Computer Science Department of The University of Auckland CITR at Tamaki Campus (http://www.citr.auckland.ac.nz)

Analysis of Symmetric Panorama Acquisition

Shou Kang Wei, Fay Huang, and Reinhard Klette ${ }^{1}$

Abstract

This paper reports about basic algebraic relations between parameters and an error analysis for symmetric panorama acquisition. Symmetric panoramas are of importance in computer vision, computer graphics, and stereoscopic imaging and display. Advantages of symmetric panoramas include the possible reuse of stereo matching algorithms previously developed for 3D reconstruction, and possible applications in stereoscopic visualization. This paper formulates and studies problems which have not yet been approached previously: algebraic relations between application-specific parameters and imaging parameters, and how errors (incurred from measurements during imaging) are propagating and impacting the quality of resultant images. Without dealing with such problems, we are not able to answer the more difficult questions regarding the design and/or the capability assessment of symmetric panorama acquisition systems. The paper first summarizes the acquisition geometry followed by in-depth studies of algebraic parameter relations and error analyses.

[^0]
Analysis of Symmetric Panorama Acquisition

Shou Kang Wei, Fay Huang and Reinhard Klette
CITR, Computer Science Department, The University of Auckland Tamaki Campus, Auckland, New Zealand

Abstract

This paper reports about basic algebraic relations between parameters and an error analysis for symmetric panorama acquisition. Symmetric panoramas are of importance in computer vision, computer graphics, and stereoscopic imaging and display. Advantages of symmetric panoramas include the possible reuse of stereo-matching algorithms previously developed for 3D reconstruction, and possible applications in stereoscopic visualization. This paper formulates and studies problems which have not yet been approached previously: algebraic relations between applicationspecific parameters and imaging parameters, and how errors (incurred from measurements during imaging) are propagating and impacting the quality of resultant images. Without dealing with such problems, we are not able to answer the more difficult questions regarding the design and/or the capability assessment of symmetric panorama acquisition systems. The paper first summarizes the acquisition geometry followed by in-depth studies of algebraic parameter relations and error analyses.

Keywords: panorama acquisition, symmetric panoramas, imaging parameters.

1 Introduction

Panoramic imaging receives increasingly interest in the communities of computer vision and computer graphics. In particular, stereoscopic panoramas providing 3D scene information are of great interest for stereo visualization and shape reconstruction. Among possible stereoscopic panoramas [WHK00], the symmetric panorama (see Sec. 2 for details) allows stereoscopic-viewable images and supports the reuse of stereo-matching algorithms, previously developed for 'traditional' binocular stereo images.

The basic purpose of a stereoscopic panorama imaging system is being capable to acquire 3D scenes of interest (1) in desired pictorial compositions and (2) having a sufficient diversity in depth levels (disparities) demanded by the application. Design principles of a panoramic imaging system have to pay attention to: (1) the relevant variation of 3D scenes of interest; (2) a desirable flexibility in adjustments of camera-to-scene distances and the availability of different angles of lenses with respect to differing demands for fields of view; (3) the desired controllability of possible depth
levels for the intentioned application (e.g. defined by the screen resolution in case of stereoscopic visualization).

These aspects result into design-questions/issues which need to be answered/considered in order of building a stereoscopic panorama imaging system. Given is a family of 3D scenes of interest, an interval of possible distances between camera and closest scene objects, and a scale of depth levels demanded in the application. What should be the value of the radius R of the focal circle and what are the relevant intervals for projection angles ω (see Sec. 2 for the definitions) of a stereoscopic panorama imaging system? On the other hand, since the radius of the focal circle and the interval of projection angles are limited due to physical/cost constraints, given the realizable/available radius and angle intervals, what is the family of 3D scenes, the interval of camera-to-scene distances and the scale of depth levels of a system following these constraints? Furthermore, what are possible errors which can affect the result (scene decomposition and depth levels) using the designed system, and by how much these errors can affect the result?

To answer questions like these, basic relations between application requirements, image acquisition models, and specifications of given families of 3D scenes need to be understood. Unfortunately, the analysis of such relations is not yet discussed in the literature on panoramic imaging. Previous studies pay great attention on how the proposed imaging approach could support a chosen area of application [IYT92, Che95, SS97, WHK99, PBE99, SKS99, SH99, Sei01]. This paper discusses basic relations and error analysis for symmetric panoramic imaging.

The paper is organized as follows. Section 2 briefly reviews the acquisition geometry and supporting models for analysis. Section 3 discusses the analysis of basic relations and interprets the obtained results geometrically. Section 4 performs error analysis and demonstrates the results for typical image acquisition situations. Conclusions and orientations for future work are given at the end of the paper.

2 Acquisition Geometry

The conceptual model and an implementation of stereoscopic panoramic image acquisition (using a line camera) is depicted in Fig. 1(A) and (B). Fundamental geometric studies for this model are reported in [HWK01]. The focal point \mathbf{C} of a slit camera [RS97] is rotated with respect to a rotation center \mathbf{O}. The optical axis must pass through both \mathbf{O} and \mathbf{C}. The effective focal length, denoted as f, and the CCD element size (or pixel size), denoted as u, are assumed to be given.

The circle describing the path of all focal points during rotation is called focal circle. The distance between the slit camera's focal point and the rotation axis, denoted as R, remains constant for a stereoscopic panorama imaging process. The angular interval of every subsequent rotation step is assumed to be constant.

Each slit image contributes one column to a panoramic image of dimension $W_{P} \times H_{P}$ (in pixels). An angle ω is defined by the angle between the normal vector of the focal circle at the associated focal point, and the optical axis of the slit camera. A panoramic pair of ω and $\left(360^{\circ}-\omega\right)$ is referred to as a symmetric pair. The epipolar geometry of such a symmetric pair is characterized by epipolar lines being image rows [HWK01]. This paper focuses on this symmetric case.

We consider two main demands for image acquisitions: first, allow proper scene composition (coverage of important scene features, sufficient representation of geometric complexity etc.) in resultant images, and second, allow desirable depth levels (or spatial disparities) over a family

Figure 1: (A) The stereoscopic panoramic imaging model. See text for details. (B) Stereoscopic panorama camera at the space sensory institute of DLR (German Aerospace Center).
of scenes of interest in the resultant images. The analysis of algebraic relations, ensuring that requirements can be met, requires a definition of a mathematical model and a precise specification of parameters involved.

Region of Interest: We propose a simple model consisting of two concentric cylinders, where the smaller one has radius D_{1} and the larger one has radius D_{2}, with $D_{1}<D_{2}$. The space between both cylinders contains the region of interest (RoI), which is also limited in height due to the distance between camera and RoIs described below. Accurate distance values or stereo visualizations are desirable for the RoI.

Distance of Camera to RoI: In order to compose a scene within the RoI properly into resultant images, the distance between \mathbf{C} and points on the smaller cylinder needs to be estimated. (ideally, it should be constant for a 360° panorama acquisition, but this might be in conflict with further constraints). We denote the distance as H_{1}. The valid interval of H_{1} is lower-bounded by the minimum focusable distance, and it is $H_{1}<2 \times D_{1}$ because the camera is assumed to be inside of the smaller cylinder.

Resolution: Since the resolution W_{P} limits the possible depth level/disparity in the resultant stereoscopic images, we assume $W_{P}>d_{r}$, where d_{r} is the possible disparity maximum in an application. The formula for computing W_{P} of a 360° panorama is as follows,

$$
\begin{equation*}
W_{P}=\frac{2 \pi f}{u} \frac{D_{1}}{H_{1}} . \tag{1}
\end{equation*}
$$

Depth Level, Disparity, and Angular Disparity: Angular disparity is defined by the angle between two rays, starting at \mathbf{O} and passing through a pair of corresponding projections of a 3D point. A 3D point defines two angular disparities on cylinders of radius D_{1} or D_{2} and these are denoted as θ_{1} and θ_{2}. The width of the angular disparity interval (for one 3D scene point) is equal to $\theta_{r}=\theta_{2}-\theta_{1}$. Spatial ('normal') disparities in image space are denoted as d_{1} and d_{2}, corresponding to θ_{1} and θ_{2}. Similarly, $d_{r}=d_{2}-d_{1}$ is the width of the disparity interval. Note that all d_{r} values are measured along image rows for a symmetric pair. The conversion between θ_{r} and

Figure 2: The acquisition geometry of symmetric panoramas, (A) and (B) are before and after the transformation defined in the text.
d_{r} is

$$
\begin{equation*}
\theta_{r}=\frac{2 \pi d_{r}}{W_{P}} \tag{2}
\end{equation*}
$$

The potential intervals of θ_{r} and d_{r} are $0^{\circ}<\theta_{r}<180^{\circ}$ and $0<d_{r}<\frac{W_{P}}{2}$.
The acquisition geometry of symmetric panoramas is shown in Fig. 2. The two triangles $\triangle \mathbf{O P}_{1} \mathbf{C}_{1}$ and $\triangle \mathbf{O P}_{2} \mathbf{C}_{2}$ in Fig. $2(\mathrm{~A})$ can be transformed such that the point \mathbf{C}_{1} coincides with the point \mathbf{C}_{2} (i.e. a rotation transformation of θ_{r} degrees with respect to \mathbf{O}). The geometry of these two triangles after the transformation is depicted in Fig. 2(B).

3 Analysis of Parameter Relations

From Fig. 2(B), R and ω can be found in terms of D_{1}, D_{2}, H_{1} and θ_{r}. We have

$$
\begin{equation*}
R=\sqrt{D_{1}^{2}+H_{1}^{2}+2 D_{1} H_{1} \frac{D_{1}-D_{2} \cos \theta_{r}}{\sqrt{D_{1}^{2}+D_{2}^{2}-2 D_{1} D_{2} \cos \theta_{r}}}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega=\arccos \left(\frac{D_{1} D_{2} \cos \theta_{r}-D_{1}^{2}-H_{1} \sqrt{A}}{\sqrt{A\left(D_{1}^{2}+H_{1}^{2}\right)+2 D_{1} H_{1}\left(D_{1}-D_{2} \cos \theta_{r}\right) \sqrt{A}}}\right) \tag{4}
\end{equation*}
$$

where $A=\left(D_{1}^{2}+D_{2}^{2}-2 D_{1} D_{2} \cos \theta_{r}\right)$.

Figure 3: The geometry of the changes in D_{1} values and related changes in R and ω.

If one of the values D_{1}, D_{2}, H_{1} and θ_{r} varies and the other three are kept constant, both the values of R and ω vary correspondingly. In this section, we study how the change of each of D_{1}, D_{2}, H_{1} and θ_{r} affects the change of each of R and ω.

3.1 How does the change of D_{1} affect R and ω ?

The value of D_{1} is defined to be in the interval between 0 and D_{2} exclusively. The geometry of changing D_{1} values versus changes in R and ω values is depicted in Fig. 3.

When D_{1} goes to one of the two extreme values 0 or D_{2}, the values of R are denoted as R_{-} and R_{+}respectively. These can be written in limit notation as follows:

$$
\lim _{D_{1} \rightarrow 0^{+}} R=R_{-}, \text {and } \lim _{D_{1} \rightarrow D_{2}^{-}} R=R_{+}
$$

Using Eq. 3, it can easily be shown that $R_{-}=H_{1}$, and the value of R_{+}is as follows:

$$
\begin{equation*}
R_{+}=\sqrt{D_{2}^{2}+H_{1}^{2}+2 D_{2} H_{1} \sin \left(\frac{\theta_{r}}{2}\right)} \tag{5}
\end{equation*}
$$

Similarly for ω, we write

$$
\lim _{D_{1} \rightarrow 0^{+}} \omega=\omega_{-}, \text {and } \lim _{D_{1} \rightarrow D_{2}^{-}} \omega=\omega_{+}
$$

From Eq. 4, it can easily be shown that $\omega_{-}=180^{\circ}$, and the value of ω_{+}is as follows:

$$
\omega_{+}=\arccos \left(\frac{-H_{1}-D_{2} \sin \left(\frac{\theta_{r}}{2}\right)}{\sqrt{D_{2}^{2}+H_{1}^{2}+2 D_{2} H_{1} \sin \left(\frac{\theta_{r}}{2}\right)}}\right)
$$

From Eq. 5 we know that $R_{+}>H_{1}$, i.e. $R_{+}>R_{-}$. Moreover, from Fig. 3, we may observe that R_{+}is the upper bound of R for all values of D_{1} in the interval ($0, D_{2}$). In other words, the value of R reaches its maximum when D_{1} goes to D_{2}.

Figure 4: The geometry of changes in D_{2} values and related changes of R and ω. In case (1) we have $D_{1} \geq H_{1}$, and in case (2) we have $D_{1}<H_{1}$.

From Fig. 3, we may observe that when the value of D_{1} is increased from 0 to D_{2}, the value of R starts at R_{-}, decreases first and then increases again till it reaches its maximum R_{+}. There exists a minimum value of R, denoted as $R_{\min }$. Let $D_{1}=D_{1 \min R}$ when R reaches its minimum value, $R_{\min }$. The values of $D_{1_{\min R}}$ and $R_{\min }$ can be found by setting the first derivative equation of R equal to zero, and solving it with respect to D_{1}.

Similarly, from Fig. 3, we may also observe that when the value of D_{1} is increased from 0 to D_{2}, the value of ω starts at ω_{-}(i.e. 180°), decreases first and then increases again till it reaches its maximum ω_{+}. There exist a minimum value of ω, denoted as $\omega_{\text {min }}$. Let $D_{1}=D_{1 \text { min } \omega}$ when ω reaches its minimum value, $\omega_{\min }$. The values of $D_{1 \min \omega}$ and $\omega_{\min }$ can be found by setting the first derivative equation of ω equal to zero, and solving it with respect to D_{1}.

Although the potential interval of D_{1} is from 0 to D_{2} exclusively, the valid interval of D_{1} is smaller than the potential interval to ensure that the constraint $R<D_{1}$ holds. Since the functions of R and ω as shown in Eq. 3 and Eq. 4, are continuous over the potential interval of D_{1}, the valid interval of D_{1} is an opened subinterval of $\left(0, D_{2}\right)$. The valid interval of D_{1} is denoted as $\left(D_{1_{-}}, D_{1+}\right)$, and it contains the values of $D_{1_{\min R}}$ and $D_{1_{\text {mina }}}$.

3.2 How does a change of D_{2} affect R and ω ?

The value of D_{2} is defined to be in the interval between D_{1} and ∞ exclusively. The geometry of changes in D_{2} versus changes in R and ω is depicted in Fig. 4. We separate the study into two cases: (1) $D_{1} \geq H_{1}$, and (2) $D_{1}<H_{1}$.

For both cases, when the value of D_{2} goes to these two extreme values D_{1} and ∞, the values of R are denoted as R_{-}and R_{+}respectively. These can be written in limit notation as:

$$
\lim _{D_{2} \rightarrow D_{1}^{+}} R=R_{-}, \text {and } \lim _{D_{2} \rightarrow \infty} R=R_{+}
$$

The value of R_{-}can be derived from Eq. 3, and is as follows:

$$
R_{-}=\sqrt{D_{1}^{2}+H_{1}^{2}+2 D_{1} H_{1} \sin \left(\frac{\theta_{r}}{2}\right)}
$$

From Fig. 4, we observe that the value of R_{+}is

$$
R_{+}=\sqrt{D_{1}^{2}+H_{1}^{2}-2 D_{1} H_{1} \cos \left(\theta_{r}\right)}
$$

Similarly for ω, we write

$$
\lim _{D_{2} \rightarrow D_{1}^{+}} \omega=\omega_{-}, \text {and } \lim _{D_{1} \rightarrow \infty} \omega=\omega_{+}
$$

The value of ω_{-}can be derived from Eq. 4, and is as follows:

$$
\omega_{-}=\arccos \left(\frac{-H_{1}-D_{1} \sin \left(\frac{\theta_{r}}{2}\right)}{\sqrt{D_{1}^{2}+H_{1}^{2}+2 D_{1} H_{1} \sin \left(\frac{\theta_{r}}{2}\right)}}\right)
$$

From Fig. 4, we observe that the value of ω_{+}is

$$
\omega_{+}=180^{\circ}-\arccos \left(\frac{H_{1}-D_{1} \cos \left(\theta_{r}\right)}{\sqrt{D_{1}^{2}+H_{1}^{2}-2 D_{1} H_{1} \cos \left(\theta_{r}\right)}}\right)
$$

In both cases (1) and (2), we observe that $R_{+}<R_{-}$and the value of R decreases as the value of D_{2} increases (i.e. the function R is decreasing monotonically on the interval D_{2} in $\left(D_{1}, \infty\right)$). Thus, R_{+}is the lower bound of R and R_{-}is the upper bound of R.

In case (1), when $D_{1} \geq H_{1}$, we observe that $\omega_{+}<\omega_{-}$and the value of ω decreases as the value of D_{2} increases (i.e. the function ω is decreasing monotonically on the interval D_{2} in $\left(D_{1}, \infty\right)$). Thus, ω_{+}is the lower bound of ω and ω_{-}is the upper bound of ω.

In case (2), when $D_{1}<H_{1}$, we observe that when the value of D_{2} is increased from D_{1} to ∞, the value of ω starts at ω_{-}, decreases first and then increases again till it reaches its maximum ω_{+}. There exist a minimum value of ω, denoted as $\omega_{\min }$. Let $D_{2}=D_{2 \min \omega}$ when ω reaches its minimum value, $\omega_{\min }$. The values of $D_{2 \min \omega}$ and $\omega_{\min }$ can be found by letting the first derivative equation of ω equal to zero, and solving it with respect to D_{2}.

Although the potential interval of D_{2} is from D_{1} to ∞ exclusively, the valid interval of D_{2} such that the constraint $R<D_{1}$ holds is smaller than the potential interval. Since the functions of R and ω as shown in Eq. 3 and Eq. 4 are continuous over the potential interval of D_{2}, the valid interval of D_{2} is an opened subinterval of $\left(D_{1}, \infty\right)$. The valid interval of D_{2} is denoted as $\left(D_{2-}, D_{2_{+}}\right)$, and it contains the value $D_{2_{\text {min }}}$.

3.3 How does the change of H_{1} affect R and ω ?

Ideally, the value of H_{1} can be any non-zero positive real number. The geometry of changing H_{1} values versus changes in R and ω values is depicted in Fig. 5.

When the value of H_{1} goes to its extremes, the corresponding values of R go to R_{-}and R_{+}, and can be written as

$$
\lim _{H_{1} \rightarrow 0^{+}} R=R_{-}, \text {and } \lim _{H_{1} \rightarrow \infty} R=R_{+}
$$

Figure 5: The geometry of changes in H_{1} values and the related changes of R and ω.

From Eq. 3, it can easily be shown that $R_{-}=D_{1}$, and it is obvious that $R_{+}=\infty$.
Similarly for ω, we write

$$
\lim _{H_{1} \rightarrow 0^{+}} \omega=\omega_{-}, \text {and } \lim _{H_{1} \rightarrow \infty} \omega=\omega_{+}
$$

From Eq. 4 , it can easily be shown that $\omega_{+}=180^{\circ}$, and the value of ω_{-}is as follows:

$$
\omega_{-}=\arccos \left(\frac{D_{2} \cos \left(\theta_{r}\right)-D_{1}}{\sqrt{D_{1}^{2}+D_{2}^{2}-2 D_{1} D_{2} \cos \left(\theta_{r}\right)}}\right)
$$

From Fig. 5, we may observe that when the value of H_{1} is increased from 0 to ∞, the value of R starts at R_{-}(i.e. D_{1}), decreases first and then increases towards ∞. There exist a minimum value of R, denoted as $R_{\text {min }}$. Let $H_{1}=H_{1 \min R}$ when R reaches to its minimum value, $R_{\min }$. The values of $H_{1 \min R}$ and $R_{\text {min }}$ can be found by solving the first derivative equation of R (set it equal to zero) with respect to D_{1}.

$$
H_{1 \min R}=\frac{D_{1}\left(D_{1}-D_{2} \cos \left(\theta_{r}\right)\right)}{\sqrt{D_{1}^{2}+D_{2}^{2}-2 D_{1} D_{2} \cos \left(\theta_{r}\right)}}
$$

From Fig. 5, we may also observe that the value of ω increases as the value of H_{1} decreases (i.e. the function ω is increasing monotonically on the interval H_{1} in $(0, \infty)$). Thus, ω_{-}is the lower bound of ω.

Although the potential interval of H_{1} is from 0 to ∞ exclusively, the valid interval of H_{1} such that the constraint $R<D_{1}$ holds is smaller than the potential interval. Since the functions of R and ω as shown in Eq. 3 and Eq. 4 are continuous over the potential interval of H_{1}, the valid interval of H_{1} is an opened subinterval of $(0, \infty)$. The valid interval of H_{1} is denoted as $\left(H_{1-}, H_{1+}\right)$, and it contains the value of $H_{1 \min R}$. We have $H_{1-}=0$ and

$$
H_{1+}=\frac{2 D_{1}\left(D_{1}-D_{2} \cos \left(\theta_{r}\right)\right)}{\sqrt{D_{1}^{2}+D_{2}^{2}-2 D_{1} D_{2} \cos \left(\theta_{r}\right)}}
$$

4 Error Analysis

The determination of R and ω requires values of $d_{r}, f, u, D_{1}, D_{2}$, and H_{1}. In this paper we only consider three independent errors introduced by independent measurements of D_{1}, D_{2}, and H_{1}. We are interested in observing how each of these measurement errors affects the application requirements, namely the possible scale of image disparities d_{r} and the camera-to-scene direction H_{1}, which influences the vertical field of view.

The errors of D_{1}, D_{2}, and H_{1} are denoted as $\varepsilon_{D_{1}}, \varepsilon_{D_{2}}$, and $\varepsilon_{H_{1}}$, respectively. They are real numbers. The estimated values of D_{1}, D_{2}, and H_{1} are denoted and defined as $\hat{D}_{1}=D_{1}+\varepsilon_{D_{1}}$, $\hat{D}_{2}=D_{2}+\varepsilon_{D_{2}}$, and $\hat{H}_{1}=H_{1}+\varepsilon_{H_{1}}$.

4.1 Parameter Dependency

In order to study how an error prorogates from an initial input value to the final resulting value, we must clarify the dependency among all the parameters. In this subsection, we list algebraic dependencies following the steps of an acquisition procedure. The notation $Y=f_{Y}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ means that parameter Y depends on parameters $X_{1}, X_{2}, \ldots, X_{n}$. In other words, parameter Y is a function of variables $X_{1}, X_{2}, \ldots, X_{n}$.

The number of slit images taken for a 360° view (i.e. the number of image columns W_{P}) is calculated based on values of f, u, D_{1}, and H_{1}, which is shown in Eq. 1. We write $W_{P}=$ $f_{W_{P}}\left(f, u, D_{1}, H_{1}\right)$. The angular disparity width θ_{r} is determined by the image disparity width d_{r} and the number of image columns W_{P}, as shown in Eq. 2: we have $\theta_{r}=f_{\theta_{r}}\left(d_{r}, W_{P}\right)$.

A suitable value of R for image acquisition is determined according to the values of D_{1}, D_{2}, H_{1}, and θ_{r}, which is shown in Eq. 3. Thus, we have $R=f_{R}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right)$. The camera viewing angle ω is determined also according to the values of D_{1}, D_{2}, H_{1}, and θ_{r}, which is shown in Eq. 4. Hence, we have $\omega=f_{\omega}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right)$.

Now consider a case where values of R and ω are used for image acquisition as calculated by our formulas in Eq. 3 and Eq. 4. Exactly these values are assumed to set up a camera and to capture images in a real 3D scene with a RoI represented by D_{1} and D_{2}. We may backtrack the values of H_{1} and θ_{r} according to the values of R, ω, D_{1} and D_{2}. The value of H_{1} can be calculated by the following formula:

$$
\begin{equation*}
H_{1}=\sqrt{D_{1}^{2}+R^{2} \cos (2 \alpha)+2 R \cos (\alpha) \sqrt{D_{1}^{2}-R^{2} \sin ^{2}(\alpha)}} \tag{6}
\end{equation*}
$$

where $\alpha=\left(180^{\circ}-\omega\right)$. So, we may write $H_{1}=f_{H_{1}}\left(D_{1}, R, \omega\right)$. The value of θ_{r} can be calculated by the following formula:

$$
\begin{equation*}
\theta_{r}=\arcsin \left(\frac{R}{D_{1} D_{2}} \sin (\omega)\left(\sqrt{D_{2}^{2}-R^{2} \sin ^{2}(\omega)}-\sqrt{D_{1}^{2}-R^{2} \sin ^{2}(\omega)}\right)\right) \tag{7}
\end{equation*}
$$

Thus, we have $\theta_{r}=f_{\theta_{r}}\left(D_{1}, D_{2}, R, \omega\right)$. Assuming an error free process, then the values H_{1} and θ_{r} calculated here (after image acquisition) should be identical to the originally stated requirements.

Furthermore, the image disparity width can be obtained from the values of θ_{r} and W_{P}. So, finally we have $d_{r}=f_{d_{r}}\left(\theta_{r}, W_{P}\right)$.

4.2 Error of D_{1}

The calculation of the number of image columns depends on D_{1}. If the value of \hat{D}_{1} contains an error (i.e. $\left|\varepsilon_{D_{1}}\right|>0$), then we obtain an incorrect value of W_{P}, denoted as \hat{W}_{P}. Using this value of \hat{W}_{P} to calculate θ_{r} we obtain an incorrect value of θ_{r} denoted as $\hat{\theta}_{r}$.

Both functions of R and ω in Eqs. 3 and 4 are functions of four variables D_{1}, D_{2}, H_{1} and θ_{r}. So, if the values of \hat{W}_{P} and $\hat{\theta}_{r}$ contain errors, then the determined values of R and ω also contain errors. The errors of R and ω are denoted as ε_{R} and ε_{ω} respectively and they are defined as

$$
\begin{aligned}
\varepsilon_{R} & =\hat{R}-R, \\
& =f_{R}\left(\hat{D}_{1}, D_{2}, H_{1}, \hat{\theta}_{r}\right)-f_{R}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{\omega} & =\hat{\omega}-\omega, \\
& =f_{\omega}\left(\hat{D}_{1}, D_{2}, H_{1}, \hat{\theta}_{r}\right)-f_{\omega}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right) .
\end{aligned}
$$

	D_{l}	D_{2}	H_{l}	W_{P}	θ_{d}	R	ω
(1)	1	5	1.2	16232	10.48	0.2359	151.10
(2)	4	20	4.2	18550	9.17	0.4555	118.87
(3)	6	50	5.5	21249	8.00	0.6768	44.66
(4)	20	200	20.0	19478	8.74	1.6942	92.43
$H_{P}=5184$ (pixels) $H_{S}=768$ (pixels)$\quad$$u=0.007(\mathrm{~mm})$ $f=21.7(\mathrm{~mm})$							

Table 1: Four practical examples: (1) close-range indoor, (2) far-range indoor, (3) close-range outdoor, and (4) far-range outdoor scenes.

We define four examples in Tab. 1. The numerical relationships between errors of D_{1} and errors of R and ω is documented in Tab. 2 for these four examples. All the errors are measured in percentage. The error interval of D_{1} is in $[-10 \%,+10 \%]$.

When the error of D_{1} is increasing from -10% to $+10 \%$, the error of R in our four examples has different changing behavior. Let us observe how ε_{R} changes in each example according to the studies in Sec. 3. In fact the $\pm 10 \%$ error interval of D_{1} may be considered to be a very small interval of the interval of possible D_{1} values. For example, in case (1), when $\varepsilon_{D_{1}}$ changes from -10% to $+10 \%, \varepsilon_{R}$ changes from 38.37%, decreasing monotonically, to -33.02%, which means the interval of a $\pm 10 \%$ error of D_{1} does not contain the value $D_{1 \min R}$ (i.e. when R reaches its minimum). In the example (4), ε_{R} changes from 57.57%, decreasing and reaching a minimum when $\varepsilon_{D_{1}}=0$, then increases again, to 52.49%, which means the value $D_{1 \text { minR }}$ roughly lies at the center of the error interval of D_{1}.

When the error of D_{1} is increasing from -10% to $+10 \%$, the errors of ω in our four examples decrease monotonically, which means that the error interval of D_{1} dose not contain the value $D_{1_{\text {min }}}$. This is because the value of $D_{1_{\text {min }}}$ is very small in most cases.

The values of \hat{R} and $\hat{\omega}$ are used to calculate H_{1} and θ_{r} using the equations shown in Eqs. 6 and 7. We obtain values \hat{H}_{1} and $\hat{\hat{\theta}}_{r}$, and both contain errors. Finally, the image disparity width can be
obtained, denoted as \hat{d}_{r}, which also contains an error. The errors introduced in the obtained \hat{H}_{1} and \hat{d}_{r} values are denoted as $\varepsilon_{H_{1}}$ and $\varepsilon_{d_{r}}$ respectively.

The relations between $\varepsilon_{D_{1}}$ and $\varepsilon_{H_{1}}$ and $\varepsilon_{d_{r}}$ (for our four examples) are numerically documented in Tab. 2 and graphically in Fig. 6. The relations between these errors are approximately linear, and the quantities are relatively close. Note that although the error of D_{1} does have significant impact on the estimated values of \hat{R} and $\hat{\omega}$, the resulting values of \hat{H}_{1} and \hat{d}_{r} have only $\approx \pm 10 \%$ error, which might be acceptable for some applications.

$\frac{\varepsilon_{D_{l}}}{D_{l}}(\%)$	\hat{D}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{l}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	0.90	0.3264	38.37	160.08	5.95	61.4	-12.24	1.3007	8.39
-8	0.92	0.3078	30.49	158.71	5.04	63.1	-9.84	1.2805	6.71
-6	0.94	0.2894	22.69	157.17	4.02	64.8	-7.42	1.2604	5.03
-4	0.96	0.2712	14.99	155.41	2.86	66.5	-4.97	1.2402	3.36
-2	0.98	0.2534	7.42	153.40	1.53	68.3	-2.50	1.2201	1.68
0	1.00	0.2359	0.00	151.10	0.00	70.0	0.00	1.2000	0.00
2	1.02	0.2188	-7.23	148.42	-1.77	71.8	2.52	1.1798	-1.68
4	1.04	0.2023	-14.22	145.31	-3.83	73.5	5.07	1.1597	-3.35
6	1.06	0.1866	-20.90	141.65	-6.25	75.4	7.64	1.1396	-5.03
8	1.08	0.1717	-27.21	137.33	-9.11	77.2	10.24	1.1195	-6.71
10	1.10	0.1580	-33.02	132.24	-12.48	79.0	12.87	1.0993	-8.39

Example (1)

$\frac{\varepsilon_{D_{l}}}{D_{l}}(\%)$	\hat{D}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\imath} \hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{I}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	5.40	0.4844	-28.43	104.37	133.68	62.1	-11.23	6.1018	10.95
-8	5.52	0.4705	-30.48	89.98	101.47	63.7	-9.01	5.9814	8.76
-6	5.64	0.4869	-28.05	75.68	69.44	65.3	-6.78	5.8610	6.57
-4	5.76	0.5308	-21.56	63.03	41.12	66.8	-4.53	5.7405	4.38
-2	5.88	0.5962	-11.91	52.73	18.05	68.4	-2.27	5.6202	2.19
0	6.00	0.6768	0.00	44.66	0.00	70.0	0.00	5.5000	0.00
2	6.12	0.7678	13.45	38.41	-14.00	71.6	2.28	5.3794	-2.19
4	6.24	0.8660	27.96	33.53	-24.82	73.2	4.58	5.2590	-4.38
6	6.36	0.9692	43.21	29.67	-33.58	74.8	6.89	5.1387	-6.57
8	6.48	1.0759	58.98	26.56	-40.54	76.4	9.21	5.0183	-8.75
10	6.60	1.1852	75.13	24.02	-46.23	78.1	11.54	4.8980	-10.94

Example (3)

$\frac{\varepsilon_{D_{l}}}{D_{l}}(\%)$	\hat{D}_{I}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{I}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	3.60	0.7332	60.83	147.92	24.44	61.4	-12.23	4.6023	9.57
-8	3.68	0.6677	46.45	144.12	21.24	63.1	-9.83	4.5218	7.66
-6	3.76	0.6058	32.87	139.51	17.37	64.8	-7.41	4.4414	5.74
-4	3.84	0.5487	20.34	133.91	12.66	66.5	-4.97	4.3609	3.83
-2	3.92	0.4980	9.23	127.09	6.92	68.3	-2.50	4.2805	1.91
0	4.00	0.4559	0.00	118.87	0.00	70.0	0.00	4.2000	0.00
2	4.08	0.4250	-6.78	109.22	-8.11	71.8	2.52	4.1197	-1.91
4	4.16	0.4078	-10.57	98.42	-17.20	73.5	5.07	4.0393	-3.83
6	4.24	0.4059	-10.97	87.11	-26.71	75.3	7.64	3.9590	-5.74
8	4.32	0.4197	-7.94	76.13	-35.95	77.2	10.23	3.8786	-7.66
10	4.40	0.4477	-1.80	66.19	-44.32	79.0	12.86	3.7982	-9.57

Example (2)

$\frac{\varepsilon_{D_{l}}}{D_{l}}(\%)$	\hat{D}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{I}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	18.0	2.6674	57.57	141.17	52.73	62.3	-11.01	22.008	10.04
-8	18.4	2.3708	40.05	135.01	46.06	63.8	-8.83	21.606	8.03
-6	18.8	2.1092	24.59	127.21	37.62	65.4	-6.64	21.205	6.02
-4	19.2	1.8971	12.07	117.44	27.05	66.9	-4.43	20.803	4.01
-2	19.6	1.7525	3.53	105.66	14.31	68.4	-2.22	20.402	2.01
0	20.0	1.6928	0.00	92.43	0.00	70.0	0.00	20.000	0.00
2	20.4	1.7268	2.01	79.01	-14.52	71.6	2.23	19.600	-2.01
4	20.8	1.8493	9.24	66.74	-27.80	73.1	4.47	19.197	-4.01
6	21.2	2.0444	20.77	56.40	-38.98	74.7	6.73	18.796	-6.02
8	21.6	2.2937	35.49	48.08	-47.98	76.3	8.99	18.395	-8.03
10	22.0	2.5814	52.49	41.51	-55.10	77.9	11.26	17.994	-10.03

Example (4)

Table 2: The propagation of errors of D_{1} to \hat{H}_{1} and \hat{d}_{r}.

Figure 6: The errors of D_{1} vs. errors of H_{1} and d_{r}.

4.3 Error of D_{2}

If the value of the estimated \hat{D}_{1} contains an error (i.e. $\left|\varepsilon_{D_{1}}\right|>0$), then we obtain an incorrect value of R and ω, denoted as \hat{R} and $\hat{\omega}$. The errors of R and ω are denoted as ε_{R} and ε_{ω} respectively and they are defined as

$$
\begin{aligned}
\varepsilon_{R} & =\hat{R}-R, \\
& =f_{R}\left(D_{1}, \hat{D}_{2}, H_{1}, \theta_{r}\right)-f_{R}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{\omega} & =\hat{\omega}-\omega \\
& =f_{\omega}\left(D_{1}, \hat{D}_{2}, H_{1}, \theta_{r}\right)-f_{\omega}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right) .
\end{aligned}
$$

We refer again to our four examples defined in Tab. 2. An error in D_{2} produces errors in R and ω which are shown in Tab. 3 in percentage. The error interval of D_{2} is in $[-10 \%,+10 \%]$.

When the error of D_{2} is increasing from -10% to $+10 \%$, the error of R decreases monotonically in our four examples. This is because R is decreasing monotonically on the valid interval of D_{2}, as stated in Sec. 3.2. The quantity of the error of R introduced by $\varepsilon_{D_{2}}$ is much smaller in comparison to $\varepsilon_{D_{1}}$. In particular for the examples (1) and (2), both belonging to the case of $D_{1}<H_{1}$, when the error of D_{2} is increased from -10% to $+10 \%$, the error of ω decrease monotonically and the error interval of D_{2} dose not contain the value $D_{2_{\text {min }}}$ for both examples.

Since the values of \hat{R} and $\hat{\omega}$ are used to calculate H_{1} and θ_{r}, using Eqs. 6 and 7 we have \hat{H}_{1} and $\hat{\theta}_{r}$. Similarly, the image disparity width can be obtained and denoted as \hat{d}_{r}.

The errors introduced in the obtained \hat{H}_{1} and \hat{d}_{r} are denoted as $\varepsilon_{H_{1}}$ and $\varepsilon_{d_{r}}$ respectively. The relation between $\varepsilon_{D_{1}}$ and each of $\varepsilon_{H_{1}}$ and $\varepsilon_{d_{r}}$ is shown in Tab. 3. We obtain that $\varepsilon_{H_{1}}=0$, which means

$$
\hat{H}_{1}=f_{H_{1}}\left(D_{1}, \hat{R}, \hat{\omega}\right)=H_{1} .
$$

This suggests $\varepsilon_{D_{2}}$ has no impact on H_{1}. Figure 7 shows the plot of \hat{D}_{2} vs. $\varepsilon_{d_{r}}$.

Figure 7: The errors of D_{2} vs. error of d_{r}.

$\frac{\varepsilon_{D_{2}}}{D_{2}}(\%)$	\hat{D}_{2}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{l}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	4.50	0.2378	0.81	150.46	-0.42	72.0	2.85	1.2000	0.00
-8	4.60	0.2373	0.63	150.60	-0.33	71.6	2.22	1.2000	0.00
-6	4.70	0.2369	0.46	150.73	-0.24	71.1	1.62	1.2000	0.00
-4	4.80	0.2366	0.30	150.86	-0.16	70.7	1.05	1.2000	0.00
-2	4.90	0.2362	0.14	150.98	-0.08	70.4	0.51	1.2000	0.00
0	5.00	0.2359	0.00	151.10	0.00	70.0	0.00	1.2000	0.00
2	5.10	0.2355	-0.14	151.21	0.07	69.7	-0.49	1.2000	0.00
4	5.20	0.2352	-0.27	151.31	0.14	69.3	-0.95	1.2000	0.00
6	5.30	0.2349	-0.39	151.41	0.21	69.0	-1.39	1.2000	0.00
8	5.40	0.2347	-0.51	151.51	0.27	68.7	-1.81	1.2000	0.00
10	5.50	0.2344	-0.62	151.60	0.33	68.4	-2.22	1.2000	0.00

$\frac{\varepsilon_{D_{2}}}{D_{2}}(\%)$	\hat{D}_{2}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{I}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	18.0	0.4664	2.30	118.32	-0.46	72.0	2.85	4.2000	0.00
-8	18.4	0.4641	1.79	118.44	-0.36	71.6	2.22	4.2000	0.00
-6	18.8	0.4619	1.31	118.55	-0.26	71.1	1.62	4.2000	0.00
-4	19.2	0.4598	0.85	118.66	-0.17	70.7	1.05	4.2000	0.00
-2	19.6	0.4578	0.41	118.77	-0.08	70.4	0.51	4.2000	0.00
0	20.0	0.4559	0.00	118.87	0.00	70.0	0.00	4.2000	0.00
2	20.4	0.4541	-0.39	118.96	0.08	69.7	-0.49	4.2000	0.00
4	20.8	0.4524	-0.77	119.06	0.16	69.3	-0.95	4.2000	0.00
6	21.2	0.4508	-1.12	119.14	0.23	69.0	-1.39	4.2000	0.00
8	21.6	0.4493	-1.46	119.23	0.31	68.7	-1.81	4.2000	0.00
10	22.0	0.4478	-1.78	119.31	0.38	68.4	-2.22	4.2000	0.00

$\frac{\varepsilon_{D_{2}}}{D_{2}}(\%)$	\hat{D}_{2}	\hat{R}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$
-10	45.0	0.6815	0.70	45.13	1.05	71.1	1.54	5.5000	0.00
-8	46.0	0.6804	0.55	45.03	0.82	70.8	1.20	5.5000	0.00
-6	47.0	0.6795	0.40	44.93	0.60	70.6	0.88	5.5000	0.00
-4	48.0	0.6785	0.26	44.84	0.39	70.4	0.57	5.5000	0.00
-2	49.0	0.6776	0.13	44.75	0.19	70.2	0.28	5.5000	0.00
0	50.0	0.6768	0.00	44.66	0.00	70.0	0.00	5.5000	0.00
2	51.0	0.6759	-0.12	44.58	-0.18	69.8	-0.27	5.5000	0.00
4	52.0	0.6752	-0.24	44.50	-0.36	69.6	-0.52	5.5000	0.00
6	53.0	0.6744	-0.35	44.43	-0.53	69.5	-0.77	5.5000	0.00
8	54.0	0.6737	-0.45	44.35	-0.69	69.3	-1.00	5.5000	0.00
10	55.0	0.6730	-0.55	44.28	-0.85	69.1	-1.22	5.5000	0.00

Example (3)

$\frac{\varepsilon_{D_{2}}}{D_{2}}(\%)$	\hat{D}_{2}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	ω	$\frac{\varepsilon_{\omega}^{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$	\hat{H}_{I}	$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$
-10	180.0	2.6674	1.25	92.46	0.03	70.9	1.25	20.000	0.00
-8	184.0	2.3708	0.97	92.46	0.03	70.7	0.97	20.000	0.00
-6	188.0	2.1092	0.71	92.45	0.02	70.5	0.71	20.000	0.00
-4	192.0	1.8971	0.46	92.44	0.01	70.3	0.46	20.000	0.00
-2	196.0	1.7525	0.23	92.44	0.01	70.2	0.23	20.000	0.00
0	200.0	1.6928	0.00	92.43	0.00	70.0	0.00	20.000	0.00
2	204.0	1.7268	-0.22	92.43	-0.01	69.8	-0.22	20.000	0.00
4	208.0	1.8493	-0.42	92.42	-0.01	69.7	-0.42	20.000	0.00
6	212.0	2.0444	-0.62	92.42	-0.02	69.6	-0.62	20.000	0.00
8	216.0	2.2937	-0.81	92.41	-0.02	69.4	-0.82	20.000	0.00
10	220.0	2.5814	-1.00	92.41	-0.03	69.3	-1.00	20.000	0.00

Table 3: The propagation of errors of D_{2} to \hat{H}_{1} and \hat{d}_{r}.

4.4 Error of H_{1}

If the absolute value of the error of H_{1} is greater than zero (i.e. $\left|\varepsilon_{H_{1}}\right|>0$), then we obtain an incorrect value of W_{P}, denoted as \hat{W}_{P}, because the calculation of the number of image columns depends on D_{1}. Then, using the value of \hat{W}_{P} we obtain $\hat{\theta}_{r}$.

Both functions for R and ω in Eqs. 3 and 4 are functions of four variables D_{1}, D_{2}, H_{1} and θ_{r}. So, if the estimated values of \hat{W}_{P} and $\hat{\theta}_{r}$ contain errors, then the determined values of R and ω also contain errors. The errors of R and ω are denoted as ε_{R} and ε_{ω} respectively and they are defined as

$$
\begin{aligned}
\varepsilon_{R} & =\hat{R}-R, \\
& =f_{R}\left(D_{1}, D_{2}, \hat{H}_{1}, \hat{\theta}_{r}\right)-f_{R}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{\omega} & =\hat{\omega}-\omega \\
& =f_{\omega}\left(D_{1}, D_{2}, \hat{H}_{1}, \hat{\theta}_{r}\right)-f_{\omega}\left(D_{1}, D_{2}, H_{1}, \theta_{r}\right) .
\end{aligned}
$$

We refer to our four acquisition examples again to show the relation between the error of H_{1} and the errors of R and ω see Tab. 4. The error interval of H_{1} is in [$-10 \%,+10 \%$]. The values of \hat{R} and $\hat{\omega}$ are used to calculate θ_{r} using the equation shown in Eq. 7. We obtain the previous value of $\hat{\theta}_{r}$. Hence, there is no error in the obtained d_{r} value.

$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$	\hat{H}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$
-10	1.080	0.1334	-43.43	129.71	-14.16	70.0	0.00
-8	1.104	0.1516	-35.71	136.22	-9.85	70.0	0.00
-6	1.128	0.1714	-27.34	141.28	-6.49	70.0	0.00
-4	1.152	0.1922	-18.51	145.28	-3.85	70.0	0.00
-2	1.176	0.2138	-9.37	148.48	-1.73	70.0	0.00
0	1.200	0.2359	0.00	151.10	0.00	70.0	0.00
2	1.224	0.2584	9.55	153.26	1.43	70.0	0.00
4	1.248	0.2812	19.23	155.07	2.63	70.0	0.00
6	1.272	0.3043	29.01	156.61	3.65	70.0	0.00
8	1.296	0.3276	38.88	157.93	4.52	70.0	0.00
10	1.320	0.3510	48.81	159.08	5.28	70.0	0.00

Example (1)

$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$	\hat{H}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$
-10	4.95	1.1200	65.50	22.48	-49.67	70.0	0.00
-8	5.06	1.0226	51.11	25.34	-43.26	70.0	0.00
-6	5.17	0.9284	37.18	28.8	-35.52	70.0	0.00
-4	5.28	0.8382	23.85	33.02	-26.07	70.0	0.00
-2	5.39	0.7536	11.36	38.22	-14.43	70.0	0.00
0	5.5	0.6768	0.00	44.66	0.00	70.0	0.00
2	5.61	0.6105	-9.78	52.63	17.83	70.0	0.00
4	5.72	0.5588	-17.43	62.29	39.47	70.0	0.00
6	5.83	0.5258	-22.31	73.53	64.64	70.0	0.00
8	5.94	0.5151	-23.89	85.74	91.98	70.0	0.00
10	6.05	0.5282	-21.95	97.9	119.19	70.0	0.00
Example (3)							

$\frac{\varepsilon_{H_{I}}}{H_{l}}(\%)$	\hat{H}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$
-10	3.78	0.4132	-9.37	60.46	-49.13	70.0	0.00
-8	3.86	0.3862	-15.29	72.06	-39.38	70.0	0.00
-6	3.95	0.3770	-17.32	84.79	-28.67	70.0	0.00
-4	4.03	0.3867	-15.19	97.51	-17.97	70.0	0.00
-2	4.12	0.4141	-9.18	109.07	-8.24	70.0	0.00
0	4.2	0.4559	0.00	118.87	0.00	70.0	0.00
2	4.28	0.5087	11.58	126.82	6.69	70.0	0.00
4	4.37	0.5695	24.90	133.19	12.05	70.0	0.00
6	4.45	0.6358	39.45	138.28	16.33	70.0	0.00
8	4.54	0.7063	54.90	142.38	19.78	70.0	0.00
10	4.62	0.7797	71.00	145.73	22.60	70.0	0.00

Example (2)

$\frac{\varepsilon_{H_{l}}}{H_{l}}(\%)$	\hat{H}_{l}	\hat{R}	$\frac{\varepsilon_{R}}{R}(\%)$	$\hat{\omega}$	$\frac{\varepsilon_{\omega}}{\omega}(\%)$	\hat{d}	$\frac{\varepsilon_{d}}{d}(\%)$
-10	180.0	2.6674	1.25	92.46	0.03	70.0	0.00
-8	184.0	2.3708	0.97	92.46	0.03	70.0	0.00
-6	188.0	2.1092	0.71	92.45	0.02	70.0	0.00
-4	192.0	1.8971	0.46	92.44	0.01	70.0	0.00
-2	196.0	1.7525	0.23	92.44	0.01	70.0	0.00
0	200.0	1.6928	0.00	92.43	0.00	70.0	0.00
2	204.0	1.7268	-0.22	92.43	-0.01	70.0	0.00
4	208.0	1.8493	-0.42	92.42	-0.01	70.0	0.00
6	212.0	2.0444	-0.62	92.42	-0.02	70.0	0.00
8	216.0	2.2937	-0.81	92.41	-0.02	70.0	0.00
10	220.0	2.5814	-1.00	92.41	-0.03	70.0	0.00
Example (4)							

Table 4: The propagation of errors of H_{1} to \hat{H}_{1} and \hat{d}_{r}.

5 Conclusions and Future Work

This paper defined a new approach towards the study of basic algebraic relations between application requirements, image acquisition models, and specifications of a RoI in 3D scenes. The paper analyzed how application-specific parameters affect the imaging parameters, and what are possible intervals of values of these parameters. We also discussed error propagation, from the measurements of application-specific parameters to the imaging parameters and finally to the application-requirement parameters. These propagations are explored and described for various practical examples.

Although $\varepsilon_{D_{1}}$ affects R and ω quadratically, the impacts to d_{r} and H_{1} are approximately linear. Similar statements can be made for for $\varepsilon_{D_{2}}$ and $\varepsilon_{H_{1}}$, however, $\varepsilon_{D_{1}}$ has stronger influence in terms of magnitude. Interestingly, $\varepsilon_{D_{2}}$ has no impact on H_{1} and $\varepsilon_{H_{1}}$ has no impact on d_{r}.

In future work, we will answer the following questions: Which R value and what interval of ω should be chosen to built a camera for given intervals of $D_{1} D_{2} H_{1}$ and θ_{r} which are defined by an application? Furthermore, specifying possible intervals for R and ω, what intervals of $D_{1} D_{2}$ H_{1} and θ_{r} can be ensured by a panoramic imaging system?

Acknowledgments

The first author thanks the space sensory institute of DLR (German Aerospace Center) for an efficient research visit in March 2001 allowing a further specification of our panoramic camera model in accordance with recent line camera technologies.

References

[Che95] S. E. Chen. QuickTimeVR - an image-based approach to virtual environment navigation. In Proc. SIGGRAPH'95, pages 29-38, Los Angeles, California, USA, August 1995.
[HWK01] F. Huang, S. K. Wei, and R. Klette. Geometrical fundamentals of polycentric panoramas. In Proc. ICCV01, pages 560-565, Vancouver, Canada, July 2001.
[IYT92] H. Ishiguro, M. Yamamoto, and S. Tsuji. Omni-directional stereo. PAMI, 14(2):257-262, 1992.
[PBE99] S. Peleg and M. Ben-Ezra. Stereo panorama with a single camera. In Proc. CVPR99, pages 395-401, Fort Collins, Colorado, USA, June 1999.
[RS97] R. Reulke and M. Scheel. Ccd-line digital imager for photogrammetry in architecture. nt. Archives of Photogrammetry and Remote Sensing, XXXII(5C18):195-201, 1997.
[Sei01] S. M. Seitz. The space of all stereo images. In Proc. ICCV01, pages 26-33, Vancouver, Canada, July 2001.
[SH99] H.-Y. Shum and L.-W. He. Rendering with concentric mosaics. In Proc. SIGGRAPH'g9, pages 299-306, Los Angeles, California, USA, August 1999.
[SKS99] H. Shum, A. Kalai, and S. Seitz. Omnivergent stereo. In Proc. ICCV99, pages 22-29, Korfu, Greece, September 1999.
[SS97] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mosaics and environment maps. In Proc. SIGGRAPH'97, pages 251-258, Los Angeles, California, USA, August 1997.
[WHK99] S.-K. Wei, F. Huang, and R. Klette. Three-dimensional scene navigation through anaglyphic panorama visualization. In Proc. CAIP99, pages 542-549, Ljubljana, Slovenia, September 1999.
[WHK00] S.-K. Wei, F. Huang, and R. Klette. Classification and characterization of image acquisition for 3d scene visualization and reconstruction applications. In Multi-image analysis, pages xx-yy, Dagstuhl, Germany, March 2000.

[^0]: ${ }^{1}$ Center for Image Technology and Robotics Tamaki Campus, The University of Auckland, Auckland, New Zealand. shoukang, fay, r.klette@auckland.ac.nz

