. The surface of a sphere may be (e.g.) subdivided into 4 curvilinear triangles

with 4 points and 6 simple arcs, i.e. Euler characteristic 2 again (as stated in the

theorem, because surface of the cube and surface of a sphere are homeomorphic).

We say that a one-dimensional closed subcomplexM of a triangulation C of

a surface does not separate C i� the open subcomplex C nM is (still) strongly

connected. The connectivity q(C ) of a triangulation C is the maximum num-

ber n for which there exists a closed one-dimensional geometric subcomplex of

connectivity �1 = n which does not separate C . The Euler theorem says that

�(C ) = 2� q(C ) ;

for any triangulation C of a surface. Together with Theorem 8 it follows that

triangulations or �nite tilings of homeomorphic surfaces have identical connec-

tivity. Therefore we can speak about the connectivity q(S) of a surface S, and
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this is a topological invariant. For example, the Euler characteristic of a simple

surface with r contours is 2� r, see [2]. A proof is as follows: in case of a simple

surface (i.e. r = 0) we have the Euler characteristic 2 as shown above using

the surface of a cube or of a sphere; and every deletion of one triangle from a

triangulation of a simple surface (such that its vertices and edges remain in the

triangulation) decreases the Euler characteristic by one.

The genus p(S) of a surface is one half of its connectivity if the surface is

orientable, and it is connectivity minus 1 if the surface is nonorientable. For

example [2], covering all r holes of a normal simple surface with r contours with

r copies of the Listing band yields a nonorientable surface of genus r.

EXERCISES

2.1. Classify all elementary curves (`letters') in Fig. 26 with respect to topo-

logical equivalence.

2.2. The following �gure shows a square S0 with contents 1 in the upper

left corner. Assume that we delete an `open cross' with contents 1
4
as shown in

the upper right corner, resulting in four squares forming a (disconnected) set

S1. We proceed with this for any resulting square: next we obtain 16 squares

forming set S2, then 64 squares forming set S3 etc. The remaining set Sn is

always a closed (in the Euclidean topology) set of a �nite number of squares.

Assume we are continuing ad in�nitum. The family of closed sets is closed with

respect to arbitrary intersections. What is the contents of the resulting limiting

set S0 \ S1 \ S2 : : : ?

2.3. Let C be the set of all grid squares of the homogeneous orthogonal grid

Z
2. We de�ne that p is a neighbor of q (we write pNq) i� the intersection of

p and q is a grid edge, for any p; q 2 C . Is [C ; N ] a topological image carrier

satisfying axioms C1, C2 and C3?
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2.4. A tree is a connected elementary curve without any circuit. Show that

�1 � �0 = 1 ;

for any tree (i.e. the Euler characteristic of any tree is equal to 1).

2.5. Let 
 be a simple (Urysohn-Menger) curve in the surface S � E3 of a

sphere. Show that the complementary set S n 
 consists of two open subsets of

S whose common frontier is 
.

2.6. Assume n > 0 connected �nite polygonal chains in E2 , all starting at

point p and all ending at point q 6= p. Assume that any two of these polygonal

chains only intersect in points p and q. Show that these chains separate the

Euclidean plane into n disconnected sets.

2.7. Show that the property of a set S � R2 of being a (Urysohn-Menger)

curve is a topological invariant in the Euclidean plane.

2.8. Let S1 and S2 be two surfaces with frontiers. Assume that we glue both

together by identifying one simple curve in #S1 and one simple curve in #S2.

Show that the resulting surface has Euler characteristic �(S1) + �(S2).

2.9. What are the Euler characteristics and the genus of the surface of a

sphere, the surface of a torus, the handle and the Listing band?

2.10. Show that the handle allows a tiling de�ned by a graph with only one

vertex, three edges and one face.

2.11. Show that the following equation results for a homogeneous tiling of

the surface of a sphere [4]:

1

n
+

1

k
=

1

2
+

1

�1
;

where �1 denotes the number of edges.

2.12. A connected graph as de�ned in the previous exercise is an example

of an elementary curve. Show that the graph of a homogeneous tiling of the

surface of a sphere is either homeomorphic to one of the �ve Platonic graphs
(Tetrahedron, Octahedron, Icosahedron, Hexahedron, or Dodecahedron) or to a

graph de�ned by either n = 2 and �1 = k � 2, or n = �1 � 2 and k = 2.

2.13. Show that the Euclidean plane only allows homogeneous tilings (with

�1 = @0) for either n = k = 4, n = 3 and k = 6, or n = 6 and k = 3.

2.14. Explain that [CE2 ; N
�
E2] and [CG2 ; N

�
G2] satisfy axioms C1, C2 and C3.
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2.15. Characterize the topological di�erence between the sets shown on the

left and on the right in the following �gure:

2.16. Calculate topological invariants for the following three tilings (i.e. com-

plexes):

2.17. Show that any homogeneous tiling of the Euclidean plane is topolog-

ically equivalent to such a homogeneous tiling of the plane where the set of

vertices coincides with Z2.

2.18. Show that the surface of a torus only allows homogeneous tilings (with

�1 < @0) for either n = k = 4, n = 3 and k = 6, or n = 6 and k = 3.

2.19. [4] Assume that there exists a homogeneous tiling on a closed surface

with n = 5 and k = 4. Show that this surface is not orientable if the number of

faces of this tiling is not a multiple of 8.

2.20. Show that any convex set in a Euclidean space (such as a single point,

a straight segment, a sphere, a convex polyhedron etc.) is simply connected, i.e.

its fundamental group only contains the unit �.

2.21. Show that the free cyclic group is the fundamental group of the annulus

and also of R2 n fpg, where p is any point in R2.

2.22. Consider a surface with frontiers. Show that this surface is not simply

connected if the frontier consists of more than one simple curve.
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2.23. Consider a subcomplex [Cm;n ;�G2; dim] of complex [CG2 ;�G2; dim]

where Cm;n contains all grid points within a rectangle of size m � n, and all

subgraphs de�ned by grid edges or grid squares having their vertices in this

rectangle. Specify the closure of the following subsets of Cm;n : (i) the set of all

grid points in Cm;n , (ii) a set containing three consecutive collinear grid edges,

(iii), a set containing two grid squares which share one edge, and (iv) the set of

all grid squares in Cm;n .

2.24.We speci�ed several �nite and countable models of abstract complexes.

The following shows that there are also non-countable models: let C = fsa :

a 2 [0; 1]g be a non-countable set of (abstract) cells de�ned for the real index

interval [0; 1], with sa 6= sb i� a 6= b. For a 2 [0; 1] let a = 0:a1a2a3 : : : with

ai 2 f0; 1; : : : ; 9g. Let sa � sb i� a = b or a1 < b1 and ai = bi for all i � 11. Let

dim(sa) = a1. Show that [C ;�; dim] is an abstract cell complex.
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3 Models in Image Analysis

As already mentioned at the beginning of this report, pioneering papers from

around 1970 stand at the beginning of research on topological approaches for

image analysis. A. Rosenfeld introduced in [68, 69] connected subsets in the or-

thogonal grid. The carrier of a binary image was assumed to be a �nite, rectan-

gular set Cm;n � Z2 of grid points. Di�erent algebraic adjacencies, possibly in

combination, have been suggested and studied for the analysis of binary images.

3.1 Adjacencies in Binary Images

A grid point p1 2 Cm;n is 4-adjacent to p2 2 Cm;n i� d1(p1; p2) = 1, and 8-
adjacent to p2 2 Cm;n i� d1(p1; p2) = 1.15 In the sense of De�nition 3 we have

that a 4-path from p 2 C to q 2 C of length n is a sequence g = hp0; p1; : : : ; pni,
with p0 = p and pn = q of grid points such that pi is 4-adjacent to pi�1,

1 � i � n. An 8-path g is de�ned based on 8-adjacency.

As noted in Section 1, an adjacency relation A de�nes a symmetric neigh-

borhood relation N with p 2 N (p). Here we have two adjacency relations,

A4(p) = fq 2 Z2 : d1(p; q) = 1g and A8(p) = fq 2 Z2 : d1(p; q) = 1g, for grid
point p, de�ning symmetric neighborhood relations N4 and N8, respectively.

LetM � Cm;n . Two grid points p; q 2M are 4-connected in M i� there exists

a 4-path from p to q consisting entirely of grid points in M . This equivalence

relation de�nes 4-components of M . A set M � C is 4-connected i� for any

p; q 2M we have that p and q are 4-connected in M . Similarly, 8-connectedness
and 8-components are de�ned using 8-paths.
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xxxxxx
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x
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x

(a) (b) (c) (d)

Fig. 32. Examples of connected and nonconnected sets [68].

Without explicitly using the terms `8-neighborhood' or `4-neighborhood', the

pioneering paper [68] deals with these neighborhoods. Figure 1a (an object con-

taining two grid points) is 8-connected, as is its complementary set, which also

de�nes an `8-diagonal cut through both object points'. Figure 1b is both 4- and

8-connected, and its complement is neither 4- nor 8-connected. Figure 1c is not

4- or 8-connected but its complement is both 4- and 8-connected, and [68]

15 We use the metrics d1(p; q) = jx1 � y1j + : : : + jxn � ynj and d1(p; q) =

maxfjx1� y1j; : : : ; jxn� ynjg, for points p = (x1; : : : ; xn) and q = (y1; : : : ; yn) in the
n-dimensional Euclidean space En , n � 1.
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p
q

Fig. 33. Left: A grid point p inside of a simple 4-curve. Right: A simple 4-curve where
decisions about inside or outside are more diÆcult (is point q inside or outside?).

\the `paradox' of Fig. 1d can be (expressed) as follows: If the `curve' of

shaded points is connected (`gapless'), it does not disconnect its interior

from its exterior; if it is totally disconnected it does disconnect them.

This is of course not a mathematical paradox16, but it is unsatisfying

intuitively; nevertheless, connectivity is still a useful concept. It should

be noted that if a digitized picture is de�ned as an array of hexagonal,

rather than square, elements, the paradox disappears".

The �rst case assumes 8-connectedness for `curve' and `background points', and

the second case assumes 4-connectedness for both. The �rst case occurs if a non-

planar adjacency graph (here: grid points as vertices with horizontal, vertical

and diagonal edges) is used.

Curves in digital topology are often de�ned based on local connectedness

properties following the topological approach of Cantor, Menger and Urysohn,

instead of the parametric approach of Jordan:

De�nition 22. (A. Rosenfeld 1970) A 4-path is a simple 4-curve i� its length
n is greater or equal 4, it consists of n + 1 di�erent grid points p0; p1; : : : ; pn,
and pi is 4-adjacent to pk i� i � k � 1 (modulo n + 1). An 8-path is a simple

8-curve i� its length n is greater or equal 4, it consists of n + 1 di�erent grid
points p0; p1; : : : ; pn, and pi is 8-adjacent to pk i� i � k � 1 (modulo n+ 1).

A simple 4-arc is a 4-connected proper subset of a simple 4-curve, and a

simple 8-arc is an 8-connected proper subset of a simple 8-curve.

A grid point p = (i; j) is inside of a simple 4-curve i� p is not on that 4-curve,

and the grid line j has an odd number of crossings with that simple 4-curve to

the left, and an odd number of crossings with that simple 4-curve to the right

16 A mathematical paradox (antinomy) is characterized by a deduction of a contradic-

tion within one theory [6]. A deduction of statements in digital topology which do

not resemble statements in Euclidean topology is not a mathematical paradox. For

example, for a natural number n 2 N we do not have a natural number m 2 N such

that n +m = 0, as we have for n 2 Zwith m = �n, but this is of course not a
paradox.
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Fig. 34. Two non-intersecting 8-paths.

of p. For a more rigorous de�nition see Fig. 33 on the left: the crossing of the

simple 4-curve by grid line j to the left of p does not need a further explanation,

the touching of the curve on the right of p is de�ned by `coming and going' of

the 4-curve from/in the same halfplane, and the 4-curve comes from/ goes in

di�erent halfplanes at the �nal crossing. We refrain from a formal de�nition. A

grid point p is outside of a simple 4-curve i� p is not on that 4-curve, and it is

also not inside of this 4-curve. Inside or outside of a simple 8-curve is de�ned

analogously. Note that all grid points inside of a simple 4-curve do not need to

be 4-connected, see left of Fig. 33.

Let G(g) be the set of all grid points listed in the sequence g. A 4- or 8-path

g1 intersects another 4- or 8-path g2 i� G(g1) \G(g2) 6= ;. Figure 34 shows two
non-intersecting 8-paths. A 4- or 8-path g 8-separates (4-separates) two grid

points p and q i� any 8-path (4-path) from p to q intersects path g.

Theorem 9. (A. Rosenfeld 1970) Any simple 4-curve (8-curve) g 8-separates
(4-separates) all grid points inside of g from all grid points outside of g.

In [69] it has been mentioned that studies towards this speci�c separation theo-

rem were motivated by the Jordan-Veblen curve theorem of Euclidean topology.

The border of the rectangular carrier Cm;n is the set of all grid points in Cm;n
having one 4-adjacent grid point in Z2 n Cm;n . Let M � Cm;n and assume that

one 4-component of M = Cm;n nM contains the border of Cm;n . This is called

the background component of in�nite extent of M . All other 4-components of

M , if any, are 4-holes in M . IfM has no 4-holes, it is called simply 4-connected.
An 8-hole in M is an 8-component of M excluding the background component

of in�nite extent, and M is simply 8-connected if there is no 8-hole in M . We

consider 4- and 8-curves being such sets M � C . Theorem 9 implies:

Corollary 3. (A. Rosenfeld 1970) Any simple 4-curve 8-separates its 8-holes

from the background. Any simple 8-curve 4-separates its 4-holes from the back-
ground.

This establishes an approach of solving the separation problem in binary im-

age analysis by using two di�erent adjacency or neighborhood de�nitions (called

a good pair in [19]) on the same non-planar adjacency graph of 8-adjacency:

De�nition 23. (a; b) is a good pair i� any simple a-curve b-separates its b-
holes from the background, and any simple b-curve a-separates its a-holes from
the background.



Digital Topology for Image Analysis - Part 1 45

Fig. 35. Left: good pair (8,4). Right: good pair (4,8) (this binary image example has

been discussed in [46]). There are `cuts' of the V-shape in both cases established by

8-adjacencies.

Assume a binary image I de�ned on a rectangular set Cm;n of grid points.

(4; 8) and (8; 4) are good pairs, and this suggests for M = I�1(1) to use 4-

connectedness for M , and to use 8-connectedness for M = I�1(0); or vice-versa

for (8; 4). See Fig. 35 for an illustration of these two good pairs, where all object

points are shown as �lled dots and all background points are shown as hollow

dots.

De�nition 24. Valid adjacencies are between adjacent grid points which are
labeled by identical image values.

Valid adjacencies are shown by connecting line segments. Invalid adjacencies
are between points in di�erent I-equivalence classes de�ned by di�erent values

of image I.

(4; 4) or (8; 8) are not good pairs, but (6; 6) is a good pair. The good-pair

neighborhood approach is successfully applied in binary image analysis: normally

(4,8) or (8,4) adjacencies inZ2, and (6,26), (26,6), (6,18) or (18,6) adjacencies in

Z3 [19, 42]. A drawback of two di�erent adjacency de�nitions combined into one

good pair is that M and M then do have di�erent connectedness de�nitions.

The left half of the binary image (an example from [46]) in Fig. 35 shows a

`background V', the right half shows an `object V'. There is only one connected

`V' in both copies of this image, for good pair (8,4) and for good pair (4,8). The

second `V' is (already) disconnected by 8-connected pixels, i.e. it may happen

that subsequent image analysis procedures have to disconnect these pixels again.

Fig. 36. Multi-level input image as normally given in image analysis.
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Fig. 37. Pair (4,4) and good pair (6,6): there are still a few `cuts' as in Fig. 35 for

(6,6). Missing connections may be obtained by subsequent image analysis approaches.

3.2 Open Questions for Multi-Level Images

Image analysis normally deals with multi-level input images (actually even with

multi-channel images in an increasing number of applications), i.e. we have

Gmax > 1. See Fig. 36 for an example; pixel values are shown as shaded squares.

The concept of good pairs cannot be extended to such multi-level images I

where a similar consistency of di�erent neighborhood de�nitions for I�1(u), for

0 � u � Gmax, is impossible if Gmax > 1.

Alternative orientations of diagonals de�ning 6-adjacencies introduce a (sys-
tematic) directional bias into the resulting 6-components. Figure 37 illustrates

the pair (4,4) and the good pair (6,6). Both, (4; 4) and (6; 6) are planar graph

structures. The connectedness approach de�ned by the pair (4; 4) is used in sev-

eral major commercial image processing systems sold worldwide, see Fig. 38: pix-

els are shown again as squares; an 8-curve 4-separates one interior 4-component

from one exterior 4-component, but the 8-curve itself is not connected according

to the system.

A `duality of separation and connectedness' becomes increasingly important

for higher-level image analysis, where data are often de�ned with respect to

inhomogeneous carriers (e.g. for image segments, approximated simplicial object

surfaces, or polyhedral approximations of scene objects). Cases of inhomogeneous

Fig. 38. 4-components as produced by a major commercial image processing system:
the 8-curve is a disconnected set of isolated points, but separates interior and exterior

components.
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carriers (see Fig. 2 for two examples) cannot be discussed using homogeneous

4-, 6- or 8-neighborhood approaches.

The Euclidean and graph complexes of the homogeneous orthogonal grid,

[CE2 ;�E2; dim] and [CG2 ;�G2; dim], provide alternative models compared to

base sets Cm;n containing only grid points. Abstract complexes provide a uni-

form topological approach for all the di�erent carriers in image analysis, which

simpli�es concepts and implementations. Planar graph structures also provide a

(methodologically simpler) alternative for dealing with input images de�ned on

the orthogonal planar grid. We brie
y discuss a general way to introduce and

implement such planar graph structures.

3.3 Switches

Let us continue with using a graph-theoretical model and the orthogonal grid for

discussing possible options for specifying a topological approach for homogeneous

grids. Undirected grid edges represent a symmetric and irre
exive adjacency

relation.

We use all isothetic grid edges representing 4-adjacency, plus selected diago-

nals in grid squares speci�ed in the following de�nition.

De�nition 25. Take the lower left corner of a grid square as the reference point
for a switch which is a grid diagonal being either in an on-, or in an o�-state, see
Fig. 39. The state of a switch needs to be such that the grid diagonal connects grid
points being in the same equivalence class (i.e. having identical image values) if
there is such a pair of diagonal points in the given grid square; if both diagonals
connect grid points in identical equivalence classes then a state may be chosen.

Note that we only allow one grid diagonal per grid square. The resulting (inho-

mogeneous in general) planar graphs are examples of adjacency graphs as studied

in [36], examples of two-dimensional strongly normal digital picture spaces in the

sense of [43], and also examples of planar generic axiomatized digital surface-

structures (GADSs) as discussed in [19],

Figure 39 shows on the right all possible 2�2 image value con�gurations: �lled

dots illustrate pixels (p; I(p)) belonging to one equivalence class C, and hollow

dots illustrate pixels belonging to di�erent equivalence classes (not necessarily

switch is on

switch is off

?

a b c d

e f g h

Fig. 39. The reference point is at the lower left corner: states of a switch (left), and

for all possible image value assignments on a grid square, there is only 
ip-
op case

(g) where the position of the switch needs to be decided. The cross stands for a don't-
care-situation.
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Fig. 40. States of switches are uniquely de�ned, or can be chosen randomly in most of

the cases. Just a few 
ip-
op switches (12 in this example) are decided by a procedure
SetSwitches de�ned by the local templates shown in Fig. 41. The binary matrix S on

the right encodes the states of all switches.

just to one category di�erent to C). The state of the switch is unimportant in

cases (a) (both diagonals connect points in class C), (e) and (f) (both diagonal

pairs are points in di�erent classes). The state of the switch is uniquely de�ned in

cases (b), (c) and (d) because there is just one diagonal pair of points which are

in the same class. In situation (h) we choose the o�-state because the connected

diagonal pair might be in the same class.

Switch State Matrix: The only remaining problem is the 
ip-
op case (g) (in

fact absolutely analogously to the Euclidean plane when two curves intersect at

one point, and the assignment of the intersection point decides how these two

curves subdivide the Euclidean plane!): if both diagonal points shown by hollow

dots are in di�erent classes then the switch will be in on-state. Otherwise we

call a procedure SetSwitches to chose either the on- or the o�-state. Important

is that the state can't be changed again during one topological operation on a

picture after it has been set.

The procedure SetSwitches may, for example, analyze larger neighborhoods

of the reference point for de�ning the state of its switch. See Fig. 40 for a

possible speci�cation of switches, where a procedure SetSwitches has been used

in a bottom-up, left-to-right fashion: assigning switches randomly in don't-care

situations, and using the local templates shown in Fig. 41 for the 
ip-
op case

(g). These templates are such that the state of the switch in the grid square below

is simply copied as the new state of the switch in the recent grid square. The

example shows that it is possible to assign switches such that both V-shapes

remain connected. Of course, more advanced procedures SetSwitches may be

Fig. 41. Set of simple templates for de�ning 
ip-
op switches.
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Fig. 42. Valid S-adjacencies for the planar adjacency graph shown in Fig. 40.

designed, using larger neighborhoods for enforced control about switch settings.

In an implementation of the approach a binary image may be used with value 0

at point p i� the switch at reference point p is in o�-state, and value 1 otherwise

(see left of Fig. 40). The topology of a digital image is then speci�ed by such

an accompanying binary switch state matrix S, which de�nes an S-adjacency

between grid points and, subsequently, S-connectedness. Figure 42 shows the

resulting subgraph of valid adjacencies between S-adjacent grid points p, q having

identical image values, i.e. I(p) = I(q), where S as shown in Fig. 40.

Practical Aspects: The discussed switches ensure that the resulting S-adja-

cency graph is always planar. Any image processing step, e.g. a simple local �lter,

contrast enhancement, or an interactive modi�cation of single image values, will

create a need to update the switch state matrix S of a given image. Of course,

matrix S is only needed if a topological operation is called, and its calculation

is very simple. The switch-approach can be summarized as follows: every grid

square contains one grid diagonal only, as in case of the good pair (6,6). However,

to avoid a directional bias, or to re
ect the given image data, the diagonals

(switches) may be either set randomly or based on rules as discussed above. For

image processing this means that a switch state matrix S needs to be available

at the time of a topological operation in an image such as contour tracing or

thinning. The matrix S ensures that only planar adjacency graphs are used, and

it can be

(i) always the same switch state matrix (look-up table Sm;n), just de�ned by the

size m�n of the image and calculated by using a random number generator,

(ii) a function which produces a binary pseudo-random number based on the

coordinates of the reference point p = (i; j), allowing that actually no switch

state matrix is needed, just a local calculation of the pseudo-random switch

state (e.g., if the size of the images varies frequently),

(iii) an updated switch state matrix S using the rules as discussed for Fig. 39

and an image data-dependent procedure for dealing with the 
ip-
op cases

(which, in fact, appear very rarely in captured images, see Fig. 43, i.e. this

option might be of interest for cases of very high-precision image capturing

only).
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Due to a certain degree of randomness in captured image data (due to sensor

noise, uncertainties in image data, illumination changes etc., see Fig. 44) and the

low percentage of locally (i.e. in a 2�2 window) undecidable 
ip-
op states (note:
typically less than 0.5% for grayscale images, see Fig. 43, and less than 0.2% for

color images) it is normally appropriate to use one of the �rst two options.

A data-dependency of adjacencies is also discussed in [67] using hypergraphs,

allowing even incorporations of local image data variances into the adjacency

de�nition.

The switch-approach has shown that context-dependent connectivities may

be achieved by adding more structural elements (namely grid diagonals) to the

4-adjacency graph. The SetSwitches procedure may be designed such that curve-

like patterns are preferably connected, for example using larger neighborhoods

than in the simple set of templates shown in Fig. 41. The switch-approach is not

designed for inhomogeneous image carriers. It is also not designed for extreme

cases such as a `chessboard-like' binary image segments.

Image analysis approaches depend on calculated components provided at the

base layer of processes in the homogeneous carrier, but are 
exible in dealing

Fig. 43. Upper left: this 2014 � 1426 picture, i.e. 2,872,964 pixels, with Gmax = 255,
possesses 14,359 
ip-
op cases, i.e. 0.50% of all grid points. Upper right: 0.38%. Lower

left: 0.38%. Lower right: 0.22%.
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Fig. 44. Only one of these three labeled grid squares is a 
ip-
op situation.

with them: for example, the pair (4,4) (see left of Fig. 37 and Fig. 38) provides

subsegments which may be clustered into lines, frames of windows, yucca trees,

cars or other meaningful image segments based on context-dependent image

analysis approaches. This even leads to a good degree of justi�cation that the pair

(4,4) may be considered as being `suÆcient', leaving establishments of missing

connections to higher levels of an image analysis approach. Besides the rare case

of purely binary image analysis and the justi�ed use (see Theorem 9) of either

good pair (4,8) or (8,4) in such a binary situation, any use of 8-adjacency in

other situations causes con
icts as already suÆciently discussed in the pioneering

paper [68], see Fig. 32.

3.4 Wyse Topology and a Non-Existence Theorem

The question arises what topologies and topological concepts may be de�ned and

used for topological image carriers as claimed in Axiom C3. The cell or graph

complex of the homogeneous two-dimensional grid provides one topological space

because both models are homeomorphic (see Corollary 1). Topologies on the two-

dimensional homogeneous orthogonal grid may be de�ned by specifying a basis

(as noted earlier for the general case):

Example 9. (F. Wyse et al. 1970) We de�ned A4(p) = fq 2Z2 : d1(p; q) = 1g as
set of 4-adjacent points of grid point p = (i; j). Let

U4(p) =

� fpg ; if i+ j is odd

fpg [A4 (p) ; if i + j is even :

The family of all of these sets U4(p), p 2 Z
2, de�nes a topological basis on

Z
2, and a set of grid points is connected in the resulting 4-topology i� it is 4-

connected, see [89].17 Set U4(p) is the smallest topological neighborhood of point

p. The neighborhood relation U4 is asymmetric. It generates (see Section 1) a

symmetric adjacency relation which coincides with A4, and A4 generates the

symmetric (algebraic) neighborhood relation N4. See Fig. 45. ut

Corollary 4. [Z2; N4] is a topological image carrier, i.e. it satis�es the image
carrier axioms C1, C2 and C3.

Due to the correspondence of topological connectedness and 4-connectedness

it is obvious that the 4-topology does not add further `structure' to the concept

17 The note [89] actually de�ned an Aleksandrov topology on Zn, n � 1, and we only
cite case n = 2.
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Fig. 45. Left: a directed graph visualizing the asymmetric neighborhood relation U4.

Right: Indication of one possible mapping of this graph such that exactly all odd grid

points (shown as squares) are in grid point positions.

of 4-adjacency. However, it is possible to discuss open and closed sets in this

4-topology, or the closure of a set (see Fig. 46). For example, any set containing

an even grid point p = (i; j), with i + j even, but only at most three of its

4-neighbors (which are odd grid points), is not open, and sets containing only

even grid points are closed.

The following theorem states that 8-adjacency does not satisfy the topological

image carrier axiom C3.

Theorem 10. (Chassery 1979) Let C beZ2, or a �nite subset ofZ2 containing a
translation of the set G0. Then there exists no topology on C in which connectivity
would be the same as 8-connectivity.

The theorem refers to set G0 which is shown in Fig. 47; the geometric location of

this set in the Euclidean plane is unimportant. The proof in [11] for this theorem

consists of a series of case discussions.

The homogeneous grid used in the switch-approach suggests a straightfor-

ward adaptation of Example 9 for this model:

Example 10. Let AS(p) = fq 2 Z2 : dS(p; q) = 1g be the set of all grid points

being in distance 1, where dS is de�ned by a switch state matrix S, for grid point

Fig. 46. The smallest neighborhoods of single even grid points for the drawing shown

in Fig. 45 on the right.
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Fig. 47. Set G0 referenced in Theorem 10.

p = (i; j). Let

US (p) =

� fpg ; if i + j is odd

fpg [AS (p) ; if i+ j is even :

However, the family of these sets US(p), p 2 Z2, does not de�ne a topological

basis on Z2: the 6-adjacency is a special example of an S-adjacency. Assume

two `diagonally adjacent' and even grid points p and q. Then the intersection of

US(p) with US(q) contains exactly four grid points, and this is not one of the

de�ned sets. A further intersection with another set US(r), where r is another

even `diagonally adjacent' point to p, allows to produce the singleton fpg. It
follows that all subsets ofZ2 are open, i.e. only singletons are connected.

This example only shows that a straightforward adaptation of the Wyse

topology fails in case of S-adjacency. A more general discussion is required to

analyze the existence or non-existence of a topology on Z2 corresponding to

S-connectivity.

3.5 Cellular Model

A more 
exible approach than using just grid points as possible elements of

consideration consists in considering subsets of Euclidean spaces (towards Eu-

clidean complexes, see Euclidean complex CE2) or in specifying topologies based

on subgraphs (towards graph complexes, see graph complex CG2). We start with

a simple example de�ned in an exercise in [5]:

Example 11. (N. Bourbaki 1961) The family f[x;+1) : x 2 Rg is a basis of

a topology on R, called the right topology on R. It follows (for example) that

intervals (�1; x) are closed. Analogously, the family f(�1; x] : x 2 Rg is also
a basis of a topology on R, called the left topology on R. Note that sets [x;+1),

open in the right topology, are not open in the Euclidean topology on R. ut
We recall that a subset of a topological space induces a topological subspace.

The set Z� Rde�nes an inherited Euclidean, right or left topology, all topolog-

ical subspaces of R, depending upon whether R is considered as being endowed

with either the Euclidean (see Example 3), or the right or left topology as spec-

i�ed in Example 11. In case of the Euclidean topology we induce a discrete
topology on Z, where any subset of Zwill be open and closed as well, and this

trivial topological space is not connected: any two nonempty and complementary

subsets ofZde�ne a partition of Zinto two closed subsets. In case of the right

or left topology we obtain connected subspaces.
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Example 12. (C. O. Kiselman 2000) For a di�erent approach for inducing a

topology assume a connected topological space C and a surjection f : C ! M

into a set M . Equip M with the �nest topology such that f is continuous. 18

Then M is a connected topological space.

Now consider the Euclidean topology on R and a surjection f : R ! Z,

i.e. the set f�1(i) de�nes a subset of R, for i 2 Z: let f(x) be the nearest

integer to x, and, if x is a half-integer x = i + 1
2
then let f(x) = i. It follows

f�1(i) = (i � 1
2
; i + 1

2
], for i 2 Z, i.e. f�1(i) is neither open or closed in the

Euclidean line R. The same may be stated if we taken f(i + 1
2
) = i + 1 instead.

As a result, no proper subset ofZmay be open or closed, i.e. the induced (�nest)

topology is the trivial topology which only has the empty set ; and Zitself as

open and closed sets. ut
This example has been discussed in [33] for illustrating the basic idea under-

lying the introduction of the following alternating topology:

Example 13. (E. Khalimsky 1986) Consider the function f as in Example 12,

but choose the nearest even integer as the best approximation of a half-integer

i+ 1
2
this time. This function induces an alternating topology onZ: f�1(2i) is a

closed subset of R in the Euclidean topology, and f�1(2i+1) is an open subset,

i.e. f2ig is a closed subset ofZand f2i+1g is an open subset ofZ. In general, a

subset M of Zis open i� f�1(M ) is open in the Euclidean topology on R. ut
This alternating topology onZcombines the basic ideas of Example 9, i.e. it

uses the properties odd or even for alternations, and of Example 11, i.e. it de�nes

a topology on R by intervals. For image analysis we are interested in topologies

onZn, with n � 2:

De�nition 26. Let C 1 and C 2 be topological spaces; their product C 1 � C 2 is
the set of ordered pairs (p1; p2) such that p1 2 C 1 and p2 2 C 2 , endowed with the
product topology [1]; namely, M � C 1 � C 2 is open i� for each (p1; p2) 2 M

there are open sets M1 in C 1 and M2 in C 2 such that (p1; p2) 2M1�M2 �M .

Examples 11, 12 and 13 introduced topologies on R or Zwhich can be used to

form topologies on Rn or Zn, n � 2.

Figure 48 illustrates the product of two alternating topologies onZ, resulting

into the Khalimsky plane onZ2 (left), or a scaled version of it de�ned on fi=2 :
i 2Zg2 (right). A subset M �Z2 of the Khalimsky plane is open i� the set

SM =
[

(i;j)2M

f�1(i) � f�1(j) (4)

is open in the Euclidean plane.

The (in�nite) Khalimsky plane is Aleksandrov because an arbitrary intersec-

tion of open sets SM as speci�ed in formula (4) is open. For example, the smallest

18 Given two topologies Z1 and Z2 on N . Z1 is �ner than Z2 i� every subset of M

which is open in Z2 is also open in Z1. The use of function f allows to avoid the
de�nition of the topological concept of a quotient space.
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Fig. 48. Left: shaded (yellow) large dots show closed sets f(2i; 2j)g, �lled (red) large

dots indicate open sets f(2i + 1; 2j + 1)g, and small dots show sets f(2i; 2j + 1)g or

f(2i + 1; 2j)g which are neither open nor closed. Right: use of di�erent scaling and
di�erent symbols for indicating the same alternating topology.

topological neighborhood of an open set f(2i+1; 2j+1)g in the Khalimsky plane

is this set itself, and that of a closed set f(2i; 2j)g is the set containing grid point
p = (2i; 2j) as well as all of its eight 8-neighbors.

The Khalimsky plane is a T0-space. For example, N (p) = fpg for point

p = (2i+ 1; 2j + 1) does not contain any of its eight 8-neighbors.

Figures 17 and 48 indicate a bijection between the base set CE2 of the

two-dimensional Euclidean complex of the orthogonal grid, and the base set

fi=2 : i 2 Zg2 of the scaled alternating topology. Earlier we already realized

that the two-dimensional complexes [CE2 ;�E2; dim] and [CG2 ;�G2; dim] are

homeomorphic (see Corollary 1), and that this topology on the two-dimensional

homogeneous grid is an example of an Aleksandrov topology of a poset. The

Euclidean complex [CE2 ;�E2; dim] endowed with the Tucker topology has been

popularized by [46] in image analysis as an option of a homogeneous image

carrier, also known as Kovalevsky plane.

Theorem 11. Khalimsky and Kovalevsky plane are homeomorphic.

Proof. We de�ne a bijection � as indicated by Figs. 17 and 48: 0-cells (grid

points) at (i; j) are mapped onto points (2i; 2j), 2-cells (grid cells) with reference

point (i; j) (which is assumed to be the lower left corner of the grid square) are

mapped onto points (2i+1; 2j+1), 1-cells (grid edges) between (i; j) and (i+1; j)

are mapped onto points (2i + 1; 2j), and 1-cells (grid edges) between (i; j) and

(i; j + 1) are mapped onto points (2i; 2j + 1).

� is continuous: let M �Z2 be an open set in the alternating topology, i.e.

set SM (see Equ. 4) is an open set in R2, and assume that there exists a pair of

points p 2 ��1(M ) and q =2 ��1(M ) with p � q, i.e. ��1(M ) is not open in the

Tucker topology.

q is an n-cell, 0 � n � 2, and p is one of its m-sides, 0 � m � n. Case

n = m is impossible because this implies p = q, i.e. it would be p 2 ��1(M ) and

p =2 ��1(M ). Let n = 2 and m = 1. Then q is an open grid square s, which can

be represented as s = f�1(i)�f�1(j), and p is a grid edge e (without both of its
endpoints) which can be represented as e = f�1(k)�f�1(l). Because e bounds s
we have that (k; l) is an 8-neighbor of (i; j). p 2 ��1(M ) implies (k; l) 2M , and

e � S. q =2 ��1(M ) implies (i; j) =2 M , and s 6� S. This means that S cannot
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be open in contradiction to our assumption, i.e. the assumed pair of points p; q

cannot exist. - Cases n = 2 and m = 0, and n = 1 and m = 0 may be treated

analogously.

��1 is continuous: letM be an open subset of the Kovalevsky plane. Assume

that �(M ) is not open in the alternating topology, i.e.

S�(M) =
[

(i;j)2�(M)

f�1(i) � f�1(j)

is not open in the Euclidean topology, i.e. there is one set S0 = f�1(i)� f�1(j)
such that at least one of its frontier subsets S1 = f�1(k) � f�1(l) is contained

in S�(M), but S0 is not. Let S0 be an open square q and S1 be an edge p of this

square (without both of its endpoints). S1 � S�(M) implies (k; l) 2 �(M ), and

p = ��1 2M . S0 6� S�(M) implies (i; j) =2 �(M ), and q = ��1 =2M with p � q.

It follows that M is not an open set. This contradicts our assumption on M ,

and �(M ) needs to be open in the alternating topology. - The remaining cases

(S1 is a vertex, or S0 is an edge and S1 is a vertex) follow by using analogous

arguments. ut
Due to this theorem we may speak from the Khalimsky-Kovalevsky plane if

we like to refer to this special example, e.g. in the form [CE2 ;�E2; dim] or in

the form [CG2 ;�G2; dim], of a Tucker or Aleksandrov topology. Historically the

�rst de�nition of this plane is actually Example 4 on page 26 in [1] (see citation

above in Example 4), i.e. it might also be called the Alexandro�-Hopf plane.
Note that any scaling operation, such as on fi=2 : i 2Zg2 in Fig. 48, may be

incorporated into the de�nition of the homeomorphism given in the proof of the

Theorem. In [44] it was also pointed out that Theorem 11 may be obtained as a

corollary of a more general theorem, saying that the product of the Aleksandrov

topologies of any two posets is the Aleksandrov topology of the product of those

posets.

3.6 Discussion

Let us return to the `double-V' image example from [46] discussed in Section 3.

As illustrated in [46], the Khalimsky-Kovalevsky or Alexandro�-Hopf plane al-

lows an image-data dependent speci�cation of a subset of CE2 , the set of all

0-, 1- and 2- cells in the plane, such that this set corresponds exactly to both

V-patterns. Pixel locations are identi�ed with 2-cells, and 0- or 1-cells may be

assigned to di�erent 2-cells. Note that the switch-approach only requires speci-

�cations of a binary state of one switch, for every pixel.

Altogether we have two di�erent topological spaces for the orthogonal planar

grid:

(i) 4-adjacency and the corresponding 4-topology as de�ned in Example 9, and

(ii) the graph complex [CG2 ;�G2; dim] or Euclidean complex [CE2 ;�E2; dim],

in image analysis literature also known as Khalimsky-Kovalevsky plane de-

�ned by one of two equivalent topologies, the Tucker topology on CE2 of
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abstract complexes, or the product topology of two alternating topologies

de�ned in Example 13.

Both provide alternative options for discussing topological problems at the lowest

(initial) layer of image analysis approaches.

Option (i) is the graph-theoretical model for image carriers, compared to

option (ii) which is the the cellular model

[Cf2g ;�f2g; dim] :

Fig. 49. All 369 4-connected sets of grid points of cardinality eight [23].
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Fig. 50. Cellular model (left column) and 4-topology (right column): closed sets (upper

row), `partially open' (middle row), and open (bottom row).

See Fig. 50 for an example of a binary input image (�lled dots) where the assumed

additional elements of the cellular model (right column) and of the 4-topology

(left column, using the mapping intoZ2 as indicated on the right of Fig. 45) are

also shown. It is a matter of the speci�cation in the program whether a given

set of pixels (here indicated by �lled dots) is considered as being closed in the

assumed topology (upper row), `partially open' (middle row), or open (bottom

row). Any assumption implicates a consistent assignment of model elements to

the complementary set, e.g. if the given set of pixels is assumed to be closed,

then the complementary set should be open.

Because 8-adjacency fails to provide a topological model for an image car-

rier we will not mention this concept anymore. The main di�erence between the

graph-theoretical model and a cellular model consists in the fact that topologi-

cal neighborhoods de�ned in cellular models are asymmetric, i.e. they establish

directed relations between cells. Adjacency (in the graph-theoretical model) is

symmetric. Smallest topological neighborhoods (of cellular models) induce sym-

metric algebraic neighborhoods via the incidence relation, and this de�nes a

simpli�ed view on the previously asymmetric topological neighborhood.
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Topologies on image carriers allow to use (many of) the general topological

concepts discussed in Section 2; and this report can only illustrate a few minor

aspects of this large potential. For example, the de�nition of dimension (De�-

nition 16) is based on the smallest symmetric extension of smallest topological

neighborhoods U (p). Figure 49 from [23] shows all 369 4-connected sets of grid

points of cardinality eight: all two-dimensional sets (w.r.t. the 4-topology, i.e.

using algebraic neighborhood relation N4 resulting from the topological relation

U4) are drawn with �lled dots, and the six sets having a (proper or improper) hole
(i.e. a 4-connected component `separated by the set' (will be speci�ed later) from

the 4-component of in�nite extent of the background) are positioned in the cen-

ter of the drawing. In case of 4-adjacency it follows that a set is two-dimensional

i� it contains at least one 2 � 2 square of grid points. Note that the de�nition

of dimension depends upon the used connectedness de�nition.

From the practical point of view (design of common commercial image analy-

sis systems) it may appear that a choice besides 4-adjacency is more of academic

interest than of practical relevance, e.g. due to the facts that planar 6-adjacency

is not supported by hexagonal CCD-arrays or `hexagonal frame grabbers', the

small percentage of 
ip-
op cases (see examples in Section 3; of course, every


ip-
op case may have crucial impact on analysis results for components), or

that image segmentation problems will not be solved at basic topological levels

of image carriers (signal-theoretical approaches, image texture, larger neighbor-

hoods, image acquisition models etc. are keywords for image segmentation). This

observation is supported by the fact that major commercial image analysis sys-

tems actually use 4-adjacency (in the non-anti-aliased mode), and nothing else.

The switch-approach seems to be straightforward for implementations, and it has

obviously bene�ts with respect to solutions of the separation problem compared

to 4-adjacency. It remains an open problem here to show whether 6-adjacency

may satisfy the topological axiom C3 or not (or S-adjacency in general).

The full advantage of cellular models, such as [C2 ;�2; dim] for the plane,

becomes visible if we deal with `advanced' image carriers where directed relations

between cells are important to be modelled; for example in case of polyhedral

structures for geometric modelling [53]. We will return to complexes in part II of

this report. Assuming that a cellular model approach is implemented for higher

levels of image analysis it is also important to state that the same approach may

also be used for homogeneous image carriers (which is not the case for the graph-

theoretical models). The slightly higher complexity of the `asymmetric' cellular

model may be acceptable due to this option of unifying used methodologies for

homogeneous and inhomogeneous `complicated' image carriers.

The following adjacency graph discussions provide a uniform framework for

graph-theoretical models of (`symmetric representations of') image carriers, e.g.

also for adjacencies induced by topological neighborhoods of cellular models.

EXERCISES

3.1. B. Russell published in 1903 the following paradox of the set of all sets:

Naive set theory or Cantor set theory allows to de�ne a set by specifying a math-
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ematically precise property for all the elements in this set. Let S be the family

of all sets of naive set theory. For example, A = fx : x is a citizen of Kaitaiag is
not precise because the used relation for specifying this set depends on time, and

there may be even several cities worldwide called Kaitaia, i.e. this is not an ac-

ceptable way of de�ning a set in naive set theory. But B = fx : x 2 R^x2 = xg
is a precise de�nition in naive set theory, and we have B 2 S. This shows that
S is not empty. Russell's set is R = fx : x 2 S ^ x =2 xg, and it follows that

R 2 R i� R =2 R, what contradicts elementary logics. This means that naive

set theory and elementary logics leads to a contradiction, which is known as

Russell's paradox in this form. The mathematical conclusion is that we cannot

de�ne sets in the way as assumed in naive set theory, based on the knowledge

that elementary logics is free of contradictions. - G. Cantor, the founder of naive

set theory, arrived already19 at a paradox in studying power sets of sets: he

showed that in his naive set theory every power set P(S) of a set S is of larger

cardinality than set S. Thinking about the family S of all sets he arrived at his

paradox. Explain.

3.2. De�ne a set of 4�4 templates for de�ning 
ip-
op switches (see Fig. 41)

and discuss your motivation.

3.3. Show that (6; 6) is a good pair forZ2.

3.4. Assume that the chessboard pattern from Exercise 1.5 (ii) has been

digitized into an 8�8 binary image:What are the resulting components assuming

good pairs (4,8), (8,4) or (6,6)? How do these results compare to your discussion

of Exercise 1.5 (ii)? Can you specify a switch state matrix S such that all `dark

pixels' in the upper 4 rows are S-connected as well as all `white pixels' in the

lower four rows?

19 In 1899 or between 1895 and 1897.
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3.5. The deletion of all invalid edges in the image shown on the title page

leads to a non-connected undirected graph. Consider that each grid point is the

centroid of an isothetic square of side length 1, and take the union of all squares

of grid points being in the same 4-component. The frontiers of these resulting

sets are isothetic simple curves, and all these curves de�ne an elementary curve.

What is the connectivity �0 of this elementary curve?

3.6. Let CG be the subcomplex of CG2 containing all grid points in Z2 and

all subgraphs of the homogeneous orthogonal grid de�ned by grid edges, but no

subgraph of any grid square, i.e. we only keep all the 2- and 1-cells of CG2 . Now

consider the smallest neighborhoods U (p), p 2 CG , in this subcomplex and the

adjacency relation AU induced by this neighborhood relation in [CG ;�G2; dim].

De�ne A4 using AU .

3.7. Consider subcomplex [Cm;n ;�E2; dim] of Euclidean complex [CE2 ;�E2

; dim] where Cm;n contains all grid points (0-cells) within a rectangle of dimen-

sion m�n, and all grid edges (1-cells) and all grid squares (2-cells) having their

vertices in this rectangle. Specify the closure G(g)� in the poset topology of

[Cm;n ;�E2; dim], for the grid point set G(g) of 4-arcs g or 8-arcs g. Specify the

closure of the set (union of grid point sets of both paths) as shown in Fig. 34.

3.8. Consider the Aleksandrov topology of the poset [R;�]. Identify a topol-
ogy (discussed in this section) which is homeomorphic to this topology.

3.9. Discuss De�nition 16 (dimension) for the Khalimsky-Kovalevski plane

assuming that this model is mapped onto the homogeneous orthogonal grid of

given image data as follows: identify all pixel positions with 2-cells, and assume

that all 0- or 1-cells are virtual cells in-between.
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3.10. Consider the neighborhood graph in Fig. 3 (see also Exercise 1.7) which

induces an adjacency A on Z2. Is [Z2; A] a dense graph, i.e. does it possess an

equivalent topology such that both connectedness de�nitions (graph-theoretical

and topological) coincide?
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4 Adjacency Graphs

In this �nal section of part I of this report we focus on planar adjacency graphs

as models for (not necessarily topological) two-dimensional homogeneous or in-

homogeneous image carriers. We discussed 4-, 6- and S-adjacencies as examples,

and the graphs shown in Fig. 48, left (Khalimsky plane), and Fig. 2 are planar

as well. Graph-theoretical models or induced adjacencies of cellular models may

be represented by adjacency graphs.

Assume a graph-theoretical model of an image carrier. Let us delete all invalid

adjacencies in the adjacency graph of an image. The situation resembles the

`white and blackmarbles example' as described in [12] illustrating that the (joint)
boundary of two adjacent marbles is actually formed by di�erent frontiers being

next to one another. We used the word `boundary' for the �rst time in this report,

and it was reserved for `something between' two sets. Figure 51 illustrates such a

`double' frontier situation. These isothetic frontiers correspond to a double count

(in two directions) of oriented frontiers of unions of 2-cells. Such frontiers are

one-dimensional complexes in the orthogonal grid model. Adjacency graphs and

related frontier or border de�nitions have been studied in a sequence of papers,

starting with [84] and ending with [38], completely documented in the book [87],

brie
y reviewed in the paper [39] and cited at some places in the book [88].

This section discusses this theory of adjacency graphs which generalizes previ-
ously used adjacency de�nitions. Throughout this section we assume that [C ; N ]

is a not-necessarily topological image carrier, so far speci�ed by axioms C1 and

C2, and we will not make use of axiom C3 in this section.20 Due to axiom C1
we have that all sets A(p) are of �nite cardinality, and due to axiom C2 we deal
with algebraically connected image carriers.

Fig. 51. Frontiers of all components forming parallel line segments of isothetic poly-

gons; see Cli�ord's white-and-black marble analogy.

20 Axiom C3 does not imply planarity: for example, the homogeneous orthogonal grid in

three-dimensional space with its so-called 6-adjacency of grid points satis�es axioms
C1, C2 and C3.
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Fig. 52. Sequences of grid squares as discussed in [73], where they have been called

grid continua resembling the continua de�nition in Section 3.

4.1 Adjacency Graphs and Basic Morphology

We review [36] (in the context of the previous sections) and start with consid-

ering a �nite or denumerable set C of points and an irre
exive and symmetric

adjacency relation A � C � C which can be represented by an undirected graph

[C ; A]: points p 2 C specify vertices of the graph, and pairs fp; qg 2 A, with

p 6= q, de�ne an undirected edge between p and q in this graph, which is called

the adjacency graph GA = [C ; A]. Let A(p) = fq : q 2 C ^ fp; qg 2 Ag be the

set of adjacent points of p 2 C , not containing p itself. Let N be the symmetric

neighborhood relation generated by A on C , i.e. N (p) = fpg [A(p).
We show that this very generic adjacency model already allows to start with

analyzingmorphological operations (i.e. operations concerning the mathematical
shape of a set of vertices). No embedding into the Euclidean space, and no

planarity constraints are needed for doing so. Typically we may imagine that a

point p in C stands for a point or a vertex, positioned on a surface in a Euclidean

space. Actually we do not ask for that at this moment. For example, an adjacency

graph may model sequences of grid squares in the plane (see Fig. 52), where two

squares p and q are adjacent i� their intersection is exactly one grid edge; and

the induced adjacency graph of a cellular model is another example.

De�nition 27. A point p 2 M � C is (algebraically) inner i� A(p) � M , i.e.
i� N (p) � M ; and it is (algebraically) border otherwise. Any set M � C splits
into two disjoint sets Mr and ÆM of inner and border points, respectively, called
inner set and border of set M .

SetMr is de�ned similar to the (topological) interiorMÆ, and set ÆM is de�ned

similar to the (topological) frontier #M . Because of M = Mr [ ÆM it follows

that there is no sense in introducing an algebraic closure of set M . Axiom C3
ensures that a subset M of a topological image carrier possesses border, frontier,

interior and inner set.

Example 14. Consider the 4-topology of Z2 and a set M = fpg containing just
one grid point p = (i; j). In the adjacency graph [Z2; A4] we have

Mr = ; and ÆM = fpg :
Let p be even, i.e. with i+ j even. In the 4-topology it follows that

MÆ = ; ; but #M = N4(p) :
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In case of an odd grid point p it follows that

MÆ = fpg and #M = (N4(p1) [N4(p2) [N4(p3) [N4(p4)) n fpg ;

for A4(p) = fp1; p2; p3; p4g. This shows that axiomC3 is insuÆcient to guarantee

that border coincides with frontier, or inner set with interior.

Now consider the cellular model [C f2g ;�f2g; dim] with the poset topology, say

in one of its topologically equivalent forms (i.e. graph CG2 , Khalimsky plane, or

Euclidean CE2 , also known as Kovalevsky plane), inducing an adjacency relation

Af2g and a neighborhood relation Nf2g on C f2g . Let p 2 C f2g be a 2-cell and

let M = fpg. In the adjacency graph [Cf2g ; Af2g] we have again

Mr = ; and ÆM = fpg ;

but MÆ = fpg and #M is the set of all proper sides of p. Again we note that

algebraic and topological concepts of inner sets and interior, or border and fron-

tier, di�er. Set M = fpg is open in the C f2g topology. In case of the closed set

M� =MÆ [ #M , what is the set of all sides of p, it follows that

(M�)r = fpg and ÆM� = #M ;

as well as

(M�)Æ = fpg and #M� = #M :

The identities Ar = AÆ and ÆA = #A are true for any closed set A � C f2g

(Exercise 4.1). ut
We only claim that axioms C1 and C2 are valid for our adjacency graphs in

this section. In general it is ÆC = ;, and ÆM 6= ; for any non-empty proper subset

M of C due to axiom C2. It is possible that a setM only contains border points,

and no inner points at all. The connectedness relation �M (de�ned following

De�nition 3) partitions Mr and ÆM into components, called inner and border
components of M . A connected subset M with Mr = ; consists of one border

component. Figure 53 illustrates components of borders and inner sets.

Let A(M ) be the set of all points adjacent to M � C , de�ned as set of all

p 2M with A(p) \M 6= ;. The set A(M ) contains exactly all border points of

M . We have A(C ) = A(;) = ;. Any non-empty �nite set M � C has a �nite

adjacency set A(M ) due to axiom C1.
Let M � C . For any inner point p 2 Mr there is at least one border point

q 2 ÆM such that p and q are connected with respect to M . There may be sets

with border points which are only connected to border points. If A(M ) consists

of only one component, forM � C , then M as well. It is A(M ) = Mr\A(ÆM ).

The operation E of erosion transforms a set M � C into Mr, and the

operation D of dilation transforms M into M [A(M ).

It is DM = Mr [D(ÆM ), and D(M [ L) = DM [DL. Any set M � C

satis�es the inclusion sequence

EM �DEM �M � EDM � DM : (5)
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Fig. 53. Two connected sets in a graph: with one border component and three inner

components on the left, and with two border components and one inner component on

the right [36].

Further operations of mathematical morphology [72], such as opening and clos-

ing, can already be studied for adjacency graphs, see [36].

We cite one more axiom from this paper: in�nite adjacency graphs as de�ned

so far would allow that a �nite set M � C may have several in�nite complemen-

tary components, which is not desirable in an image analysis context. Because

this cannot be excluded based on our previous axioms we state this as

Axiom C4: Any �nite subsetM � C of a (not necessarily topological)

image carrier [C ; N ] possesses at most one in�nite complementary

component.

This axiom allows a termination criterion for computational problems such as:

for a given �nite set M in an adjacency graph, calculate all �nite complementary

components ofM . Note that the number of complementary components ofM is

less or equal to the number of components of A(M ). AxiomsC1, C2, C4 together
with our initial claim that C is �nite or denumerable, de�ne the non-topological
theory of adjacency graphs as introduced in [36]. Axiom C3 ensures that an

adjacency graph allows an introduction of an equivalent (w.r.t. connectedness)

topology, and this axiom has not been used in the non-topological theory of

adjacency graphs.

Let M � C and AM (p) = A(p) \M , for all p 2 M . Then [M;AM ] is the

subgraph induced by subset M . It is an adjacency graph again if it continues to

satisfy axiom C2, as [C ; A] did before.

4-adjacency together with a non-empty rectangular set C of grid points is an

example of a model of the (topological or non-topological) theory of adjacency

graphs, and 8-adjacency also satis�es axioms C1, C2, C4, but will fail later to
satisfy the planarity constraint in the de�nition of a mesh.

Region adjacency graphs have been discussed by many authors in the image

analysis literature. For example, [37] speci�es hierarchies of region adjacency

graphs within the theory of adjacency graphs. In Section 1 we de�ned a region



Digital Topology for Image Analysis - Part 1 67

as a component of an I-equivalence class of grid points, for a given image I, i.e.

a region is a non-empty connected subset of an image carrier. The neighborhood

relation N of an image carrier [C ; N ] induces an adjacency relation AN which

de�nes adjacencies AN (M ) � C , for M � C .

De�nition 28. Two disjoint subsets M1;M2 of an image carrier [C ; N ] are
adjacent (we write M1ANM2 or (M1;M2) 2 AN) i� AN (M1) \M2 6= ;.

Obviously, due to the symmetry of relation AN we have AN (M1) \M2 6= ;
i� AN (M2) \M1 6= ;, i.e. the relation AN is symmetric. Due to the claimed

disjointness ofM1 andM2 it also follows that AN is irre
exive, i.e. an adjacency

relation on the powerset of C . Let R be a partition of C (i.e. all sets in R
are pairwise disjoint, non-empty, and their union is C ). It follows that [R;AN ]

satis�es axioms C2 and C4 again. Regarding axiom C1 we may claim that R is

such that any set in R is only adjacent to a �nite number of sets in R. Regarding
axiom C3 we may introduce a so-called quotient topology on R speci�ed by the

topology on C . The resulting algebraic structure [R;AN ] is an adjacency graph
of second order, and the original graph [C ; AN ] was of �rst order. By continuing

this process [37] we may arrive at adjacency graphs of nth order, forming an

irregular image pyramid where level n is occupied by the adjacency graph of nth

order. However, we will not further discuss this subject in this topology report;

hierarchical image data structures are a separate topic.

4.2 Oriented Adjacency Graphs

Oriented manifolds (one-dimensional complexes or graphs, or higher-dimensional

complexes) have been studied in combinatorial topology since [63] (see Sec-

tion 2). Finite adjacency graphs may be drawn as elementary curves. They are

one-dimensional complexes (as any undirected graph), and any one-dimensional

complex is orientable. We discuss orientations for undirected graphs where also

border cycles may be speci�ed, and these orientations can be de�ned for �nite

or in�nite adjacency graphs generalizing the concept of local orders of adjacency

sets which is well-known in image analysis since H. Freeman's chain codes [20].

The typical approach for studying oriented manifolds is characterized by

specifying circuits in triangulations or tilings, see Section 2. An alternative ap-
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Fig. 54. Two representations of the same oriented graph: cyclic numberings of point
neighborhoods on the left, and the clockwise drawing of outgoing edges on the right

[85].
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proach has been suggested in [85] by starting with cyclic orderings of adjacency

sets, which allows to deduce oriented circuits as results of such cyclic orderings.

We review [85] in this subsection. This paper introduced a general study of

cyclic orderings for adjacency sets A(p), which introduce an orientation on the

given directed graph.

De�nition 29. (K. Voss, R. Klette, 1986) Let p 2 C be an arbitrary vertex of
an undirected graph where every vertex is of �nite degree. Let �(p) = hq1; : : : ; qni
be a cyclic order of all points in the adjacency set A(p), called adjacency cycle.
An oriented graph G� = [C ; A; �] is de�ned by an undirected graph GA with vertex
set C ( where every vertex is of �nite degree) and adjacency cycles �(p) for all
of its vertices p 2 C .

Figure 54 shows an oriented graph [fa; b; c; d; eg;A; �], with �(a) = hc; b; di,
�(b) = he; d; ai, �(c) = hd; a; ei, �(d) = hc; e; b; ai, and �(e) = hb; d; ci. In the

sequel we will use the clockwise drawing of outgoing edges as used on the right

of Fig. 54. Of course, crossings of edges may be unavoidable for this type of

representation even for planar graphs. The drawings in Fig. 31 (Listing band)

show two oriented graphs: on the left [fa; b; c; d; p; qg; A; �], with �(a) = hp; bi,
�(b) = ha; qi, �(c) = hd; qi, �(d) = hc; pi, �(p) = hd; q; ai, and �(q) = hp; c; bi, and
on the right (the Listing graph) [fa; b; p; qg; A; �], with �(a) = hb; p; qi, �(b) =
hp; a; qi, �(p) = hb; q; ai, and �(q) = ha; b; pi.

Cyclic orders may be assigned to any adjacency graph due to the �niteness

claim in axiom C1. `Classical' combinatorial topology (see Section 2) introduced

orientations on surfaces based on oriented triangulations or tilings, where every

orientation of a single (`�rst' or initial) triangle or face speci�es already the

orientation of the whole triangulation or tiling, i.e. there are only two di�erent

options of orientations. The concept of oriented graphs generalizes this: now we

can de�ne a larger diversity of orientations depending on `local choices' of cyclic

orders of adjacency sets. We specify a substructure of an oriented adjacency

graph induced by a subset M of C :

De�nition 30. (K. Voss, R. Klette, 1986) Let [C ; A; �] be an oriented graph,
M � C and let �M (p) = hr1; : : : ; rmi be a cyclic order of all points in A(p) \M
being a subsequence of the cyclic order �(p), for p 2 M . Then �M is a cyclic
order on the subgraph [M;AM ] induced by M , and G�M = [M;AM ; �M ] is a
substructure. We call �M (p) a reduced adjacency cycle.

Note that the subgraph [M;AM ] does not need to be connected, i.e. it is not

an adjacency graph if disconnected. Disconnected sets of object points as in

Fig. 37 may be described as being substructures. IfM is a �nite connected subset

in the oriented adjacency graph G� = [C ; A; �] then the induced substructure

G�M = [M;AM ; �M ] is also an oriented adjacency graph.

Assume an oriented graph [C ; A; �], a set M � C with points p; q; r 2 M ,

and q; r 2 AM (p). The directed edge (q; p) is called predecessor of the directed

edge (p; r) with respect to M i� q is the cyclic predecessor of r in the reduced

adjacency cycle �M (p). Analogously, the directed edge (p; r) is called successor
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Fig. 55. All circuits of directed edges in an oriented graph [85].

of the directed edge (q; p) with respect to M i� r is the cyclic successor of q in

�M (p).

Figure 55 follows our convention to illustrate adjacency cycles by clockwise

drawings of outgoing edges. The subset M = fa; b; c; dg de�nes reduced adja-

cency cycles �M (a) = hb; c; di, �M (b) = ha; ci, �M (c) = hb; d; ai, and �M (d) =

ha; ci. Let us start with the directed edge (a; b) which is the predecessor of (b; c)

according to �M (b). Edge (b; c) is predecessor of (c; d) because b is predecessor of

d in �M (c), etc. This speci�es an oriented circuit of directed 1-cells (i.e. edges)

h(a; b); (b; c); (c; d); (d; a)i, speci�ed by one of its shortest periodic subsequences

(which only di�er by cyclic permutation). The shown oriented graph has three

oriented circuits containing all of its directed edges. 21 A shorter notation for

these oriented circuits is by the cycle of points instead of the cycle of edges. The

given example has cyclic point sequences ha; b; c; di; ha; c; bi; ha; d; ci.
Every directed edge (p; q), with p; q 2 M , produces an in�nite sequence of

directed edges or points in an oriented graph, just by proceeding, step by step,

to the next successor. Such a sequence is either an edge sequence generated by
(p; q), or a path generated by (p; q), depending upon whether directed edges or

vertices are used to specify the sequence.

If M is �nite then any directed edge (p; q) generates a periodic (in�nite)

oriented circuit u! of directed edges, and a (�nite) shortest periodic subsequence

u is used to represent such a circuit. In case of an in�nite set C of points,

depending upon the cyclic order de�ned on adjacency sets of points p 2 C ,

there may be, or may be not acyclic in�nite oriented circuits of directed edges

generated by an initial directed edge. An in�nite oriented circuit of directed

edges generated by an directed edge cannot contain any directed edge twice.

Figure 56 illustrates two di�erent cyclic orders of adjacency sets for [Z2; A4],

where A4 denotes 4-adjacency. The cyclic order shown on the left produces only

acyclic in�nite circuits of directed edges, and the cyclic order shown on the

right produces only periodic circuits having shortest periodic subsequences of

length four. For oriented image carriers we exclude graphs with aperiodic in�nite

circuits (such as the one on the left in Fig. 56):

21 Generalizations to oriented n-circuits will be discussed in part II of the report (with
a focus on n = 2).
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Fig. 56. Two di�erent schemes of oriented circuits for the orthogonal planar grid [85].

Axiom C5: Any directed edge in a (not necessarily topological) ori-

ented image carrier generates a periodic sequence of directed

edges.

This axiom speci�es a constraint for orientations on adjacency graphs of image

carriers. The in�nite orthogonal grid, i.e. the 4-adjacency graph on all grid points

inZ2, satis�es axioms C1, C2, C3 and C4, but Fig. 56 shows that only speci�c

cyclic orders may be chosen according to axiom C5 for de�ning an oriented

adjacency graph [Z2; A4; �].

De�nition 31. (K. Voss and R. Klette 1986) A cycle g is a shortest periodic
subsequence hp1; : : : ; pni of a periodic oriented circuit, generated by an directed
edge (p1; p2) in an oriented graph G�. The length �(g) of the cycle g is n. We
say that cycle g is generated by (p1; p2) in G�.

Cycles g1 = hp1; : : : ; pni and g2 = hq1; : : : ; qni are identi�ed with one another i�

they only di�er by a cyclic permutation. The oriented graph in Fig. 55 possesses

three cycles.

4.3 Combinatorial Maps

Oriented adjacency graphs have been proposed and studied in the 1980's inde-

pendently of an earlier development in graph theory: the theory of combinatorial
maps, initiated by L. He�ter [25] who published in 1891 his results on maps. For
de�ning these maps, �rst recall that an undirected graph [C ; A] allows di�er-

ent ways of graphical representation, and it is called planar i� it allows such a

representation in the plane (or on a sphere) that edges only intersect at their

vertices. An embedding is a representation of an undirected graph [C ; A] on a

closed compact surface i� no two edges intersect except at their vertices. Such

an embedding is characterized by local circular orders � of the edges around the

vertices, and a map is such a graph together with all of its local circular orders,

i.e. it is an oriented adjacency graph [C ; A; �].

L. He�ter introduced maps and proved a dual characterization theorem for

them. Maps have been used, e.g., by G. Ringel (starting in the 1950s), see [65],
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Fig. 57. Combinatorial maps for undirected graphs K3;3 and K5 (see Fig. 58).

and were reinvented in [17]. Finally they became popular in discrete mathematics

based on publications such as [13, 24, 29, 30, 78, 79, 90].

Combinatorial studies of maps are of relevance for modelling images and

segmented images, see, e.g. [15,49]. A planar map is a map on a Jordan surface,

i.e. it is an orientable map of Euler characteristic 2. Of course, such a tiling is an

option for a �nite representation of a closed compact surface in three-dimensional

space.

A combinatorial map is de�ned by a �nite undirected graph [C ; A] and two

permutations � and �: �rst assume that all undirected edges are numbered by

1; 2; :::;m, and we split each undirected edge i of the graph into two directed

edges +i and �i, also (sometimes) called darts in the theory of directed graphs

or combinatorial maps. The permutation � is just a mapping of all darts +i into

�i, and �i into +i, i.e. � is de�ned by cycles of length 2, and we can write

� =
�

1

�1
2

�2
� � �
� � �

m

�m
�1
1

�2
2

� � �
� � �

�m
m

�
= (1;�1)(2;�2) � � �(m;�m) :

The permutation � combines all adjacency cycles �(p). Assume we have C =

fp1; p2; � � � ; png. Then it follows that

� = �(pi1)�(pi2) � � ��(pin ) ;
for any of the possible n! permutations�

1

i1

2

i2

� � �
� � �

n

in

�

of all n vertices.

See Fig. 57 for two examples of graphs in dart representation. Assume anti-

clockwise adjacency cycles �(p) for the graph K3;3 on the left. We obtain22

� = (1;�1)(2;�2)(3;�3)(4;�4)(5;�5)(6;�6)(7;�7)(8;�8)(9;�9) ;
� = (5; 3; 1)(�4; 6;�9)(�7; 8;�2)(�1; 2; 4)(�6;�5; 7)(�8; 9;�3) ; and
� = � Æ � = (1; 2;�7;�6;�9;�3)(�1; 5; 7;8;9;�4)(�2;4; 6;�5;3;�8) :

22 As a quick reminder for product calculations of permutations: in this example, 1

goes into -1 in �, -1 goes into 2 in � (we have: 1 goes into 2 in � Æ �), 2 goes into -2
in �, -2 goes into -7 in � (we have: 2 goes into -7 in � Æ �), etc.
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Note that the cycles in the product � = �Æ� are exactly all circuits in the oriented
adjacency graph. As another example, assume clockwise adjacency cycles �(p)

for the graph K5 on the right. We obtain

� = (1;�1)(2;�2)(3;�3)(4;�4)(5;�5)(6;�6)(7;�7)(8;�8)(9;�9)(10;�10) ;
� = (2; 10;�7; 1)(�2; 3;�9;�8)(�3;4;�6;�10)(9;�4; 5;7)(8;6;�5;1) ; and
� = � Æ � = (�2; 10;�3;�9;�4;�6;�5;7;�1; 8)(1;2;3;4; 5)(6;�10;�7; 9;�8) ;

and � lists all three circuits of this oriented adjacency graph. Based on the given

de�nitions of permutations � and �, this is valid for any product � = � Æ �, for
the case of counter-clockwise as well as for the case of clockwise orientations,

as long as we start with a �nite connected undirected graph [C ; A], split its

undirected edges into directed edges via �, and de�ne adjacency cycles via � all

with respect to the same orientation, either counter-clockwise or clockwise. Of

course, the handling of such global permutations of all edges or all adjacency

sets becomes uneÆcient when dealing with high-resolution digital images.

As a matter of fact, oriented adjacency graphs may be seen as another rein-

vention of combinatorial maps, but results of this theory, which will be brie
y

sketched in the following sections, will demonstrate that the development of this

theory in the context of image analysis had impacts on speci�c intentions and

directions, which do not have analogies in the theory of combinatorial maps.

4.4 Euler Characteristic and Separation Theorem

Any �nite oriented adjacency graph G� = [C ; A; �] with �0 = card(C ) � 0 (or a

substructure of G�) possesses a �nite number �2 of cycles.

Let �1 be the cardinality of undirected edges (any of these edges represents

a symmetric adjacency pair). We have card(A) = 2�1. To be more detailed, let

�(p) = card(A(p)), then X
p2C

�(p) = 2�1 (6)

as well as X
g

�(g) = 2�1 (7)

where the sum is over all cycles of G�. Because of axiom C2 it follows that there

are at least �0 � 1 edges, i.e. �1 � �0 � 1. On the other hand, every vertex

may only be connected to any other vertex by one undirected edge at most, i.e.

�1 � �0(�0 � 1)=2 . If �0 > 1 then there is at least one cycle. However, the

number of cycles will vary with di�erent choices of cyclic orders.

Following the general concept in topology (see Section 2) we de�ne the Euler
characteristic of G� to be � = �0 � �1 + �2. In [85] it has been shown that

Theorem 12. (K. Voss and R. Klette, 1986) We have � = �0 � �1 + �2 � 2 ;

for any �nite oriented adjacency graph G�.
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Fig. 58. Graphs K3;3 (left) and K5 (right).

Axiom C3 is not needed for the proof of this theorem in the non-topological

theory of adjacency graphs, which speci�es an upper bound for the number of

cycles.

A subset M � C de�nes a substructure G�M = [M;AM ; �M ] of G�. Let
�M0 = card(M ), �M1 = card(AM )=2 be the number of undirected edges of the

substructure, and �M2 is its number of cycles. Then the Euler characteristic

of the substructure, �M = �M0 � �M1 + �M2 , is greater or equal to the Euler

characteristic � of G�. Let � be the number of components of M in G�. Then it

follows that �M � 2� , which de�nes an upper bound for the Euler characteristic

of the substructure.

De�nition 32. A �nite oriented graph with Euler characteristic

� = �0 � �1 + �2 = 2 (8)

is called planar. An in�nite oriented graph is planar i� any non-empty �nite
connected oriented subgraph is planar.

This de�nition is consistent with graph theory and combinatorial topology. It

follows that substructures of planar �nite oriented adjacency graphs consist of

components where each de�nes a planar �nite oriented adjacency graph again.

Example 15. (C. Kuratowski, 1930) An undirected graph is planar i� it does not

have either K3;3 nor K5 (see Fig. 58) as a homeomorphic subgraph [48]. Note

that planarity of graphs is also de�ned for in�nite graphs. ut
If cyclic orders are de�ned for all adjacency sets of K3;3 or K5 then the

resulting �nite oriented graph has always an Eulerian characteristic of less than

2 (Exercise 4.2).

It follows that any �nite undirected graph havingK3;3 or K5 as a homeomor-

phic subgraph has a Euler characteristic less than 2, for any cyclic order de�ned

on it. On the other hand, a planar representation of a �nite planar graph spec-

i�es a cyclic order with � = 2. Altogether we have that a �nite graph is planar

i� there exists at least one cyclic order on it such that the Euler characteristic

is two.

Assume a �nite subset M � C . Cycles of the induced substructure G�M may

di�er from cycles of the oriented graph G�. Let (p; q) be a directed edge in the

induced substructure G�M , let g1 the cycle generated by (p; q) in G�M , and g2 the
cycle generated by (p; q) in G�.
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r

q

p

s t

Fig. 59. The directed invalid edges (r; q), (s; q) and (t; q) initiate the same border cycle

generated by (q; p) in the substructure de�ned by �lled dots.

De�nition 33. (K. Voss and R. Klette 1986) g1 is an original cycle i� g1 = g2,
and a border cycle otherwise.

The subsetM = fa; b; c; dg shown in Fig. 55 induces an oriented adjacency graph
with one original cycle hb; a; ci and two border cycles ha; b; c; d; ei and hd; c; ai.
The substructure shown in Fig. 59 does not have any original cycle.

Assume a �nite set M � C . Every border cycle of the induced substructure

G�M contains at least one border point of M , and any border point in ÆM is

incident with at least one border cycle. If M is a proper subset of C then G�M
possesses at least one border cycle.

Let (r; q) be a directed edge in [C ; A], M � C , q 2 ÆM and r 2 M . We

call (r; q) a directed invalid edge from M to M . A directed invalid edge is one

direction of an undirected invalid edge between M and M .23

A directed invalid edge (r; q) initiates a cycle in the induced substructure

G�M by starting with that directed edge (q; p) such that p is the �rst point inM

contained in the (original) adjacency cycle �(q) following r. See Fig. 59 for an

example: for the directed invalid edges (r; q), (s; q) and (t; q), point p is the next

(and only one in �M (q) = hpi) point in M and �(q) = hp; t; r; si to be used for

generating the shown border cycle. Every directed invalid edge initiates uniquely

one border cycle in the substructure G�M . This de�nes a partition of all (directed
or undirected) invalid edges into equivalence classes such that one class is the

set of all (directed or undirected) invalid edges assigned to one border cycle.

Theorem 13. (K. Voss and R. Klette 1986) Let G� = [C ; A; �] be a (�nite or
in�nite) planar oriented adjacency graph and M a non-empty �nite connected
proper subset of C . Then G� splits into at least two non-connected substructures

after deleting all undirected invalid edges assigned to one of the border cycles of
M .

Axiom C3 is not necessary for proving this separation theorem of the non-

topological theory of adjacency graphs, which is again a theorem which may be

compared with the Jordan-Veblen curve theorem (see Theorem 2 in Section 2) in

the Euclidean plane: let (r; q) be a directed invalid edge fromM to the connected

set M , and g = hq1; : : : ; qni be the border cycle in G�M initiated by (r; q). It

23 This de�nition and the related comments di�er slightly from the original paper [85].
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Fig. 60. All border cycles for the image shown on the title page, also used in Exer-

cise 3.5.

follows that for any point p 2 M and any path g = [p; : : : ; r] we have G(g) \
fq1; q2; : : : ; qng 6= ;. In other words: border cycles realize separations in planar

cyclic adjacency graphs (which are the `symmetric representations' of image

carriers). Exercise 3.10 illustrates the deletion of invalid edges for an image

example using 4-adjacency (the original image is on the title page). Figure 60

shows all the border cycles for this example.

The importance of Equations (6), (7) and (8) for the study of planar cyclic

neighborhood structures has been studied in [86]. For a more general context see

[39].

De�nition 34. A mesh is a planar oriented adjacency graph satisfying axioms
C1, C2, C4 and C5.

4-, 6- and S-adjacency onZ2 de�ne meshes just by using their graphical (planar)

representations for specifying adjacency cycles, called 4-mesh, 6-mesh and S-
mesh. Theorem 13 (note: axiom C3 has not been used in the proof) says that

a mesh is a possible, not necessarily topological image carrier for digital images

allowing separations based on `tracing' of border cycles.

4.5 Meshes

We review a few basic formulas on homogeneous meshes from [86] in this sub-

section; see also [38,87, 88]. We reconsider Equations 6 and 7. Let G� = [C ; A; �]

be a �nite oriented graph with �0 = card(C ) and �1 = card(A)=2. Let

� =
1

�0

X
p2C

�(p) and � =
1

�0

X
g

�(g)
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Fig. 61. Figure 4 in [86]: � = 3, � = 6, �0 = 49, �1 = 59, �2 = 12, l = 52, k = 29

and f = 11 (left), � = 4, � = 4, �0 = 23, �1 = 30, �2 = 9, l = 28, k = 32 and f = 8
(middle), and � = 6, � = 3, �0 = 18, �1 = 32, �2 = 16, l = 19, k = 44 and f = 15

(right).

be the mean outdegree of a vertex and the mean length of a cycle, respectively,

where the second sum is over all cycles of G�. It follows that

�0=�1 = 2=� and �2=�1 = 2=� ;

which results into

2=� + 2=� = 1 + 2=�1 : (9)

This equation is also applicable to in�nite oriented graphs if both means are

well-de�ned: 2 �1 goes to zero for in�nite graphs.

De�nition 35. A mesh is homogeneous i� � = �(p) is constant, for any p 2 C ,
and � = �(g) is constant, for any (original or border) cycle of the mesh.

A homogeneous mesh C �;� speci�es a homogeneous tiling (of some surface, see

Section 2), and vice-versa. Finite homogeneous tilings were the subject of Exer-

cises 2.12 (on the surface of a sphere), 2.13 and 2.14 (on the Euclidean plane),

2.15 (on the surface of a torus), and 2.16 (on a closed surface). For in�nite graphs

(as in the Euclidean plane) it results that Equation (9) only allows three integer-

valued solutions: � = � = 4, � = 3 and � = 6, and � = 6 and � = 3. Obviously

we may assume that C =Z2 for these three in�nite homogeneous meshes.

Now assume a �nite subgraph in such an in�nite homogeneous mesh de�ned

by a �nite subset M � Z2. First let us consider the case that M has only

one border cycle of length l. We call such a set M simply connected following

Section 2.

Let k be the number of all invalid edges fromM toM . The number of original

cycles is denoted by f . See Figure 61 for an example. Due to the planarity of

the mesh and Equations (6) and (7) we obtain in this case:

�0 � �1 + �2 = 2 (10)

��0� k = 2�1 (11)

�(�2 � 1) + l = 2�1 (12)

and altogether

�l � �k + �� = (2� + 2� � ��)�1 : (13)
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Considering � and � as being constants of the given homogeneous mesh it follows

that the relationship between l and k is already de�ned by the number �1 of

undirected edges in the given subgraph de�ned by the simply connected set M .

In case of the three in�nite homogeneous meshes it follows that 2�+2���� = 0:

Theorem 14. (K. Voss, 1986) For a simply connected set M of an in�nite
homogeneous mesh C �;� it follows that k = � + �l=�.

In other words, the relation between invalid edges and length of the border cycle

only depends on the parameters � and � of the in�nite homogeneous mesh.

Now assume that M possesses r border cycles, similar to the simple surfaces

with r contours discussed in Section 2. Instead of Equations (10-12) in case of a

simply connected set we obtain

�0 � �1 + �2 = 2 (14)

��0�
rX
i=1

ki = ��0 �K = 2�1 (15)

�(�2 � r) +

rX
i=1

li = �(�2 � r) + L = 2�1 (16)

for length li of border cycle i and ki invalid edges connecting M with points on

this border cycle, for 1 � i � r. In case of the three in�nite homogeneous meshes

(2� + 2�� �� = 0) it follows that

�

rX
i=1

li � �

rX
i=1

ki � (r � 2)�� = �L� �K � (r � 2)�� = 0 : (17)

Theorem 13 implies that any border cycle of the connected set M separates

M from at least one complementary component of M in a (not necessarily ho-

mogeneous) mesh C . Furthermore [86]:

(i) di�erent border cycles of M separate M from di�erent complementary com-

ponents ofM in a mesh C (and one border cycle of M may separate M from

more than just one complementary component);

(ii) �nite complementary components of M possess exactly one border cycle in

a mesh C , and,

(ii) if C is an in�nite mesh and M a �nite connected subset, then there is only

one border cycle of M which separates M from an in�nite complementary

component, which may be called the in�nite complementary component of

M .

These conclusions of Theorem 13 allow a further speci�cation of border cycles

of a �nite connected set M of an in�nite mesh: the uniquely speci�ed border

cycle separating M from its in�nite complementary component is called the

outer border cycle, and all the remaining border cycles are called inner border
cycles. Assume that the complementary component A ofM is separated fromM
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by border cycle g of M ; then A is assigned to g. A complementary component

of M assigned to an inner border cycle is a proper hole of M , and a �nite

complementary component assigned to the outer border cycle is an improper
hole of M . Finite complementary components of a �nite or in�nite connected

subset of an in�nite mesh do not possess proper or improper holes. Finally, let

C(M ) be the cover of the �nite set M de�ned by the union of M with all of

its proper holes. Note that C(M ) does not possess inner border cycles anymore,

but an outer border cycle which may also separate improper holes from C(M ).

Let us return to Equation (17) and the connected setM with r border cycles,

being a subset of a homogeneous mesh. The outer border cycle of M coincides

with the outer border cycle of its cover C(M ). Theorem 14 is valid for C(M ). It

follows that we always have �lr��kr+�� = 0, where r is assumed to be the index

of the outer border cycle of M . Subtracting this equation from Equation (17) it

follows that

�

r�1X
i=1

li � �
r�1X
i=1

ki� (r� 1)�� = �(L� lr)� �(K � kr)� (r� 1)�� = 0 : (18)

All the r�1 inner border cycles ofM may be considered as independent events,

and this Equation (18) splits into r� 1 equations �li��ki+ �� = 0, for 1 � i �
r � 1.

Theorem 15. (K. Voss, 1986) For a connected set M of an in�nite homoge-
neous mesh C �;� and any of its border cycles it follows that k = �� + �l=�,
where the outer border cycle implies the positive sign, and any inner border cy-
cle the negative sign; k is the number of invalid edges assigned to this border
cycle, and l is the length of this border cycle.

This theorem provides a simple algorithmic rule for deciding whether a traced

border cycle is either inner or outer, just by bookkeeping of k and l during border

cycle tracing.

From Equation (17) it follows that r = 2 + L=� � K=� : The total

length L of all border cycles, and the total number K of all invalid edges allows

to calculate the number r of border cycles, what is a topological invariant of the

given �nite connected set M . Note that values L and K may be accumulated by

passing through all 4-neighborhoods of points inM , i.e. border cycle tracking is

not necessary for calculating L and K.

We recall that f is the number of original cycles of setM � C �;� . Combining

Theorem 15 and Equations (10-12) leads to

�0 =
�

�
f + (

1

�
+

1

�
)l + 1 :

It is 1=� + 1=� = 1=2 for all in�nite homogeneous meshes C �;� . This proves:

Theorem 16. (K. Voss, 1986) It is �0 = �f=� + l=2 +1 for a connected, set
M without proper holes, contained in an in�nite homogeneous mesh C �;� , with
�0 = card(M ), f original cycles in M and l is the length of the outer border
cycle of M .
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Fig. 62. Inner border cycles with � = 3, � = 6, �0 = 8, l = 30, k = 12 and f = 11

(left), � = 4, � = 4, �0 = 11, l = 26, k = 22 and f = 23 (middle), and � = 6, � = 3,
�0 = 10, l = 22, k = 38 and f = 40 (right).

This theorem is a graph-theoretic generalization of a result in [62]24 for the

homogeneous orthogonal grid (� = � = 4) that the contents f of a simple grid
polygon (i.e. a simple polygon in the Euclidean plane having only grid points as

its vertices) satis�es f = �0 � l=2 �1=2 , where �0 is the number of grid points

inside of the polygon (which is a closed simply-connected set in the Euclidean

plane) and l is the number of grid points on the frontier of the polygon.

The cover of a �nite connected set M is always free of proper holes. Theo-

rem 16 applies for outer border cycles. For an inner border cycle g let �0 denote

the number of points of C �;� nM circumscribed by g (`in the interior of g'), and

f be the number of cycles of the mesh de�ned by these �0 points and the points

on the inner border cycle. Then we have:

Theorem 17. (K. Voss, 1986) It is �0 = �f=� � l=2 +1 for an inner border
cycle of a connected subset M of an in�nite homogeneous mesh C �;� , where l
denotes the length of this inner border cycle.

Note that an inner border cycle may separate several proper holes from set M ,

and Theorem 17 speci�es a result for the union of these proper holes, see Fig. 62,

where k be the number of invalid edges assigned to the inner border cycle.

In Fig. 62 we also shaded the original cycles of proper holes assigned to the

shown inner border cycles: on the left we have three proper holes, and only one

original cycle in one of these proper holes. In the middle we have one proper

hole with one original cycle, and on the right we have one proper hole with two

original cycles. Let m be the total number of original cycles of all proper holes

assigned to the given inner border cycle. The remaining f�m cycles of the mesh,

de�ned by points in the complementary set M and on the inner border cycle,

are called boundary cycles. Note: the word `boundary' is used for the second

time, again in the meaning of specifying the `space between'. The �m edges of

all boundary cycles split into k invalid edges, the length l of the inner border

24 Georg Pick was professor of mathematics in Prague. He was in close contact with

A. Einstein when Einstein worked at Prague university in 1911/12, performing mu-

sic together, discussing philosophy and establishing the mathematical apparatus of

general relativity theory. Pick was assassinated by the Nazi regime in concentration
camp Theresienstadt.
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cycle of M , and the sum of all lengths li of all the outer border cycles of all

n > 0 proper holes assigned to the given inner border cycle of M :

�m = 2k + l +
X
i=1

nli :

Together with Theorems 16 and 17 this implies that

n = 1 + k � m :

This is another example how a topological invariant (the number n of proper

holes) can be calculated by accumulating local counts of invalid edges and bound-

ary cycles.

In case of of the in�nite homogeneous mesh C 6;3 , i.e. with � = 6 and � = 3,

we have [86] that there is exactly one complementary component assigned to

any (inner or outer) border cycle of a �nite connected set M , As a conclusion, a

connected set in C 6;3 does not have any improper hole, and a region adjacency

graph, generated by any subset of C 6;3 , is a tree. Any directed invalid edge in

this mesh generates exactly one boundary cycle; for any inner border cycle of a

connected subset of C 6;3 .

EXERCISES

4.1. Return to Example 14 and show that the identities Ar = AÆ and ÆA =

#A are true for any closed set A � C f2g .

4.2. Show that if cyclic orders are de�ned for all adjacency sets of K3;3 or

K5 (see Fig. 58) then the resulting �nite oriented graph has always an Eulerian

characteristic of less than 2.

4.3. Calculate all possible Euler characteristics for the Listing graph (for all

possible cyclic orders) shown on the right of Fig. 31.

4.4. Consider Fig. 37 as a representation of a subset M (shown by �lled

dots) in the 4-mesh (left) and in the 6-mesh (right), assuming that both meshes

continue outside of the shown rectangle at in�nitum. Specify Mr and #M in

both cases and draw all border cycles.

4.5. Is it possible to have a �nite oriented graph with �0 = �1 = �2?

4.6. Identify all proper and improper holes in Fig. 3.6, also shown in Fig. 60.

4.7. Consider the in�nite homogeneous mesh with � = 6 and � = 3. Show

that there is exactly one complementary component assigned to any (inner or

outer) border cycle of a �nite connected subset M of this mesh.
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4.8. A complete graph with �0 vertices has �1 = �0(�0 � 1)=2 edges. Show

[87] that � � ��0(�0 � 7)=6 , for any orientation on this graph de�ned by

adjacency cycles, where we assume that �0 � 3.
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5 Concluding Remarks

This report informed about basics in topology and reviewed a few approaches

in digital topology. It also added a new one, the switch-approach, and discussed

a new model [CG2 ;�G2; dim] of the poset topology [C f2g ;�f2g; dim]. Oriented

adjacency graphs generalize the concept of oriented triangulations or tilings of

surfaces (as known in `classical' combinatorial topology), and the theory of ori-

ented adjacency graphs has been brie
y reviewed (also due to the fact that this

theory remained widely unknown so far). The books [87] and [88] contain more

material (and also all the proofs) about this theory than cited in this report

(besides the original journal papers).

Due to the immense volume of publications in digital topology it was only

possible to report about a very small fraction of all the available literature. This

part I of the report focused on the homogeneous orthogonal planar grid, which

is of special interest for the initial layer of image analysis. The material suggests

di�erent approaches for dealing with multi-level images de�ned on such grids:

1. meshes (i.e. planar oriented graphs): these approaches do not necessarily

require the material discussed in Section 2. There are di�erent options:
(a) just 4-adjacency (even allowing an introduction of a 4-topology), and this

does not require any mentioning of 8-adjacency or other non-planar ad-

jacencies at all, and Theorem 13 is a theoretical justi�cation of boundary

tracing (note: digital straight lines may be modeled using 4-adjacency

only, for digitization and self-similarity description, see the review [71]),
(b) S-adjacency and Theorem 13 as theoretical justi�cation, but the prac-

tical gain is expected to be minor compared to using solely 4-adjacency

because image segmentation problems cannot be solved at pixel level

anyway,
(c) planar adjacencies in general, i.e. Section 4, and 4- or S-adjacency as

examples (note: 6-adjacency has a directional bias), with the bene�t of

modelling inhomogeneous adjacencies (Voronoi or Delaunay adjacency,

region adjacency etc.) as well, and possible extensions of the graph-

theoretical approach to 3D, see [88],
2. cellular models which do have a long history in topology, and the alter-

nating topology may be given as an interesting example for achieving the

same Tucker topology (Aleksandrov topology for a poset) for homogeneous

two-dimensional complexes but using di�erent approaches for de�ning this

topology, i.e. part of the material on complexes in Section 2. This should

be in the context of generalizations to `asymmetric' image carriers to justify

extra model complexity.

Approaches characterized by good pairs may be chosen if solely binary images are

the subject, and material as discussed in Section 3 provides a good introduction

into the subject.

The section on basics of topology contains material which is important for

understanding topological concepts. Even if these subjects are not further `digi-

tized' (i.e. related discussions for image carriers, e.g. how to de�ne the fundamen-

tal group for subsets of an image carrier); basic knowledge on these subjects may
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support faster access to topological studies relevant to application-dependent

problems.

Part II of the report will be on `asymmetric' image carriers (cellular mod-

els), also motivated by needs of analyzing three-dimensional digitized sets. The

boundary between components will be characterized in the way of grid continua
as de�ned in [73].
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