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Abstract

This paper reports about basic algebraic relations between parameters and an error analysis

for symmetric panorama acquisition. Symmetric panoramas are of importance in computer vision,

computer graphics, and stereoscopic imaging and display. Advantages of symmetric panoramas

include the possible reuse of stereo-matching algorithms previously developed for 3D reconstruc-

tion, and possible applications in stereoscopic visualization. This paper formulates and studies

problems which have not yet been approached previously: algebraic relations between application-

speci�c parameters and imaging parameters, and how errors (incurred from measurements during

imaging) are propagating and impacting the quality of resultant images. Without dealing with

such problems, we are not able to answer the more di�cult questions regarding the design and/or

the capability assessment of symmetric panorama acquisition systems. The paper �rst summarizes

the acquisition geometry followed by in-depth studies of algebraic parameter relations and error

analyses.
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1 Introduction

Panoramic imaging receives increasingly interest in the communities of computer vision and com-

puter graphics. In particular, stereoscopic panoramas providing 3D scene information are of great

interest for stereo visualization and shape reconstruction. Among possible stereoscopic panoramas

[WHK00], the symmetric panorama (see Sec. 2 for details) allows stereoscopic-viewable images and

supports the reuse of stereo-matching algorithms, previously developed for `traditional' binocular

stereo images.

The basic purpose of a stereoscopic panorama imaging system is being capable to acquire 3D

scenes of interest (1) in desired pictorial compositions and (2) having a su�cient diversity in depth

levels (disparities) demanded by the application. Design principles of a panoramic imaging system

have to pay attention to: (1) the relevant variation of 3D scenes of interest; (2) a desirable exibility

in adjustments of camera-to-scene distances and the availability of di�erent angles of lenses with

respect to di�ering demands for �elds of view; (3) the desired controllability of possible depth



levels for the intentioned application (e.g. de�ned by the screen resolution in case of stereoscopic

visualization).

These aspects result into design-questions/issues which need to be answered/considered in order

of building a stereoscopic panorama imaging system. Given is a family of 3D scenes of interest, an

interval of possible distances between camera and closest scene objects, and a scale of depth levels

demanded in the application. What should be the value of the radius R of the focal circle and what

are the relevant intervals for projection angles ! (see Sec. 2 for the de�nitions) of a stereoscopic

panorama imaging system? On the other hand, since the radius of the focal circle and the interval of

projection angles are limited due to physical/cost constraints, given the realizable/available radius

and angle intervals, what is the family of 3D scenes, the interval of camera-to-scene distances and

the scale of depth levels of a system following these constraints? Furthermore, what are possible

errors which can a�ect the result (scene decomposition and depth levels) using the designed system,

and by how much these errors can a�ect the result?

To answer questions like these, basic relations between application requirements, image acquisi-

tion models, and speci�cations of given families of 3D scenes need to be understood. Unfortunately,

the analysis of such relations is not yet discussed in the literature on panoramic imaging. Previous

studies pay great attention on how the proposed imaging approach could support a chosen area

of application [IYT92, Che95, SS97, WHK99, PBE99, SKS99, SH99, Sei01]. This paper discusses

basic relations and error analysis for symmetric panoramic imaging.

The paper is organized as follows. Section 2 briey reviews the acquisition geometry and

supporting models for analysis. Section 3 discusses the analysis of basic relations and interprets

the obtained results geometrically. Section 4 performs error analysis and demonstrates the results

for typical image acquisition situations. Conclusions and orientations for future work are given at

the end of the paper.

2 Acquisition Geometry

The conceptual model and an implementation of stereoscopic panoramic image acquisition (using

a line camera) is depicted in Fig. 1(A) and (B). Fundamental geometric studies for this model

are reported in [HWK01]. The focal point C of a slit camera [RS97] is rotated with respect to a

rotation center O. The optical axis must pass through both O and C. The e�ective focal length,

denoted as f , and the CCD element size (or pixel size), denoted as u, are assumed to be given.

The circle describing the path of all focal points during rotation is called focal circle. The

distance between the slit camera's focal point and the rotation axis, denoted as R, remains constant

for a stereoscopic panorama imaging process. The angular interval of every subsequent rotation

step is assumed to be constant.

Each slit image contributes one column to a panoramic image of dimensionWP�HP (in pixels).

An angle ! is de�ned by the angle between the normal vector of the focal circle at the associated

focal point, and the optical axis of the slit camera. A panoramic pair of ! and (360� � !) is

referred to as a symmetric pair. The epipolar geometry of such a symmetric pair is characterized

by epipolar lines being image rows [HWK01]. This paper focuses on this symmetric case.

We consider two main demands for image acquisitions: �rst, allow proper scene composition

(coverage of important scene features, su�cient representation of geometric complexity etc.) in

resultant images, and second, allow desirable depth levels (or spatial disparities) over a family
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Figure 1: (A) The stereoscopic panoramic imaging model. See text for details. (B) Stereoscopic

panorama camera at the space sensory institute of DLR (German Aerospace Center).

of scenes of interest in the resultant images. The analysis of algebraic relations, ensuring that

requirements can be met, requires a de�nition of a mathematical model and a precise speci�cation

of parameters involved.

Region of Interest: We propose a simple model consisting of two concentric cylinders, where

the smaller one has radius D1 and the larger one has radius D2, with D1 < D2. The space

between both cylinders contains the region of interest (RoI ), which is also limited in height due

to the distance between camera and RoIs described below. Accurate distance values or stereo

visualizations are desirable for the RoI.

Distance of Camera to RoI: In order to compose a scene within the RoI properly into resultant

images, the distance between C and points on the smaller cylinder needs to be estimated. (ideally,

it should be constant for a 360� panorama acquisition, but this might be in conict with further

constraints). We denote the distance as H1. The valid interval of H1 is lower-bounded by the

minimum focusable distance, and it is H1 < 2�D1 because the camera is assumed to be inside of

the smaller cylinder.

Resolution: Since the resolution WP limits the possible depth level/disparity in the resultant

stereoscopic images, we assume WP > dr, where dr is the possible disparity maximum in an

application. The formula for computing WP of a 360� panorama is as follows,

WP =
2�f

u

D1

H1

: (1)

Depth Level, Disparity, and Angular Disparity: Angular disparity is de�ned by the angle

between two rays, starting at O and passing through a pair of corresponding projections of a 3D

point. A 3D point de�nes two angular disparities on cylinders of radius D1 or D2 and these are

denoted as �1 and �2. The width of the angular disparity interval (for one 3D scene point) is

equal to �r = �2 � �1. Spatial (`normal') disparities in image space are denoted as d1 and d2,

corresponding to �1 and �2. Similarly, dr = d2�d1 is the width of the disparity interval. Note that

all dr values are measured along image rows for a symmetric pair. The conversion between �r and
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Figure 2: The acquisition geometry of symmetric panoramas, (A) and (B) are before and after the

transformation de�ned in the text.

dr is

�r =
2�dr

WP

: (2)

The potential intervals of �r and dr are 0
� < �r < 180� and 0 < dr <

WP

2
.

The acquisition geometry of symmetric panoramas is shown in Fig. 2. The two triangles

4OP1C1 and 4OP2C2 in Fig. 2(A) can be transformed such that the point C1 coincides with

the point C2 (i.e. a rotation transformation of �r degrees with respect to O). The geometry of

these two triangles after the transformation is depicted in Fig. 2(B).

3 Analysis of Parameter Relations

From Fig. 2(B), R and ! can be found in terms of D1, D2, H1 and �r. We have

R =

s
D2
1 +H2

1 + 2D1H1

D1 �D2 cos �rp
D2
1 +D2

2 � 2D1D2 cos �r
; (3)

and

! = arccos

0
@ D1D2 cos �r �D2

1 �H1

p
Aq

A(D2
1 +H2

1 ) + 2D1H1(D1 �D2 cos �r)
p
A

1
A ; (4)

where A = (D2
1 +D2

2 � 2D1D2 cos �r).
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Figure 3: The geometry of the changes in D1 values and related changes in R and !.

If one of the values D1, D2, H1 and �r varies and the other three are kept constant, both the

values of R and ! vary correspondingly. In this section, we study how the change of each of D1,

D2, H1 and �r a�ects the change of each of R and !.

3.1 How does the change of D1 a�ect R and !?

The value of D1 is de�ned to be in the interval between 0 and D2 exclusively. The geometry of

changing D1 values versus changes in R and ! values is depicted in Fig. 3.

When D1 goes to one of the two extreme values 0 or D2, the values of R are denoted as R�
and R+ respectively. These can be written in limit notation as follows:

lim
D1!0+

R = R�; and lim
D1!D

�

2

R = R+:

Using Eq. 3, it can easily be shown that R� = H1, and the value of R+ is as follows:

R+ =

s
D2
2 +H2

1 + 2D2H1 sin

�
�r

2

�
: (5)

Similarly for !, we write

lim
D1!0+

! = !�; and lim
D1!D

�

2

! = !+:

From Eq. 4, it can easily be shown that !� = 180�, and the value of !+ is as follows:

!+ = arccos

0
@ �H1 �D2 sin

�
�r

2

�
q
D2
2 +H2

1 + 2D2H1 sin
�
�r

2

�
1
A :

From Eq. 5 we know that R+ > H1, i.e. R+ > R�. Moreover, from Fig. 3, we may observe

that R+ is the upper bound of R for all values of D1 in the interval (0,D2). In other words, the

value of R reaches its maximum when D1 goes to D2.
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Figure 4: The geometry of changes in D2 values and related changes of R and !. In case (1) we

have D1 � H1, and in case (2) we have D1 < H1.

From Fig. 3, we may observe that when the value of D1 is increased from 0 to D2, the value

of R starts at R�, decreases �rst and then increases again till it reaches its maximum R+. There

exists a minimum value of R, denoted as Rmin. Let D1 = D1minR when R reaches its minimum

value, Rmin. The values of D1minR and Rmin can be found by setting the �rst derivative equation

of R equal to zero, and solving it with respect to D1.

Similarly, from Fig. 3, we may also observe that when the value of D1 is increased from 0 to

D2, the value of ! starts at !� (i.e. 180�), decreases �rst and then increases again till it reaches

its maximum !+. There exist a minimum value of !, denoted as !min. Let D1 = D1min! when

! reaches its minimum value, !min. The values of D1min! and !min can be found by setting the

�rst derivative equation of ! equal to zero, and solving it with respect to D1.

Although the potential interval of D1 is from 0 to D2 exclusively, the valid interval of D1 is

smaller than the potential interval to ensure that the constraint R < D1 holds. Since the functions

of R and ! as shown in Eq. 3 and Eq. 4, are continuous over the potential interval of D1, the

valid interval of D1 is an opened subinterval of (0; D2). The valid interval of D1 is denoted as

(D1�; D1+), and it contains the values of D1minR and D1min! .

3.2 How does a change of D2 a�ect R and !?

The value of D2 is de�ned to be in the interval between D1 and 1 exclusively. The geometry of

changes in D2 versus changes in R and ! is depicted in Fig. 4. We separate the study into two

cases: (1) D1 � H1, and (2) D1 < H1.

For both cases, when the value of D2 goes to these two extreme values D1 and 1, the values

of R are denoted as R� and R+ respectively. These can be written in limit notation as:

lim
D2!D

+

1

R = R�; and lim
D2!1

R = R+:

The value of R� can be derived from Eq. 3, and is as follows:

R� =

s
D2
1
+H2

1
+ 2D1H1 sin

�
�r

2

�
:
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From Fig. 4, we observe that the value of R+ is

R+ =

q
D2
1 +H2

1 � 2D1H1 cos(�r):

Similarly for !, we write

lim
D2!D

+

1

! = !�; and lim
D1!1

! = !+:

The value of !� can be derived from Eq. 4, and is as follows:

!� = arccos

0
@ �H1 �D1 sin

�
�r

2

�
q
D2
1 +H2

1 + 2D1H1 sin
�
�r

2

�
1
A :

From Fig. 4, we observe that the value of !+ is

!+ = 180� � arccos

 
H1 �D1 cos(�r)p

D2
1 +H2

1 � 2D1H1 cos(�r)

!
:

In both cases (1) and (2), we observe that R+ < R� and the value of R decreases as the value

of D2 increases (i.e. the function R is decreasing monotonically on the interval D2 in (D1;1)).

Thus, R+ is the lower bound of R and R� is the upper bound of R.

In case (1), when D1 � H1, we observe that !+ < !� and the value of ! decreases as the value

of D2 increases (i.e. the function ! is decreasing monotonically on the interval D2 in (D1;1)).

Thus, !+ is the lower bound of ! and !� is the upper bound of !.

In case (2), when D1 < H1, we observe that when the value of D2 is increased from D1 to 1,

the value of ! starts at !�, decreases �rst and then increases again till it reaches its maximum

!+. There exist a minimum value of !, denoted as !min. Let D2 = D2min! when ! reaches its

minimum value, !min. The values of D2min! and !min can be found by letting the �rst derivative

equation of ! equal to zero, and solving it with respect to D2.

Although the potential interval of D2 is from D1 to 1 exclusively, the valid interval of D2

such that the constraint R < D1 holds is smaller than the potential interval. Since the functions

of R and ! as shown in Eq. 3 and Eq. 4 are continuous over the potential interval of D2, the

valid interval of D2 is an opened subinterval of (D1;1). The valid interval of D2 is denoted as

(D2�; D2+), and it contains the value D2min!.

3.3 How does the change of H1 a�ect R and !?

Ideally, the value of H1 can be any non-zero positive real number. The geometry of changing H1

values versus changes in R and ! values is depicted in Fig. 5.

When the value of H1 goes to its extremes, the corresponding values of R go to R� and R+,

and can be written as

lim
H1!0+

R = R�; and lim
H1!1

R = R+:
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Figure 5: The geometry of changes in H1 values and the related changes of R and !.

From Eq. 3, it can easily be shown that R� = D1, and it is obvious that R+ =1.

Similarly for !, we write

lim
H1!0+

! = !�; and lim
H1!1

! = !+:

From Eq. 4, it can easily be shown that !+ = 180�, and the value of !� is as follows:

!� = arccos

 
D2 cos(�r)�D1p

D2
1
+D2

2
� 2D1D2 cos(�r)

!
:

From Fig. 5, we may observe that when the value of H1 is increased from 0 to 1, the value of

R starts at R� (i.e. D1), decreases �rst and then increases towards 1. There exist a minimum

value of R, denoted as Rmin. Let H1 = H1minR when R reaches to its minimum value, Rmin. The

values of H1minR and Rmin can be found by solving the �rst derivative equation of R (set it equal

to zero) with respect to D1.

H1minR =
D1(D1 �D2 cos(�r))p

D2
1 +D2

2 � 2D1D2 cos(�r)
:

From Fig. 5, we may also observe that the value of ! increases as the value of H1 decreases (i.e.

the function ! is increasing monotonically on the interval H1 in (0;1)). Thus, !� is the lower

bound of !.

Although the potential interval of H1 is from 0 to 1 exclusively, the valid interval of H1 such

that the constraint R < D1 holds is smaller than the potential interval. Since the functions of R

and ! as shown in Eq. 3 and Eq. 4 are continuous over the potential interval ofH1, the valid interval

of H1 is an opened subinterval of (0;1). The valid interval of H1 is denoted as (H1�; H1+), and

it contains the value of H1minR. We have H1� = 0 and

H1+ =
2D1(D1 �D2 cos(�r))p
D2
1 +D2

2 � 2D1D2 cos(�r)
:
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4 Error Analysis

The determination of R and ! requires values of dr, f , u, D1, D2, and H1. In this paper we

only consider three independent errors introduced by independent measurements of D1, D2, and

H1. We are interested in observing how each of these measurement errors a�ects the application

requirements, namely the possible scale of image disparities dr and the camera-to-scene direction

H1, which inuences the vertical �eld of view.

The errors of D1, D2, and H1 are denoted as "D1
, "D2

, and "H1
, respectively. They are real

numbers. The estimated values of D1, D2, and H1 are denoted and de�ned as D̂1 = D1 + "D1
,

D̂2 = D2 + "D2
, and Ĥ1 = H1 + "H1

.

4.1 Parameter Dependency

In order to study how an error prorogates from an initial input value to the �nal resulting value,

we must clarify the dependency among all the parameters. In this subsection, we list algebraic

dependencies following the steps of an acquisition procedure. The notation Y = fY (X1; X2; : : : ; Xn)

means that parameter Y depends on parameters X1; X2; : : : ; Xn. In other words, parameter Y is

a function of variables X1; X2; : : : ; Xn.

The number of slit images taken for a 360� view (i.e. the number of image columns WP )

is calculated based on values of f , u, D1, and H1, which is shown in Eq. 1. We write WP =

fWP
(f; u;D1; H1). The angular disparity width �r is determined by the image disparity width dr

and the number of image columns WP , as shown in Eq. 2: we have �r = f�r(dr;WP ).

A suitable value of R for image acquisition is determined according to the values of D1, D2,

H1, and �r, which is shown in Eq. 3. Thus, we have R = fR(D1; D2; H1; �r). The camera viewing

angle ! is determined also according to the values of D1, D2, H1, and �r, which is shown in Eq. 4.

Hence, we have ! = f!(D1; D2; H1; �r).

Now consider a case where values of R and ! are used for image acquisition as calculated by our

formulas in Eq. 3 and Eq. 4. Exactly these values are assumed to set up a camera and to capture

images in a real 3D scene with a RoI represented by D1 and D2. We may backtrack the values of

H1 and �r according to the values of R, !, D1 and D2. The value of H1 can be calculated by the

following formula:

H1 =

r
D2
1 +R2 cos(2�) + 2R cos(�)

q
D2
1 �R2 sin2(�); (6)

where � = (180� � !). So, we may write H1 = fH1
(D1; R; !). The value of �r can be calculated

by the following formula:

�r = arcsin

�
R

D1D2

sin(!)

�q
D2
2 �R2 sin2(!)�

q
D2
1 �R2 sin2(!)

��
; (7)

Thus, we have �r = f�r(D1; D2; R; !). Assuming an error free process, then the values H1 and �r
calculated here (after image acquisition) should be identical to the originally stated requirements.

Furthermore, the image disparity width can be obtained from the values of �r and WP . So,

�nally we have dr = fdr(�r;WP ).

9



4.2 Error of D1

The calculation of the number of image columns depends on D1. If the value of D̂1 contains an

error (i.e. j"D1
j > 0), then we obtain an incorrect value of WP , denoted as ŴP . Using this value

of ŴP to calculate �r we obtain an incorrect value of �r denoted as �̂r.

Both functions of R and ! in Eqs. 3 and 4 are functions of four variables D1, D2, H1 and �r.

So, if the values of ŴP and �̂r contain errors, then the determined values of R and ! also contain

errors. The errors of R and ! are denoted as "R and "! respectively and they are de�ned as

"R = R̂�R;

= fR(D̂1; D2; H1; �̂r)� fR(D1; D2; H1; �r)

and

"! = !̂ � !;

= f!(D̂1; D2; H1; �̂r)� f!(D1; D2; H1; �r):

D1 D2 H1 WP �d R �

(1) 1 5 1.2 16232 10.48 0.2359 151.10

(2) 4 20 4.2 18550 9.17 0.4555 118.87

(3) 6 50 5.5 21249 8.00 0.6768 44.66

(4) 20 200 20.0 19478 8.74 1.6942 92.43

HP = 5184 (pixels) u = 0.007 (mm)

HS = 768 (pixels) f = 21.7 (mm)

Table 1: Four practical examples: (1) close-range indoor, (2) far-range indoor, (3) close-range

outdoor, and (4) far-range outdoor scenes.

We de�ne four examples in Tab. 1. The numerical relationships between errors of D1 and

errors of R and ! is documented in Tab. 2 for these four examples. All the errors are measured in

percentage. The error interval of D1 is in [�10%;+10%].

When the error of D1 is increasing from �10% to +10%, the error of R in our four examples

has di�erent changing behavior. Let us observe how "R changes in each example according to the

studies in Sec. 3. In fact the �10% error interval of D1 may be considered to be a very small

interval of the interval of possible D1 values. For example, in case (1), when "D1
changes from

�10% to +10%, "R changes from 38:37%, decreasing monotonically, to �33:02%, which means

the interval of a �10% error of D1 does not contain the value D1minR (i.e. when R reaches its

minimum). In the example (4), "R changes from 57:57%, decreasing and reaching a minimum

when "D1
= 0, then increases again, to 52:49%, which means the value D1minR roughly lies at the

center of the error interval of D1.

When the error of D1 is increasing from �10% to +10%, the errors of ! in our four examples

decrease monotonically, which means that the error interval of D1 dose not contain the value

D1min! . This is because the value of D1min! is very small in most cases.

The values of R̂ and !̂ are used to calculateH1 and �r using the equations shown in Eqs. 6 and 7.

We obtain values Ĥ1 and
^̂
�r, and both contain errors. Finally, the image disparity width can be

10



obtained, denoted as d̂r, which also contains an error. The errors introduced in the obtained Ĥ1

and d̂r values are denoted as "H1
and "dr respectively.

The relations between "D1
and "H1

and "dr (for our four examples) are numerically documented

in Tab. 2 and graphically in Fig. 6. The relations between these errors are approximately linear,

and the quantities are relatively close. Note that although the error of D1 does have signi�cant

impact on the estimated values of R̂ and !̂, the resulting values of Ĥ1 and d̂r have only � �10%
error, which might be acceptable for some applications.

1D

1D

�
(%) ˆ

1D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 0.90 0.3264 38.37 160.08 5.95 61.4 -12.24 1.3007 8.39

-8 0.92 0.3078 30.49 158.71 5.04 63.1 -9.84 1.2805 6.71

-6 0.94 0.2894 22.69 157.17 4.02 64.8 -7.42 1.2604 5.03

-4 0.96 0.2712 14.99 155.41 2.86 66.5 -4.97 1.2402 3.36

-2 0.98 0.2534 7.42 153.40 1.53 68.3 -2.50 1.2201 1.68

0 1.00 0.2359 0.00 151.10 0.00 70.0 0.00 1.2000 0.00

2 1.02 0.2188 -7.23 148.42 -1.77 71.8 2.52 1.1798 -1.68

4 1.04 0.2023 -14.22 145.31 -3.83 73.5 5.07 1.1597 -3.35

6 1.06 0.1866 -20.90 141.65 -6.25 75.4 7.64 1.1396 -5.03

8 1.08 0.1717 -27.21 137.33 -9.11 77.2 10.24 1.1195 -6.71

10 1.10 0.1580 -33.02 132.24 -12.48 79.0 12.87 1.0993 -8.39

1D

1D

�
(%) ˆ

1D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 3.60 0.7332 60.83 147.92 24.44 61.4 -12.23 4.6023 9.57

-8 3.68 0.6677 46.45 144.12 21.24 63.1 -9.83 4.5218 7.66

-6 3.76 0.6058 32.87 139.51 17.37 64.8 -7.41 4.4414 5.74

-4 3.84 0.5487 20.34 133.91 12.66 66.5 -4.97 4.3609 3.83

-2 3.92 0.4980 9.23 127.09 6.92 68.3 -2.50 4.2805 1.91

0 4.00 0.4559 0.00 118.87 0.00 70.0 0.00 4.2000 0.00

2 4.08 0.4250 -6.78 109.22 -8.11 71.8 2.52 4.1197 -1.91

4 4.16 0.4078 -10.57 98.42 -17.20 73.5 5.07 4.0393 -3.83

6 4.24 0.4059 -10.97 87.11 -26.71 75.3 7.64 3.9590 -5.74

8 4.32 0.4197 -7.94 76.13 -35.95 77.2 10.23 3.8786 -7.66

10 4.40 0.4477 -1.80 66.19 -44.32 79.0 12.86 3.7982 -9.57

1D

1D

�
(%) ˆ

1D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 5.40 0.4844 -28.43 104.37 133.68 62.1 -11.23 6.1018 10.95

-8 5.52 0.4705 -30.48 89.98 101.47 63.7 -9.01 5.9814 8.76

-6 5.64 0.4869 -28.05 75.68 69.44 65.3 -6.78 5.8610 6.57

-4 5.76 0.5308 -21.56 63.03 41.12 66.8 -4.53 5.7405 4.38

-2 5.88 0.5962 -11.91 52.73 18.05 68.4 -2.27 5.6202 2.19

0 6.00 0.6768 0.00 44.66 0.00 70.0 0.00 5.5000 0.00

2 6.12 0.7678 13.45 38.41 -14.00 71.6 2.28 5.3794 -2.19

4 6.24 0.8660 27.96 33.53 -24.82 73.2 4.58 5.2590 -4.38

6 6.36 0.9692 43.21 29.67 -33.58 74.8 6.89 5.1387 -6.57

8 6.48 1.0759 58.98 26.56 -40.54 76.4 9.21 5.0183 -8.75

10 6.60 1.1852 75.13 24.02 -46.23 78.1 11.54 4.8980 -10.94
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�
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��

�
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d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 18.0 2.6674 57.57 141.17 52.73 62.3 -11.01 22.008 10.04

-8 18.4 2.3708 40.05 135.01 46.06 63.8 -8.83 21.606 8.03

-6 18.8 2.1092 24.59 127.21 37.62 65.4 -6.64 21.205 6.02

-4 19.2 1.8971 12.07 117.44 27.05 66.9 -4.43 20.803 4.01

-2 19.6 1.7525 3.53 105.66 14.31 68.4 -2.22 20.402 2.01

0 20.0 1.6928 0.00 92.43 0.00 70.0 0.00 20.000 0.00

2 20.4 1.7268 2.01 79.01 -14.52 71.6 2.23 19.600 -2.01

4 20.8 1.8493 9.24 66.74 -27.80 73.1 4.47 19.197 -4.01

6 21.2 2.0444 20.77 56.40 -38.98 74.7 6.73 18.796 -6.02

8 21.6 2.2937 35.49 48.08 -47.98 76.3 8.99 18.395 -8.03

10 22.0 2.5814 52.49 41.51 -55.10 77.9 11.26 17.994 -10.03

Example (1)

Example (4)Example (3)

Example (2)

Table 2: The propagation of errors of D1 to Ĥ1 and d̂r.

Error of D 1 vs. error of d

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

-10 -8 -6 -4 -2 0 2 4 6 8 10

Error of D 1 in %

E
rr

o
r

o
f
d

in
%

Error of D 1 vs. error of H 1

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

-10 -8 -6 -4 -2 0 2 4 6 8 10

Error of D 1 in %

E
rr

o
r

o
f
H

1
in

% Example (2)

Example (3)

Example (4)

Example (1)

Figure 6: The errors of D1 vs. errors of H1 and dr.
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4.3 Error of D2

If the value of the estimated D̂1 contains an error (i.e. j"D1
j > 0), then we obtain an incorrect

value of R and !, denoted as R̂ and !̂. The errors of R and ! are denoted as "R and "! respectively

and they are de�ned as

"R = R̂�R;

= fR(D1; D̂2; H1; �r)� fR(D1; D2; H1; �r)

and

"! = !̂ � !;

= f!(D1; D̂2; H1; �r)� f!(D1; D2; H1; �r):

We refer again to our four examples de�ned in Tab. 2. An error in D2 produces errors in R

and ! which are shown in Tab. 3 in percentage. The error interval of D2 is in [�10%;+10%].

When the error of D2 is increasing from �10% to +10%, the error of R decreases monotonically

in our four examples. This is because R is decreasing monotonically on the valid interval of D2, as

stated in Sec. 3.2. The quantity of the error of R introduced by "D2
is much smaller in comparison

to "D1
. In particular for the examples (1) and (2), both belonging to the case of D1 < H1, when

the error of D2 is increased from �10% to +10%, the error of ! decrease monotonically and the

error interval of D2 dose not contain the value D2min! for both examples.

Since the values of R̂ and !̂ are used to calculate H1 and �r, using Eqs. 6 and 7 we have Ĥ1

and �̂r. Similarly, the image disparity width can be obtained and denoted as d̂r.

The errors introduced in the obtained Ĥ1 and d̂r are denoted as "H1
and "dr respectively. The

relation between "D1
and each of "H1

and "dr is shown in Tab. 3. We obtain that "H1
= 0, which

means

Ĥ1 = fH1
(D1; R̂; !̂) = H1:

This suggests "D2
has no impact on H1. Figure 7 shows the plot of D̂2 vs. "dr .
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Figure 7: The errors of D2 vs. error of dr.
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2D

2D

�
(%) ˆ

2D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 4.50 0.2378 0.81 150.46 -0.42 72.0 2.85 1.2000 0.00

-8 4.60 0.2373 0.63 150.60 -0.33 71.6 2.22 1.2000 0.00

-6 4.70 0.2369 0.46 150.73 -0.24 71.1 1.62 1.2000 0.00

-4 4.80 0.2366 0.30 150.86 -0.16 70.7 1.05 1.2000 0.00

-2 4.90 0.2362 0.14 150.98 -0.08 70.4 0.51 1.2000 0.00

0 5.00 0.2359 0.00 151.10 0.00 70.0 0.00 1.2000 0.00

2 5.10 0.2355 -0.14 151.21 0.07 69.7 -0.49 1.2000 0.00

4 5.20 0.2352 -0.27 151.31 0.14 69.3 -0.95 1.2000 0.00

6 5.30 0.2349 -0.39 151.41 0.21 69.0 -1.39 1.2000 0.00

8 5.40 0.2347 -0.51 151.51 0.27 68.7 -1.81 1.2000 0.00

10 5.50 0.2344 -0.62 151.60 0.33 68.4 -2.22 1.2000 0.00

2D

2D

�
(%) ˆ

2D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 18.0 0.4664 2.30 118.32 -0.46 72.0 2.85 4.2000 0.00

-8 18.4 0.4641 1.79 118.44 -0.36 71.6 2.22 4.2000 0.00

-6 18.8 0.4619 1.31 118.55 -0.26 71.1 1.62 4.2000 0.00

-4 19.2 0.4598 0.85 118.66 -0.17 70.7 1.05 4.2000 0.00

-2 19.6 0.4578 0.41 118.77 -0.08 70.4 0.51 4.2000 0.00

0 20.0 0.4559 0.00 118.87 0.00 70.0 0.00 4.2000 0.00

2 20.4 0.4541 -0.39 118.96 0.08 69.7 -0.49 4.2000 0.00

4 20.8 0.4524 -0.77 119.06 0.16 69.3 -0.95 4.2000 0.00

6 21.2 0.4508 -1.12 119.14 0.23 69.0 -1.39 4.2000 0.00

8 21.6 0.4493 -1.46 119.23 0.31 68.7 -1.81 4.2000 0.00

10 22.0 0.4478 -1.78 119.31 0.38 68.4 -2.22 4.2000 0.00

2D

2D

�
(%) ˆ

2D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 45.0 0.6815 0.70 45.13 1.05 71.1 1.54 5.5000 0.00

-8 46.0 0.6804 0.55 45.03 0.82 70.8 1.20 5.5000 0.00

-6 47.0 0.6795 0.40 44.93 0.60 70.6 0.88 5.5000 0.00

-4 48.0 0.6785 0.26 44.84 0.39 70.4 0.57 5.5000 0.00

-2 49.0 0.6776 0.13 44.75 0.19 70.2 0.28 5.5000 0.00

0 50.0 0.6768 0.00 44.66 0.00 70.0 0.00 5.5000 0.00

2 51.0 0.6759 -0.12 44.58 -0.18 69.8 -0.27 5.5000 0.00

4 52.0 0.6752 -0.24 44.50 -0.36 69.6 -0.52 5.5000 0.00

6 53.0 0.6744 -0.35 44.43 -0.53 69.5 -0.77 5.5000 0.00

8 54.0 0.6737 -0.45 44.35 -0.69 69.3 -1.00 5.5000 0.00

10 55.0 0.6730 -0.55 44.28 -0.85 69.1 -1.22 5.5000 0.00

2D

2D

�
(%) ˆ

2D R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%) ˆ

1H
1H

1H

�
(%)

-10 180.0 2.6674 1.25 92.46 0.03 70.9 1.25 20.000 0.00

-8 184.0 2.3708 0.97 92.46 0.03 70.7 0.97 20.000 0.00

-6 188.0 2.1092 0.71 92.45 0.02 70.5 0.71 20.000 0.00

-4 192.0 1.8971 0.46 92.44 0.01 70.3 0.46 20.000 0.00

-2 196.0 1.7525 0.23 92.44 0.01 70.2 0.23 20.000 0.00

0 200.0 1.6928 0.00 92.43 0.00 70.0 0.00 20.000 0.00

2 204.0 1.7268 -0.22 92.43 -0.01 69.8 -0.22 20.000 0.00

4 208.0 1.8493 -0.42 92.42 -0.01 69.7 -0.42 20.000 0.00

6 212.0 2.0444 -0.62 92.42 -0.02 69.6 -0.62 20.000 0.00

8 216.0 2.2937 -0.81 92.41 -0.02 69.4 -0.82 20.000 0.00

10 220.0 2.5814 -1.00 92.41 -0.03 69.3 -1.00 20.000 0.00

Example (1)

Example (4)Example (3)

Example (2)

Table 3: The propagation of errors of D2 to Ĥ1 and d̂r.

4.4 Error of H1

If the absolute value of the error of H1 is greater than zero (i.e. j"H1
j > 0), then we obtain an

incorrect value of WP , denoted as ŴP , because the calculation of the number of image columns

depends on D1. Then, using the value of ŴP we obtain �̂r.

Both functions for R and ! in Eqs. 3 and 4 are functions of four variables D1, D2, H1 and �r.

So, if the estimated values of ŴP and �̂r contain errors, then the determined values of R and !

also contain errors. The errors of R and ! are denoted as "R and "! respectively and they are

de�ned as

"R = R̂�R;

= fR(D1; D2; Ĥ1; �̂r)� fR(D1; D2; H1; �r)

and

"! = !̂ � !;

= f!(D1; D2; Ĥ1; �̂r)� f!(D1; D2; H1; �r):

We refer to our four acquisition examples again to show the relation between the error of H1

and the errors of R and ! see Tab. 4. The error interval of H1 is in [�10%;+10%]. The values of
R̂ and !̂ are used to calculate �r using the equation shown in Eq. 7. We obtain the previous value

of �̂r. Hence, there is no error in the obtained dr value.
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1H

1H

�
(%) ˆ

1H R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%)

-10 1.080 0.1334 -43.43 129.71 -14.16 70.0 0.00

-8 1.104 0.1516 -35.71 136.22 -9.85 70.0 0.00

-6 1.128 0.1714 -27.34 141.28 -6.49 70.0 0.00

-4 1.152 0.1922 -18.51 145.28 -3.85 70.0 0.00

-2 1.176 0.2138 -9.37 148.48 -1.73 70.0 0.00

0 1.200 0.2359 0.00 151.10 0.00 70.0 0.00

2 1.224 0.2584 9.55 153.26 1.43 70.0 0.00

4 1.248 0.2812 19.23 155.07 2.63 70.0 0.00

6 1.272 0.3043 29.01 156.61 3.65 70.0 0.00

8 1.296 0.3276 38.88 157.93 4.52 70.0 0.00

10 1.320 0.3510 48.81 159.08 5.28 70.0 0.00

1H

1H

�
(%) ˆ

1H R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%)

-10 4.95 1.1200 65.50 22.48 -49.67 70.0 0.00

-8 5.06 1.0226 51.11 25.34 -43.26 70.0 0.00

-6 5.17 0.9284 37.18 28.8 -35.52 70.0 0.00

-4 5.28 0.8382 23.85 33.02 -26.07 70.0 0.00

-2 5.39 0.7536 11.36 38.22 -14.43 70.0 0.00

0 5.5 0.6768 0.00 44.66 0.00 70.0 0.00

2 5.61 0.6105 -9.78 52.63 17.83 70.0 0.00

4 5.72 0.5588 -17.43 62.29 39.47 70.0 0.00

6 5.83 0.5258 -22.31 73.53 64.64 70.0 0.00

8 5.94 0.5151 -23.89 85.74 91.98 70.0 0.00

10 6.05 0.5282 -21.95 97.9 119.19 70.0 0.00

1H

1H

�
(%) ˆ

1H R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%)

-10 180.0 2.6674 1.25 92.46 0.03 70.0 0.00

-8 184.0 2.3708 0.97 92.46 0.03 70.0 0.00

-6 188.0 2.1092 0.71 92.45 0.02 70.0 0.00

-4 192.0 1.8971 0.46 92.44 0.01 70.0 0.00

-2 196.0 1.7525 0.23 92.44 0.01 70.0 0.00

0 200.0 1.6928 0.00 92.43 0.00 70.0 0.00

2 204.0 1.7268 -0.22 92.43 -0.01 70.0 0.00

4 208.0 1.8493 -0.42 92.42 -0.01 70.0 0.00

6 212.0 2.0444 -0.62 92.42 -0.02 70.0 0.00

8 216.0 2.2937 -0.81 92.41 -0.02 70.0 0.00

10 220.0 2.5814 -1.00 92.41 -0.03 70.0 0.00

Example (1)

Example (4)Example (3)

Example (2)

1H

1H

�
(%) ˆ

1H R̂
R

R

�
(%) �̂

��

�
(%) d̂

d

d

�
(%)

-10 3.78 0.4132 -9.37 60.46 -49.13 70.0 0.00

-8 3.86 0.3862 -15.29 72.06 -39.38 70.0 0.00

-6 3.95 0.3770 -17.32 84.79 -28.67 70.0 0.00

-4 4.03 0.3867 -15.19 97.51 -17.97 70.0 0.00

-2 4.12 0.4141 -9.18 109.07 -8.24 70.0 0.00

0 4.2 0.4559 0.00 118.87 0.00 70.0 0.00

2 4.28 0.5087 11.58 126.82 6.69 70.0 0.00

4 4.37 0.5695 24.90 133.19 12.05 70.0 0.00

6 4.45 0.6358 39.45 138.28 16.33 70.0 0.00

8 4.54 0.7063 54.90 142.38 19.78 70.0 0.00

10 4.62 0.7797 71.00 145.73 22.60 70.0 0.00

Table 4: The propagation of errors of H1 to Ĥ1 and d̂r.

5 Conclusions and Future Work

This paper de�ned a new approach towards the study of basic algebraic relations between ap-

plication requirements, image acquisition models, and speci�cations of a RoI in 3D scenes. The

paper analyzed how application-speci�c parameters a�ect the imaging parameters, and what are

possible intervals of values of these parameters. We also discussed error propagation, from the

measurements of application-speci�c parameters to the imaging parameters and �nally to the

application-requirement parameters. These propagations are explored and described for various

practical examples.

Although "D1
a�ects R and ! quadratically, the impacts to dr and H1 are approximately linear.

Similar statements can be made for for "D2
and "H1

, however, "D1
has stronger inuence in terms

of magnitude. Interestingly, "D2
has no impact on H1 and "H1

has no impact on dr.

In future work, we will answer the following questions: Which R value and what interval of

!should be chosen to built a camera for given intervals of D1 D2 H1 and �r which are de�ned by

an application? Furthermore, specifying possible intervals for R and !, what intervals of D1 D2

H1 and �r can be ensured by a panoramic imaging system?
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