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A B S T R AC T

Biomedical models and simulations often require high performance comput-

ing environments. For example, simulating one minute of electrical activity

of a human heart may require more than one month of computation time

with today’s fastest processor. Biomedical models often are based on ordinary

differential equations (ODEs) which require numerical integration during the

simulation. The numerical integration is regular and easy to parallelise. Paral-

lel systems that consist of a large number of general purpose processors (GPPs)

and graphics processing units (GPUs) as accelerators have been traditionally

used for these types of simulations. However, such systems usually involve

high financial cost and energy consumption. Given the inherent parallelism

and high computational requirements, FPGAs (Field Programmable Gate Ar-

rays) with their high parallel architecture and flexibility, are promising for

accelerating these kind of computations, whilst being power efficient.

FPGAs are highly configurable devices with logic blocks and interconnects.

The logic blocks are programmable and can incorporate parallelism into arbit-

rary digital circuits such as being arranged into pipelines or replicated for task

and data parallelism. However, FPGAs are not widely adopted by biomedical

scientists due to their lack of hardware expertise. Furthermore, FPGAs have a

limited usable area and so design tool chains can create problems when imple-

menting large sized biomedical models.

To overcome these obstacles and to exploit the potential of FPGAs, this thesis

investigates the automatic generation of digital hardware for the domain of
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biomedical models that can be described as ODEs. The hardware accelerator is

based on a pipelined architecture with a hardware/software co-design system.

ODoST, an ODE-based domain-specific sythesis tool, is proposed. The tool is

capable of automatically generating a FPGA-based hardware accelerator mod-

ule (HAM) from a high-level description of a mathematical model. This tool

will be of benefit to biomedical scientists and engineers without hardware

design expertise. In addition, a list of optimisation strategies are investigated

and implemented in order to maximise the use of a target FPGA device with

limited resources.

The experimental evaluation on real hardware shows that FPGAs deliver

a much higher power efficiency than CPU and GPU implementations. Fur-

thermore, FPGA implementations have a significant performance advantage

compared to multicore implementations and a comparable processing speed

to GPU implementations.
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1 I N T R O D U C T I O N

The traditional approach in high performance computing (HPC) is to build

parallel systems that consist of a large number of general purpose processors

(GPPs). However, such systems usually involve high financial cost and en-

ergy consumption. Systems with a small number of processors can normally

achieve a near-linear speedup. However for systems with a large number

of processors, the speedup can flatten out into a constant value [48]. Power

and cooling demands can also restrict the number of processors that are af-

fordable [18, 44]. These limitations push HPC engineers to look for other

computing technologies such as dedicated computation hardware accelera-

tion for special application areas like bioengineering and scientific computing.

A more flexible approach is to use reconfigurable hardware based on Field

Programmable Gate Arrays (FPGAs), which can improve performance and re-

duce power consumption in HPC applications. FPGAs are highly configurable

devices with logic blocks and interconnects. The logic blocks are program-

mable and can incorporate parallelism into arbitrary digital circuits such as

being arranged into pipelines or replicated for task and data parallelism.

1.1 B I O M E D I C A L M O D E L L I N G A N D S I M U L AT I O N

Biomedical models involve sets of mathematical equations that describe a bio-

medical system of interest. Biomedical simulations often use numerical com-

1



2 introduction

putations of these equations to simulate dynamic systems and helping re-

searchers understand different physiological functions. Due to the increased

complexity of models and accuracy requirements, the number of variables or

Degrees-Of-Freedom (DOF) used for modern biomedical models has rapidly

increased in recent times. Complex models with fine mesh size and short time

steps require a significant amount of computation, which can result in very

long run times even with today’s fastest CPUs [94]. However, such models of-

ten contain a small and fixed portion of code that executes a large number of

times using different data. These code portions are ideally suited for hardware

acceleration with FPGAs. In this thesis, CellML is used to describe biomedical

models and develop hardware acceleration modules (HAMs) based on FPGAs

for these models. These HAMs are to be used with the biomedical modelling

environment, OpenCMISS [24], in order to simulate multi-scale physiological

systems.

1.1.1 Biomedical Modelling with CellML

CellML [34] is an XML based model description language for specifying and

exchanging biophysically based systems of Ordinary Differential Equations

(ODEs) and Differential Algebraic Equations (DAEs). It takes advantage of the

extensibility of the XML language and incorporates other XML-based stand-

ards, including MathML [17], XLink [41], and Resource Description Frame-

work (RDF) [25].

1.1.1.1 CellML Model Structure

CellML contains its own defined elements for describing the model structure.

Other information is incorporated into the model document using existing

standards. For example, MathML is used to encode the mathematics of the

model, XLink is used to establish the connection between the original model

and the importing model, and background information, or metadata, is in-

cluded via RDF [34].
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CellML model

RDF metadata
import

imported units

imported components

units

unit
component

variable

math

connection
mapComponent

mapVariable

group

relationshipRef

componentRef

Figure 1.1: CellML model structure.

The structure of a CellML model is illustrated in Figure 1.1. A CellML model

is represented by a set of interconnected components. A component is the func-

tional unit of a CellML model that contains variables and mathematical equa-

tions. A variable is associated with a unit that is defined in the units entity.

The mathematical equations are expressed using MathML that is embedded

within the CellML framework. Biochemical reactions between substrates are

organized into components that represent the reactants and products of the re-

actions, the reactions themselves, and the enzymes or inhibitors that influence

the reaction rates. The properties of a reaction—such as its reactants, products,

enzymes, and inhibitors—and the reaction kinetics are all captured by the vari-

ables and the mathematical equations of a component [34]. Connections are

used to link two components by mapping the variables inside one component

with variables inside the other component. Grouping adds structure to a model

by defining named relationships between components. Importing provides au-

thors with the ability to reuse parts of other models by importing components
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or units from other models. RDF metadata is included in CellML to provide

structured descriptive information such as the model author, literature refer-

ence, copyright, etc., and to facilitate searches of collections of models and

model components from the CellML model repository [64].

1.1.1.2 Mathematical Representation

Mathematically, a CellML model describes a vector system, F, of DAEs in the

form of:

F(t, x, x′, a, b) = 0 (1.1)

where t is the independent variable, x is a vector of state variables, x′ is a

vector of the derivatives of state variables with respect to the independent vari-

able, a is a vector of independent parameters/constants, and b is an optional

vector of intermediate/algebraic “output” variables from the model. All the

variables are defined in the variable entity under each component.

1.1.1.3 Example CellML Models

Four CellML model examples are described here. The four models are selected

from the CellML model repository1 with each model having a different level

of complexity. The mathematics and C-code representation for each example

model are shown in Appendix A. Of the four example models, the first two

simple models, the Hodgkin-Huxley model and the Beeler-Reuter model are

used as the case studies for model investigation and hardware design. These

two models together with two more complex models, the Hilemann-Noble

and the TNNP model are also used as the test cases for the evaluation of the

research work throughout the thesis.

hodgkin-huxley model The Hodgkin-Huxley Model was developed

by Hodgkin and Huxley [53] in 1952. The model describes the flow of elec-

tric current through the surface membrane of the giant nerve axon of a squid.

1 http://www.cellml.org/model
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Figure 1.2: A schematic cell diagram describing the current flows across the cell mem-
brane that are captured in the Hodgkin Huxley model [52].

The schematic diagram of the model is shown in Figure 1.2. The model de-

scribes the flow of ions across a cell membrane (the ionic current). The ionic

current is divided into components carried by sodium and potassium ions (INa

and IK), and a small ’leakage current’ (IL) carried by chloride and other ions.

Each component of the ionic current is determined by the transmembrane po-

tential (a driving force which may conveniently be measured as an electrical

potential difference between the inside and outside of the cell) and a permeab-

ility coefficient which has the dimension of conductance. Thus the sodium

current (INa) is equal to the sodium conductance (gNa) multiplied by the dif-

ference between the membrane potential (V) and the equilibrium potential for

the sodium ion (ENa). Similar equations apply to IK and IL. This model has

been used as the basis for almost all other ionic current models of excitable

tissues, including cardiac atrial and ventricular muscle. The Hodgkin-Huxley

model is the simplest of the four models.

beeler-reuter model The Beeler-Reuter Model was developed by Beeler

and Reuter [21] in 1977. The model describes the membrane action potentials

of mammalian ventricular myocardial fibres. The total ionic flux is divided

into four discrete, individual ionic currents as shown in Figure 1.3. The main
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Figure 1.3: A schematic diagram describing the current flows across the cell membrane
that are captured in the Beeler-Reuter model [20].

additional feature of the Beeler-Reuter ionic current model compared to the

Hodgkin-Huxley model is its inclusion of a representation of the intracellu-

lar calcium ion concentration. The model incorporates two voltage-dependent

and time-dependent inward currents: the excitatory inward sodium current,

INa, and a secondary, or slow inward, current, Is, which is primarily carried by

calcium ions. A time-independent outward potassium current, IK1, exhibiting

inward-going rectification, and a voltage-dependent and time-dependent out-

ward current, Ix1, primarily carried by potassium ions, are further elements of

the model.

hilemann-noble model The Hilemann-Noble Model was developed

by Hilemann and Noble [51] in 1987. The model describes the interactions

of electrogenic sodium-calcium exchange, calcium channel and sarcoplasmic

reticulum in the mammalian heart which occur when the extracellular calcium

transients are stimulated with tetramethylmurexide in the rabbit atrium. The

schematic diagram of the model is shown in Figure 1.4.



introduction 7

Figure 1.4: A schematic diagram describing the current flows across the cell membrane
that are captured in the Hilemann-Noble model [50].

tusscher-noble-noble-panfilov model The Tusscher-Noble-Noble-

Panfilov (TNNP) model for human ventricular tissue was developed by Ten

Tusscher et al. [96]. This model describes the action potential of human ventricu-

lar cells including a high level of electrophysiological detail, and can be applied

in large-scale spatial simulations for the study of reentrant arrhythmias. The

model is based on the experimental data on most of the major ionic currents:

the fast sodium, L-type calcium, transient outward, rapid and slow delayed

rectifier, and inward rectifier currents, and it also includes a basic calcium

dynamics, allowing for the realistic modeling of calcium transients, calcium

current inactivation, and the contraction staircase. A schematic diagram of the

model is shown in Figure 1.5.

model metrics The model metrics with the number of components, equa-

tions, parameters/variables and operations for the four example models from

the CellML model repository are presented in Table 1.1. These metrics are used

in model analysis and evaluation in later chapters.
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Figure 1.5: A schematic diagram describing the ion movement across the cell surface
membrane and the sarcoplasmic reticulum, which are described by the Ten
Tusscher et al. 2004 mathematical model of the human ventricular myo-
cyte [95].

1.1.1.4 CellML API

For CellML models to be useful, tools which can process them correctly are

needed. Therefore, an Application Programming Interface (API), and a good

implementation of that API, are required for supporting CellML. The de-

veloped CellML API [67] allows for the information in CellML models to be

retrieved and/or modified. It also contains a series of optional API extension,

for tasks such as simplifying the handling of connections between variables,

dealing with physical units, validating models, and translating models into

different procedural languages e.g., the C language.

1.1.2 Biomedical Simulation with OpenCMISS

OpenCMISS [24] is a general modelling environment with particular features

for biomedical simulations. It consists of two main parts: a graphical and field

manipulation library, OpenCMISS-Zinc, and a parallel computational library
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for solving partial differential and other equations using a variety of numer-

ical methods, OpenCMISS-Iron. OpenCMISS-Iron is a re-engineering of the

CMISS (Continuum Mechanics, Image analysis, Signal processing, and System

identification) computational code that has been developed and used for over

30 years.

1.1.2.1 OpenCMISS Fields

In OpenCMISS fields are the central mechanism that describe and store in-

formation of physical problems. OpenCMISS fields are in hierarchical struc-

ture, with each field containing a set of field variables and each field variable

containing a set of field variable components. A field is defined over a do-

main which is, conceptually, an entire computational mesh representing the

model of interest. However, when executing in parallel, the mesh is decom-

posed into a number of computational domains depending on the number

of computational nodes. OpenCMISS allows each field variable component to

have different forms of DOFs structures including:

• constant structure (one DOF for the component);

• element structure (one or more DOFs for each element);

• node structure (one or more DOFs for each node);

• Gauss point structure (one or more DOFs for each Gauss or integration

point);

• data point structure (one or more DOFs for each data point).

OpenCMISS collects all the DOFs from all the field variable components and

stores them as a single distributed vector. The DOFs stored in the distributed

vector include those from the computational domain and also a layer of “ghos-

ted” DOFs (local copies of the value of DOFs in a neighbouring domain). To

ensure consistency of data OpenCMISS handles the updates between compu-

tational nodes if a computational node changes the value of a DOF, which is

ghosted on a neighbouring computational node [24].
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1.1.2.2 Use of CellML Models in OpenCMISS

In biomedical simulations using OpenCMISS, CellML allows for the “plug and

play” of mathematical models and model configurations. OpenCMISS uses the

CellML API [67] to interact with CellML models. In OpenCMISS-Iron, a higher

level CellML interface is defined with the use of the CellML API, and this

interface is used by the OpenCMISS core library [71].

Since models in OpenCMISS are defined using a collection of fields, CellML

models are integrated into OpenCMISS through these fields. The CellML vari-

ables are mapped with OpenCMISS models field variable components. De-

pending on the direction of dataflow, there are two types of maps. A “known”

CellML variable represents a map link from OpenCMISS to CellML (input vari-

able to the CellML model) and a “wanted” CellML variable represents a map

link from CellML to OpenCMISS (output variable from the CellML model).

A map is specified by identifying a particular OpenCMISS field variable com-

ponent and the name of a CellML variable in the CellML model. OpenCMISS

looks at each DOF in each field variable component that has been mapped and

determines the DOF location (i.e., the position of the node) for each instances

of a CellML model [71].

1.2 H A R D WA R E A C C E L E R AT I O N W I T H R E C O N F I G U R A B L E

H A R D WA R E

Hardware acceleration is the use of computer hardware to perform particu-

lar functions faster than if they are executed on a more general-purpose CPU.

Normally, processors execute instructions one by one in sequence. The per-

formance of sequential processors can be improved by various techniques and

including hardware acceleration. Programming at the hardware level enables

optimal parallel processing by removing the architectural constraints of a tra-

ditional CPU and its operating system layers [87].

Hardware accelerators are designed for computationally intensive software

code, such as those with repetitive mathematical calculations e.g., integrations.
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Examples of devices that are commonly used as hardware accelerators are

Graphics Processing Units (GPUs), FPGAs and Application Specific Integrated

Circuits (ASICs). Compared to GPPs, there is a trade-off between flexibility

and efficiency, with hardware accelerators. Implementing an application in

hardware increases efficiency but decreases flexibility.

1.2.1 Hybrid Acceleration System

Hardware accelerators like FPGAs yield fast performance. However, large ap-

plications implemented on a GPP may be more area efficient and require less

designer’s effort, albeit at the expense of slower performance. A hybrid hard-

ware acceleration system (or hardware/software co-design system) is a system

combining a GPP and one or more custom coprocessors through an intercon-

nect. The system enables the critical computational region of a given applica-

tion to be put into a coprocessor and to keep the rest in the GPP to achieve

an implementation that best satisfies requirements of performance, area and

designer effort. Figure 1.6 illustrates a typical hybrid hardware acceleration

system.

General-Purpose
Processor

Hardware
Coprocessor

interconnect

Figure 1.6: Typical hybrid hardware acceleration system.

1.2.2 Field Programmable Gate Arrays

Computation in the computer and electronic world is usually performed in

two ways: via hardware and via software. Computer hardware, like ASICs,

provides high performance for critical tasks but it is permanently configured

to the specified application. On the other hand, computer software provides

flexibility for performing different tasks/applications, but is orders of mag-
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nitude worse than ASIC implementations in terms of performance and power

usage. FPGAs fill the gap between the two and blend the benefits of compu-

tation via both hardware and software. FPGAs implement circuits just like

ASICs, providing huge power and performance benefits over software, and yet

can be reprogrammed in order to implement a wide range of tasks.

Like other computational hardware, FPGAs are essentially integrated cir-

cuits that are able to implement computations spatially and simultaneously

so that millions of operations can be executed by resources distributed on a

silicon chip. Furthermore, since the dynamic power consumed by a FPGA de-

pends on clock frequency, the overall power consumption is lower than either

a CPU or GPU as the FPGA’s clock frequency is typically hundreds of MHz

compared to a CPU’s or GPU’s GHz.

1.2.2.1 Architecture

In general, a FPGA contains a matrix of logic blocks, with interconnects between

these logic blocks. The logic blocks may be named differently depending on

vendors. Altera2 and Xilinx3 are the two dominating manufacturers of FPGAs.

In Altera FPGAs, these logic blocks are called Logic Array Blocks (LABs) and

for Xilinx FPGAs, they are named as Configurable Logic Blocks (CLBs). A high-

level overview of an Altera Stratix IV is shown in Figure 1.7. This FPGA serves

as the basis for experimental work conducted in this thesis.

In Stratix IV FPGAs, each LAB consists of ten Adaptive Logic Mod-

ules (ALMs). An ALM is the basic building block of Stratix IV FPGAs and

each ALM contains an 8-input fracturable Look-Up Table (LUT), two embed-

ded adders and two registers as shown in Figure 1.8. The 8-input fracturable

LUT can be used to implement any logic function with up to six inputs and

certain functions with seven inputs. The two dedicated full adders are capable

of two two-bit or two three-bit additions. Two programmable registers are dir-

ectly embedded in the ALM for an optimal logic-to-register ratio. Signals are

transferred between ALMs within the same LAB through local interconnects

and between neighbouring LABs through direct link interconnects [11].

2 http://www.altera.com
3 http://www.xilinx.com
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Figure 1.7: Stratix IV FPGA architecture [12].

Figure 1.8: Stratix IV FPGA ALM [11].
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Stratix IV FPGAs provide two to seven columns of Digital Signal Pro-

cessing (DSP) blocks that can be used to implement floating point arithmetic

functions more efficiently than ALMs alone. The DSP blocks can provide func-

tions like multiplication, multiply-add, multiple-accumulate (MAC) and dy-

namic shift functions. Biomedical models usually require a large number of

mathematical computations which can be efficiently performed by DSPs.

Two types of storage resources, registers and memory blocks, are embedded

in FPGAs. Compared to registers, resources for on-chip memory are, in gen-

eral, abundant. Stratix IV FPGAs offer three different memory types, namely

Memory Logic Array Block (MLAB), M9K and M144K, each having differing

memory capacities and bandwidths. An increase in memory capacity nor-

mally results in a decrease in bandwidth. MLABs have the highest memory

bandwidth but their size is limited to only 640 bits. They are useful for shift

registers, small First-In First-Out (FIFO) buffers and filter delay lines. M9K

memory blocks have 9 kb and are used for general-purpose memory, packet

headers or cell buffers. M144K memory blocks have 144 kb of memory and are

used for larger general-purpose memory, packet headers or cell buffers.

All the resource elements discussed above are embedded within a switched

routing fabric including many short-distance links and a few fast global links

which interconnect the elements within the device. This is often referred as

island-style architecture and is common in modern FPGAs.

1.2.2.2 Hardware Description Language

A Hardware Description Language (HDL), such as VHSIC Hardware Descrip-

tion Language (VHDL) or Verilog, can be used to program the structure, design

and operation of digital logic circuits. A HDL enables a precise, formal descrip-

tion of an electronic circuit that allows for the automated analysis, simulation,

and simulated testing of an electronic circuit. It also allows for the compila-

tion of a HDL program into a lower level specification of physical electronic

components, such as the set of masks used to create an integrated circuit [15].

Similar to other programming languages, a HDL is a textual description con-

sisting of expressions, statements and control structures. One important differ-
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Figure 1.9: Altera’s FPGA application design flow [9].

ence between most programming languages and HDLs is that HDLs explicitly

include the notion of time, which is the primary attribute in an integrated

circuit.

1.2.2.3 Design Flow

The FPGA design flow for a typical application including system design, I/O

assignment and analysis, Register Transfer Level (RTL) synthesis, place-and-

route process, programming and simulations at multiple stages throughout

the design process, is shown in Figure 1.9.

After an application has been developed in a HDL, the synthesis engine

compiles the design from the HDL sources to an architecture-specific netlist.

The design components will then be put through an automated place-and-

route procedure to generate a pinout, which will be used to interface with

components outside of the FPGA. The final step is the generation of a bitstream

programming file in a format that can be downloaded to the target device. The

bitstream file is programmed to the FPGA though a connection cable, such as

USB-JTAG.
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Physical Layer

Data Link Layer

Transaction Layer

Physical Layer

Data Link Layer

Transaction Layer

Host Device

Figure 1.10: PCI Express layered architecture.

1.2.3 PCI Express

PCIe (Peripheral Component Interconnect Express) is a scalable, chip-to-chip,

high-speed serial expansion bus protocol used in computing and communica-

tion. PCIe is based on point-to-point topology, with separate serial links con-

necting every device to the host machine [14].

1.2.3.1 Architecture

The PCI Express architecture is specified in layers as shown in Figure 1.10.

The host normally uses a software model or driver to generate read and write

requests that are transported through the transaction layer, the data link layer

and finally the physical layer to the I/O devices using a packet-based, split-

transaction protocol.

transaction layer The transaction layer receives read and write re-

quests from a software model or driver and creates request packets for trans-

mission to the data link layer. All requests are implemented as split transac-
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tions and some of the request packets also require a response packet. The

transaction layer receives response packets from the link layer and matches

these with the original software requests. Each packet has a unique identi-

fier that enables response packets to be directed to the correct originator. The

packet format offers 32-bit memory addressing and extended 64-bit memory

addressing.

data link layer The primary role of a data link layer is to ensure reli-

able delivery of the packet across the PCI Express link(s). The data link layer

is responsible for data integrity and adds a sequence number and a Cyclic

Redundancy Codes (CRC) to packets initiated by the transaction layer.

physical layer The physical layer contains the fundamental PCI Ex-

press links with a dual simplex channel (refered to as a lane), implemented as

a transmit pair and a receive pair. A data clock is embedded using the 8b/10b

encoding scheme to achieve very high data rates with an initial bandwidth

of 2.5 Gb/s/direction (Generation 1). The rates are doubled in each successor

generation. The physical layer transports packets between the data link lay-

ers of two PCI Express agents. The physical layer provides x1, x2, x4, x8, x12,

x16, and x32 lane widths, which conceptually splits the incoming data packets

among these lanes. Each byte is transmitted with 8b/10b encoding across the

lane(s). This data disassembly and reassembly is transparent to other layers.

During initialization, each PCI Express link is set up following a negotiation

of lane widths and frequency of operation by the two agents at each end of the

link.

1.2.3.2 PCI Express IP Core

Interfacing a FPGA to the PCIe bus is not a simple task. Fortunately, there are

numerous PCIe cores available provided by FPGA vendors and third parties. In

this thesis, the Intellectual Property (IP) Compiler for PCI Express, available in

the Qsys design flow provided by Altera, is used. Figure 1.11 shows the block



introduction 19

diagram of the IP core with an Avalon Memory Mapped Interface (Avalon-

MM) [7].

Custom variations, generated by the IP Compiler for PCI Express in the Qsys

design, provides a bridge interface between the PCI Express transaction layer

and other components across the system interconnect fabric through an Avalon

MM interface. The hard IP implementation of the PHY (Physical), MAC (Media

Access Control) and data link layers of the Open Systems Interconnection (OSI)

model communicates with a soft IP implementation of the transaction layer op-

timized for the Avalon-MM protocol. The Avalon-MM interface helps the PCIe

IP core to remove some of the complexities associated with the PCIe protocol

and to abstract the addressing, transfer size and packet rules of PCIe [6].

1.2.4 Floating Point Unit

Floating-point functionality is used to achieve a high degree of numeric preci-

sion and dynamic range that most high performance applications (e.g., radar,

sonar, biomedical simulation and financial modelling) require. As many of

these applications use FPGAs there is a demand for floating-point capabilities.

There are a good number of existing floating point cores provided either by

the vendors of FPGAs, or independently developed third party floating point

platforms. These cores typically exploit the freedom of a FPGA by allowing

for the customisation of variable widths of exponent and mantissa to meet

designers specifications. They also offer IEEE-754 standard single and double

precision cores.

1.2.4.1 IEEE-754 Standard for Floating Point Format

IEEE-754 standard floating point is the most common representation for real

numbers. It is used in computer systems ranging from large servers to small

embedded systems and is supported by all major operating systems and pro-

gramming languages. In this thesis, the floating point numbers in our hard-

ware accelerator follow the IEEE-754 standard. This allows the accelerator to

produce accurate results which are compatible with pure software solutions.
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S E M

Figure 1.12: IEEE-754 floating point format (S represents a sign bit, E represents an
exponent field, and M is the mantissa field).

Numbers Sign Exponent Mantissa

0 Don’t care All 0’s All 0’s
Positive Denormalised 0 All 0’s Non-zero

Negative Denormalised 1 All 0’s Non-zero
Positive Infinity 0 All 1’s All 0’s

Negative Infinity 1 All 1’s All 0’s
Not-a-Number (NaN) Don’t care All 1’s Non-zero

Table 1.2: IEEE-754 special case numbers.

The IEEE-754 floating point formats have binary patterns of the form shown

in Figure 1.12. A normal floating point number can be represented by the

following equation where b represents the exponent bias and m represents the

number of bits in the mantissa field:

value = (−1)S(1 + ∑m
i=1Mm−i2−i)× 2(E−b)

In addition to the normal numbers, the IEEE-754 standard also defines some

special case numbers as shown in Table 1.2.

The IEEE 754-1985 standard provides definitions for four levels of precision,

of which the two most commonly used are single precision and double preci-

sion. Table 1.3 describes the binary patterns, range and accuracy of these two

precisions.

1.2.4.2 Altera Floating Point Megafunctions

Altera provides IEEE 754-compliant floating-point megafunctions for its device

family. The key floating point megafunctions Altera supports include addition

and subtraction, multiplication, division, square root, compare, logarithm, ex-

ponential function, inverse, etc. All the floating point (FP) cores are pipelined.

The performance of a floating point computation is influenced by the fre-
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Single
Precision

Width Sign Bit Exponent Bits Mantissa Bits Bias
32 31 30...23 22..0 127

Range Precision
±1.18× 10−38 to ± 3.4× 1038 approx. 7 decimal digits

Double
Precision

Width Sign Bit Exponent Bits Mantissa Bits Bias
64 63 62...52 51...0 1023

Range Precision
±2.23× 10−308 to ± 1.80× 10308 approx. 15 decimal digits

Table 1.3: IEEE-754 single and double precision formats.

quency at which the operators run at and the pipeline latency of the operator

hardware. When designing for maximum FP performance in a FPGA, the total

number of operators that can be placed in a FPGA is vital. As such, the Al-

tera floating-point megafunctions can be customised in many different ways

to fine-tune FP performance, power consumption and area usage to meet the

application-specific requirements [5]. The configurable features include:

• Single and double-precision selection;

• Single extended configurable precision;

• Operator latency versus area tradeoff;

• Reduced functionality;

• Optional denormalized number support;

• Reduced rounding accuracy;

• Optional indefinite support;

• Support for dedicated multiplier circuitry (multiplier only);

• Optional add or subtract-only mode (adder or subtracter only).

1.2.4.3 FloPoCo

FloPoCo [37] is an open source generator of arithmetic cores for FPGAs. In

contrast to IEEE floating point representations, FloPoCo has a special floating

point format which has an additional two-bit prefix. The two bits are only used
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to signal special case numbers, namely 00 for zero, 01 for normal numbers, 10

for infinities, and 11 for NaN. In IEEE-754 format, these exception signals are

handled by the exponent and mantissa as shown in Table 1.2. The advantage

of the FloPoCo format is that it saves quite a lot of decoding/encoding logic.

The main drawback of this format is when results have to be stored in memory

as they require two additional bits. However, as the FPGA embedded memory

can accommodate 36-bit data, the addition of two bits to a 32-bit IEEE-754

format is harmless as long as data resides within the FPGA.

FloPoCo supports floating point operations including addition and sub-

traction, multiplication, division, square root, logarithm, exponential function,

power, etc. FloPoCo is used as a command-line tool to create arithmetic cores.

A VHDL based floating point core can be created with the numbers of bits in

the exponent and mantissa specified by the user. For example, an execution of

flopoco FPDiv 8 23 �
will produce a file f lopoco.vhdl containing the floating point division core with

single precision format.

In addition, FloPoCo also provides customisation options that allows users

to manipulate resources, frequency and latency to suit their applications. For

example:

• -target=Stratix4 sets the target device to the Stratix IV family. Having this

option set will target the highest speed grade available for the device

family;

• -pipeline=yes instructs FloPoCo to produce a pipelined core;

• -frequency=300 sets the target frequency (in MHz), this option is used

when the -pipeline option is set. FloPoCo will try to pipeline the operators

to the target frequency;

• -useHardMult=yes instructs FloPoCo to use hard multipliers or DSP blocks

wherever possible;

• -unusedHardMultThreshold=0.3 instructs FloPoCo to use a hard multiplier

(or DSP block) if less than 30% of the hard multipliers are unused. The
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ratio is between 0 and 1, such that 0 means: any sub-multiplier that does

not fully fill a DSP goes to logic; 1 means: any sub-multiplier, even very

small ones, will consume a DSP.

A FloPoCo operator can be either combinational or pipelined, which is con-

trolled by the -pipeline and -frequency options. With the pipelined implementa-

tion, registers maybe inserted to reach a target frequency. However, the pipeline

built by FloPoCo may depend on the target device and the effort is always tent-

ative [36].

1.3 H I G H - L E V E L S Y N T H E S I S

High-level Synthesis (HLS) is an automated design process that interprets a

high-level description of a design and creates digital hardware that imple-

ments that design [32]. The synthesis begins with a high-level specification of

the problem, for example, high-level languages like C, state diagrams or logic

networks. The code is analysed, architecturally constrained, and scheduled to

create a Register Transfer Level (RTL) HDL, which is then, in turn, commonly

synthesized to the gate level by the use of a conventional logic synthesis tool.

1.3.1 Benefit

It is common knowledge that the RTL creation process for hardware imple-

mentations is much more time consuming and error prone than an equival-

ent software development. The main benefit of HLS is to avoid this problem

by automating the RTL implementation process and providing an error-free

path from an abstract specification to RTL and hence significantly reducing

the design and verification efforts.
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1.3.2 Design Processes

The HLS process consists of a number of stages. Different HLS tools may vary

their design process or order. Some frequently used processing stages are dis-

cussed below [66].

lexical processing HLS synthesis begins with an algorithmic descrip-

tion of the design expressed in a high-level language. Lexical processing parses

the high-level language source code and transforms it into an internal repres-

entation which is similar to the high-level language compilation.

design optimization Optimizations that can be performed on the

design itself include common subexpression elimination and constant fold-

ing. Many of these optimizations are commonly used in high-level language

compilers or parallelising compilers.

control/dataflow analysis The inputs, outputs, and operations of

the design are identified and the data dependencies between them are determ-

ined. The result of this process is usually a Control/Dataflow Graph (CDFG)

which determines the order of the computation.

library processing The RTL implementation produced by HLS will de-

pend on the capabilities and characteristics of the library of parts available for

the specific implementation technology to be used. Library processing reads

the available libraries and determines the functional, timing, and area charac-

teristics of the available parts.

resource allocation Resource allocation establishes a set of functional

units that will be adequate for implementation of the design. In many beha-

vioural synthesis systems, an initial resource allocation is performed and sub-

sequently modified during scheduling and/or binding.
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scheduling Scheduling introduces parallelism and the concept of time.

It transforms the algorithm into an FSM (Finite State Machine) representa-

tion. Using the data dependencies of the algorithm and the latencies of the

functional units in the library, the operations of the algorithm are assigned to

specific clock cycles. There are often many possible schedules. Directives that

constrain the result with respect to latency, pipelining, and resource utilization

will affect the schedule that is chosen.

functional unit binding Binding assigns the operations of the al-

gorithm to specific instances of functional units from the library.

register binding In cases where values are produced in one clock cycle

and consumed in another, these values must be stored in registers or memory.

The register binding process allocates registers as needed and assigns each

value to a physical register. Analysis of the lifetime of each data value can

identify opportunities to use the same physical register to store different values

at different times. This is done to reduce the size of the resulting design.

output processing The datapath and finite state machine resulting from

all of the previous steps are written out as RTL source code in the target lan-

guage. This code can be structured in a number of ways to optimize the down-

stream logic synthesis process or to enhance the readability of the code.

1.4 T H E S I S M O T I VAT I O N A N D C O N T R I B U T I O N S

1.4.1 Motivations

Benefiting from the development of HPC in recent decades, the number of

degrees-of-freedom (DOFs) used in biomedical modelling has increased rap-

idly in response to increased model complexity and increased model accur-

acy requirements. In order to reduce run times, parallel computing is now

becoming increasingly important as individual CPUs reach the physical lim-
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its of processor technology. Simulations involving the numerical integration of

models (such as using CellML with OpenCMISS to simulate large multi-scale

physiology) are generally limited by the available computational hardware and

the acceptable duration of simulation. For certain simulations in OpenCMISS,

a CellML model needs to be evaluated a very large number of times, resulting

in a significant computational time. In order to reduce this time, we can take

advantage of the fact that each instance of a CellML model at a particular DOF

is completely independent from the CellML models at every other DOF and

so it is possible to evaluate the models in parallel. Therefore, special purpose

hardware, in particular FPGAs, is very promising for accelerating these kinds

of computations and are expected to lead to higher performance at lower cost

and less power consumption.

Unfortunately, there are two major problems that have to be overcome. First,

developing a FPGA hardware design for a given application is much more

complex, time consuming and error prone than programming general pur-

pose processors. Second, integrating the general purpose processors in parallel

computing systems with the reconfigurable computing capacity of the FPGAs

is not trival. Therefore, despite the benefits that heterogeneous computing has

to offer in the area of science and technology, the existing tools that enable

development for FPGA-platforms are highly dependent on hardware design

expertise, i.e., an excellent understanding of a HDL and fine-grained digital

hardware architecture. This impedes the ability of biomedical scientists/engin-

eers to explore acceleration on such platforms, and creates a wide gap between

their speciality and the vast computational capacity of FPGAs.

Being able to automatically generate Hardware Accelerator Modules (HAMs)

from existing high-level model descriptions, e.g., CellML models, would open

up the use of the FPGAs to biomedical scientists/engineers. This vision leads

to the key motivations for this thesis:

• To provide a high performance hardware/software co-design framework

for biomedical simulations;

• To design and develop a domain specific high-level synthesis process that

enables the generation of the above framework in an automated way;
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• To demonstrate that domain specific high-level optimisation can deliver

competitive performance and lower energy costs;

• To investigate and develop automatic methods and technologies for op-

timised automatic hardware generation.

1.4.2 Contributions

The following major novel and innovative contributions have been made while

undertaking the research presented in this thesis:

• Exploration into the current state of the art of biomedical modelling and

simulation with hardware acceleration and HLS, identifying areas of im-

provement and new ways to exploit parallelism;

• Design and development of a parallel floating point pipeline based on

a hardware accelerator module for biomedical models. The presented

module is embedded in a proposed hardware/software co-design frame-

work that can be integrated with biomedical simulators;

• Investigation and design of a domain specific HLS tool for biomedical

modelling to automatically create the designed hardware accelerating

modules from high-level descriptions of biomedical models. The tool is

named ODoST, standing for ODE-based Domain-specific Synthesis Tool,

and it allows biomedical scientists/engineers (without hardware design

expertise) to perform simulations with the use of HAMs;

• Investigation of performance optimisation and resource utilisation

strategies for large hardware computing designs. These strategies are

used in the HLS processes to create hardware acceleration modules with

better performance and resource usage. Furthermore, the framework is

general and can be adopted for other applications with floating point

computations.

• Extensive experimental evaluation on real hardware of the generated

hardware accelerator modules regarding resource usage, scalability, per-
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formance and power consumption, including a comparison of perform-

ance and power consumption with the corresponding models in CPU

and GPU implementations.

1.5 T H E S I S S T R U C T U R E

This thesis is structured as a compilation of publications. References in the

papers have been adjusted to cross-references within this thesis. The work is

presented following the outline below.

This chapter describes, in detail, the background of the research. It presents

a brief overview of CellML and OpenCMISS. A number of representive CellML

models are explained and selected as the base models for the HAM develop-

ment and evaluation in later chapters. The chapter then presents the concepts,

techniques and tools of reconfigurable computing used in the thesis. At the

end, a summary of the motivation and contributions of this research is presen-

ted.

Chapter 2 presents the initial design and development of the hardware accel-

erator module with a hardware/software co-design framework. This module is

implemented manually, and evaluations are performed to obtain preliminary

results of the design. The content of this chapter is published at the Field-

Programmable Technology (FPT) Conference [100].

In Chapter 3, a domain-specific high level synthesis tool called ODoST is in-

vestigated and designed, mainly based on the accelerator design discussed in

Chapter 2. HAMs are generated automatically using ODoST and an in-depth

evaluation is performed, including a comparison with pure software and GPU

designs. The content of this chapter is submitted as a manuscript and is cur-

rently under review for publication in the ACM Transactions on Reconfigur-

able Technology and Systems.

Chapter 4 proposes several general optimisation strategies, including source-

to-source compiler optimisation, resource balancing and parallel pipelines to

further increase the performance of HAMs and to better use the capabilities

of the target devices. The proposed strategies have in common that they still
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can maintain the automatic nature of the overall process of the FPGA imple-

mentations. The optimised HAMs are evaluated and compared against CPU

and GPU designs as well as non-optimised HAM implementations. This work

is submitted for publication as a research article in the Journal of Concurrency

and Computation: Practice and Experience.

Finally, Chapter 5 concludes this thesis. The contributions and outcomes of

this work are summarised and reconsidered within the context of the motiv-

ations, and a number of directions and suggestions for future research are

presented.



2 H A R DWA R E AC C E L E R AT O R

M O D U L E

This chapter presents the initial design and development of the hardware ac-

celerator module, along with a hardware/software co-design framework. The

contents of this chapter are based on the published paper in Proceedings of the

International Conference on Field Programmable Technology, FPT’13 [100].

Contributions in this chapter are: (i) investigation of biomedical models for

code portions that are suitable for hardware acceleration, (ii) design of the

hardware/software co-design framework purposed for the hardware acceler-

ator, and (iii) development of a manual implementation of a hardware acceler-

ator module based on the co-design framework for the identified computation

kernel.

Preliminary evaluation results show that (i) the hardware accelerator mod-

ule gains significant speedup compared to a pure software implementation,

(ii) the scalability of performance results indicates the potential for further

performance improvements with a more complex designs, and (iii) a manual

implementation of the module is impractical and an auto generation process

is required.

31
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C H A P T E R A B S T R A C T

OpenCMISS is a mathematical modeling environment designed to solve field

based equations and link subcellular and tissue-level biophysical processes to

organ-level processes. It employs a general purpose parallel design, in partic-

ular distributed memory, for its computations. CellML is a mark up language

based on XML that is designed to encode lumped parameter, biophysically

based, systems of ordinary differential equations and nonlinear algebraic equa-

tions. OpenCMISS allows CellML models to be evaluated and integrated into

models at various spatial and temporal scales. With good inherent parallelism,

hardware acceleration based on FPGAs has a great potential to increase the

computational performance and to reduce the energy consumption of com-

putations with CellML models integrated into OpenCMISS. However, with

over several hundred CellML models, manual hardware implementation for

each CellML model is complex and time consuming. The advantages of FPGA

designs will only be realised if there is a general solution or a tool to auto-

matically convert CellML models into hardware description languages such as

VHDL. In this chapter the architecture for the FPGA hardware implementation

of CellML models are described and the first results related to performance

and resource usage based on a variety of criteria are evaluated.

2.1 I N T R O D U C T I O N

OpenCMISS1 is a general purpose computational library for solving field based

equations with an emphasis on biomedical applications [24]. It uses a distrib-

uted memory system architecture in order to solve large scale coupled models,

such as an electrical activation problem at high spatial resolutions.

OpenCMISS is typically designed to link subcellular and tissue-level bio-

physical processes into organ-level processes. It uses CellML2 [34], an open

standard mark up language based on XML, to define custom mathematical

1 http://www.opencmiss.org
2 http://www.cellml.org
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models to form parts of a larger model. Variables in CellML models are linked

to field variable components directly and define the value of each degree-of-

freedom (DOF). Mathematical models represented by CellML, by their nature,

are regular, relatively small but performance-critical and highly data parallel.

As such, special purpose hardware, in particular FPGAs with large amounts

of fine-grained parallelism, are very promising for accelerating CellML models.

Integrating the use of FPGA’s into the parallel processing of OpenCMISS has

the potential to lead to higher performance with reduced energy consumption.

However, compared to technologies such as multicore processors and GPUs,

FPGAs are not widely adopted to accelerate applications. There are two major

reasons for this. First, developing a FPGA hardware design of a given ap-

plication is much more complex, time consuming and error prone than pro-

gramming general purpose processors. Second, it is hard to integrate general

purpose processors in parallel computing systems with FPGAs (referred to as

hybrid systems).

The hardware acceleration of OpenCMISS and CellML applications involves

three components: the CellML hardware acceleration component which is ba-

sically a number of iterated floating point ODEs (Ordinary Differential Equa-

tions) computed with FPGAs, the data path acceleration framework which is

represented by the FPGA-CPU heterogeneous architecture and the generation

tool to automatically create the first two components from a specific CellML

model.

In this chapter, a FPGA-CPU heterogeneous architecture for OpenCMISS

is proposed to link with CellML hardware models via a PCIe interface. The

design has been implemented on an Intel workstation using an Altera DE4

FPGA board. The implementation is a functioning proof of concept system

which is yet to be optimised. Initial performance and resource usage results

have been obtained, and the scalability of the system has been analysed.

The chapter is organized as follows. Related work is discussed in Section 2.2.

In Section 2.3, a typical OpenCMISS example using a CellML model and the

CellML hardware architecture are discussed and analysed. The implementa-

tion of the heterogeneous architecture especially its data path is described in
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Section 2.4. In Section 2.5, the first experimental results are presented and the

potential optimization strategies are discussed. The chapter is concluded in

Section 2.6.

2.2 R E L AT E D W O R K

There are a number of works on the floating point optimization of FPGA based

systems. Some studies focus on the optimization of one or several floating

point operations on FPGAs [1, 38, 60] while the others use those floating point

tools or generators to optimize mathematical problems [84, 88]. Several float-

ing point libraries including Altera’s Megafunctions [5], DSP Builder [3] and

FloPoCo [36] are considered. In this chapter, FloPoCo is used since it alone

offers the unique combination of features required: it scales from single preci-

sion to double precision, it is pipelined, and it is open-source. However, our

approach is general and open to other tools or their combination.

Several heterogeneous acceleration frameworks for energy efficient scientific

computing have been proposed in recent years. Kapre and DeHon [58] have

presented a parallel, FPGA-based, heterogeneous architecture customized for

the spatial processing of sparse, irregular floating-point computations. They

reported that their architecture performed better than conventional processors

because of better resource utilization and lower-overhead dataflow with fine

grained tasks. Anandaroop, Somnath and Swarup [47] have proposed a hetero-

geneous mapping framework that uses embedded memory blocks in a FPGA

and proved that such a system significantly improved the energy efficiency of

applications which are dominated by complex data paths and/or functions.

Nallamuthu et al. [69] have used a FPGA-based coprocessor to accelerate the

compute-intensive calculations of a popular biomolecular simulator, LAMMPS,

and achieved a 5.5 times speed-up.

To the best of our knowledge, this research is the first implementation of a

CellML hardware model based on a FPGA-CPU heterogeneous architecture,

although OpenCMISS has also considered GPGPUs for code acceleration. The

CUDA results are promising compared to the CPU only implementation. Note,
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however, that a number of case studies [45, 59, 63] have shown that FPGAs can

achieve lower energy consumption when compared to GPUs and CPUs and

are well suited for small, highly parallel and performance critical kernels such

as CellML models.

2.3 C E L L M L H A R D WA R E M O D E L

2.3.1 A Motivating Example

The motivation of our study came from an estimation of the future electrical

activation problem of the human heart. The average human heart volume is ap-

proximately 8.19× 105 mm3 and assume that 50% of the human heart volume

is ventricular tissue. To discretise the ventricle volume into grids with 100 µm

spacing would require 4.23× 108 grid points. At each grid point a system of

ODEs needs to be solved at each time instance. If a model with 30 ODEs is used

and assuming that 100 FLOPS are required for one ODE calculation, to sim-

ulate the model at each time instance would require 1.27× 1012 FLOPS. With

a 1 ms time stamp, to simulate one minute of real activation would require

7.62× 1016 FLOPS. If, for example, a processor could compute 20 GFLOPs per

core [78] then a single core would require approximately 44 days for a simula-

tion.

2.3.2 Model Overview

CellML models by their nature are regular and ideally suited for parallelisation

as each CellML model is independent and thus can be integrated in parallel. A

CellML model can be divided into components. Components are represented

by a number of equations and each component is itself a CellML model which

can be reused in the future studies or other models. OpenCMISS encapsulates

all interaction with CellML models within a CellML environment.

For the purposes of this chapter the Hodgkin-Huxley CellML model of a gi-

ant squid axon [53] is considered. The model contains 8 components. We com-
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bine the “sodium_channel”, “potassium_channel”, “leakage_current” and “mem-

brane” components to a super “membrane_potential” component because the

“membrane” component is dependent on the other three. The “environment”

component is left out since there is no equations in the component. Therefore,

it eventually ends up with four components as listed in Table 2.1..

Component Name (ID) Equations Add/Sub Mul Div Exp

membrane_potential (V) 5 6 10 1 0

sodium_channel_m_gate (m) 3 4 4 2 2

sodium_channel_h gate (h) 3 4 3 3 2

potassium_channel_ngate (n) 3 4 4 3 2

Total 14 18 21 9 6

Table 2.1: Number of equations and floating point operations in each component of
the Hodgkin-Huxley model (the equations have been optimised with com-
mon subexpression extraction and power elimination, see Chapter 4 for the
details).

From the model consider the following equations which represent the “so-

dium_m_gate” component in the Hodgkin-Huxley model.

alpha_m =
0.1× (V + 25)

e
V+25

10 − 1
(2.1)

beta_m = 4× e
V
18 (2.2)

dm
dt

= alpha_m× (1−m)− (beta_m×m) (2.3)

where V is the trans-membrane voltage and m is a state variable for the so-

dium channel activation gate. This component is aimed at calculating the rate

of the change for the state variable m at time t. alpha_m and beta_m are first

calculated and stored as the intermediate variables. d
dt (m) is the rate variable

that corresponds to the state variable m and is calculated depending on the two

intermediate variables (also called algebraic variables). After variable d
dt (m) is

calculated, a numerical integration method will be used to approximate the

state value of m at time t +4t. There are a variety of such numerical integra-
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tion algorithms and in this thesis, Euler’s method is used. The computation of

the state variable m at time t +4t is represented in Eq. (2.4).

mt+4t = mt +4t× d
dt
(m) (2.4)

The interaction between OpenCMISS and CellML is illustrated in Figure

2.1. The OpenCMISS framework for a simulation consists of one or more re-

gions containing high spatial resolution meshes. The equation sets are formed

using fields defined over these meshes. For a simulation OpenCMISS integ-

rates each cell spatially. The modeller chooses the CellML variables that in-

teract with OpenCMISS fields and marks them as “known” or “wanted”.

Once the known or wanted status of each CellML variable has been set,

the CellML model is ready to be generated. Upon finishing the creation of

the CellML environment in a region, OpenCMISS invokes the code gener-

ation service of the CellML API. This service automatically generates a C

or Fortran function/subroutine from the MathML description of the CellML

model. This function/subroutine is then compiled and dynamically linked into

the OpenCMISS exectuable. During the simulation, as shown in Figure 2.1,

OpenCMISS calls cellml_integrate() and spatial_solve() for each time step. For

each cellml_integrate() call, OpenCMISS passes the values of “known” vari-

ables stored in the fields to a cell_integrate() function which will call the C or

Fortran function/subroutine cell_calculate() which has been generated by the

CellML code generation service.

For the Hodgkin-Huxley model, V (the transmembrane voltage) is required

for the spatial solve. The m state variable is used for determining i_Na, the

sodium current, which in turn changes the transmembrane voltage. If each

cell_calculate() call computes 1 ms of the cell activation then, in order to achieve

more accurate simulation results, the period is divided into 1000 smaller time

intervals and compute one cell with a 1 µs time interval for each iteration. After

each iteration, numerical integration method such as Euler’s method is used to

integrate the m variable. At the last iteration, m returned back to OpenCMISS

for spatial integration.



38 hardware accelerator module

Figure 2.1: Abstract view of model interaction.

A hardware/software integrated CellML model is developed to replace the

pure CellML software implementation. The rest of this section explains the

CellML hardware model architecture for the FPGA side and Section 2.4 de-

scribes the overall system architecture, including how data are exchanged

between the host computer and the FPGA. The ultimate aim for this research

is to implement a CellML hardware generator that will be an add-on for the

CellML code generation service. The service is aimed at automatically generat-

ing the hardware/software co-design CellML model and the strategies for this

are discussed in Section 2.5.

2.3.3 Pipelined Floating Point Operations

Each CellML model contains a set of ODEs and arithmetic operations are,

hence, key components of a CellML hardware model. Frequency and area are

the two main factors that measure the quality of an arithmetic operation on

FPGAs. As each CellML model is independent, they can be integrated in par-

allel. In addition the computational logic in CellML hardware models can use

a pipelined architecture for increased performance.
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During the computation, the number of pipeline stages is negligible com-

pared to the number of cells passed into the pipeline data path and hence all

pipeline stages are active most of the time. Therefore, latency in the model is

not a significant criterion and the objective is to generate a circuit with high

throughput. In turn, throughput is determined by the number of parallel cell

hardware models in the FPGA and the frequency they operate at.

Our CellML hardware model uses FloPoCo, a floating point core generator,

to create the pipelined arithmetic operators. This tool provides great flexibility

for generating floating point operations in VHDL from C++ code. In order to

generate a floating point core, FloPoCo receives an input of the core operation

features, such as target frequency, use of a pipeline, single or double precision,

enable or disable the Digital Signal Processing (DSP) blocks and the FPGA

manufacturer and model. The output is a synthesizable VHDL file with the

required input features. With this tool it is possible to change from a single

precision to a double precision pipelined floating point core by only changing

the core generator parameters and thus saving rework.

The ASAP (As Soon As Possible) clock cycle scheduling algorithm is adop-

ted as shown in Figure 2.2. It presents the pipelined datapath flow for Eqs. (2.1 -

2.4) as discussed in Section 2.3.2. In the framework, each operation has its own

associated latency and are all different from each other. For example, f add

has a latency of 12 cycles and f mul has a latency of 4 cycles. This is because

the f mul block is implemented using the hard DSP blocks which are very area

efficient, but the f add block is implemented solely with FPGA logic elements.

To ensure a high operating frequency, circuits implemented with FPGA logic

elements such as f add, f div and f exp should be pipelined to a greater degree

than those dominated with the DSP blocks like f mul. In order to balance the

pipeline, register delays are inserted. In the computation of the intermediate

variable alpha_m, a 29-stage register path is inserted into the graph to fully

balance the pipeline. Register paths are also inserted during the rate of change

calculation and the numerical integration.
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2.3.4 The Hardware Model Architecture

The simplified CellML hardware model architecture is shown in Figure 2.3.

The CellMLCore reads the input variables from the I/O interface. The dashed

box contains the fully pipelined arithmetic components and represents one

complete computation iteration for a CellML model. A multiplexer is used for

input control where the inputs for the first iteration of a cell are from the initial

value of the time step mT and the rest is from the outputs of the previous

iteration. The control is used to select the right inputs. After each iteration

computation is finished, the output mt+∆t is passed into a demultiplexer. The

output from the last iteration is directly passed to the I/O interface and the

outputs from the other iterations are passed back to the multiplexer for the

next iteration computation. A counter is used to determine when mT+∆T is

available.

CellMLCore

mT

alpha

beta

dm/dt mt+Dt

S1

S2

D

C ENB

MUX

V S1

S2

D

CENB

DEMUX

mT+DT

clk

control
counter

DT=1ms 

Dt=1 ms 

Shift Register Shift Register

Shift Register

Figure 2.3: CellML hardware model core structure.
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2.4 S Y S T E M D E S I G N A N D I M P L E M E N TAT I O N

2.4.1 Overall System Architecture

The block diagram of the overall framework of the system is shown in Fig-

ure 2.4. It is composed of a host computer and a FPGA board connected

through the PCIe interface. The arrows indicate the datapath throughout the

system. As described in Section 2.3, OpenCMISS stores variables in fields and

interacts with the CellMLWrapper by calling the cell_calculate() function. The

CellMLWrapper is used as a bridge application and interacts with the FPGA

by sending and receiving data through the PCIe interconnects.

FPGA Board

PCIe Connector

CellML 
Hardware 

Model
Controller

Onchip Memory

PCIe IP Core

DMA Controller

Host Computer

OpenCMISS

CellMLWrapper

PCIe Driver

PCIe Host

Figure 2.4: A block diagram of the overall system architecture.

On the FPGA side, there is a PCIe IP core that interacts with the PCIe con-

nector and maps to on-chip memory together with the DMA controller for

Direct Memory Access. The data received from the host computer is writ-
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ten into on-chip memory through the DMA controller. A controller is used to

send/receive signals to/from the host computer and interact with the CellML

hardware model to control the data transfer.

2.4.2 Host Computer Design

On the host computer, there are three major executing components: the simula-

tion software, OpenCMISS, the CellMLWrapper and the PCIe driver. OpenCMISS

provides the “known” variables to the CellML model which returns “wanted”

variables to it. In this research, the focus is on the cell_integrate() function/sub-

routine that calls CellMLWrapper from OpenCMISS, so the entire design and

implementation of OpenCMISS is encapsulated and can be ignored here.

The CellMLWrapper interacts with OpenCMISS by providing the

cell_calculate() function. It transfers data to and from the on-chip memory on

the FPGA using a DMA controller through the PCIe interconnects. To achieve

this, it calls PCIe functions provided by the PCIe driver. Figure 2.5 shows the

flow of CellMLWrapper. After initialising the PCIe connection, it sets the con-

trol signal to the host computer, adds the “known” variable values to a DMA

transfer and queues the transfer into the DMA controller. Once the designated

amount of data has been added, the selected DMA controller starts perform-

ing all the DMA transfers in the queue, and uses either polling or interrupts

to check whether a transfer is finished.

Ideally, for convenient control, the size of data to be added into the queue

of the DMA controller should be a multiple of the number of cells required to

fill the pipeline. The data size, however, will also depend on the input size of

the CellML model.

2.4.3 FPGA Design

The hardware infrastructure is shown on the right-hand side of Figure 2.4.

The CellML hardware model is connected to the controller and the on-chip

memory through the memory mapped I/O interfaces. The controller is also
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Initialise PCIe connection

Give the control to host computer

Add DMA transfer

Write data to memory

Give the control to FPGA

Check the control

Host computer owns the 
control?

Add DMA transfer

Read data from memory

Finalise PCIe connection

No

Yes

Figure 2.5: Flow of CellMLWrapper.

mapped to the on-chip memory to share the control signal with the host com-

puter. The PCIe IP core is interfaced with the physical PCIe interconnects and

transfers data to or from the on-chip memory through a DMA controller. Based

on Altera’s recommended method [4], two types of DMA controllers, the ordin-

ary DMA controller and the SGDMA (Scatter-Gather Direct Memory Access)

controller, are used and are exchangeable in the design. For large data that

requires multiple transfers, the SGDMA controller is used instead of the reg-

ular DMA controller. This is because, for the SGDMA, multiple transfers are

handled by the hardware itself instead of by intervention from a host. This

typically reduces the downtime between transfers to a single clock cycle.
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Idle

Running

Stopping

input_control='1'

cells_read=number_of_cells

input_control='0'

cells_read<number_of_cells

Read Controller Write Controller

Idle

Running

Stopping

output_control='1'

cells_write=number_of_cells

output_control='0'

cells_write<number_of_cells

Figure 2.6: State machines for read and write controllers.

Once the data transfer from the host computer to the on-chip memory has

finished, control is given to the controller by the host computer. The controller

is connected with the CellML hardware model through the memory mapped

interface. Once it receives the control, it immediately sets the configurations

such as input data address, output data address and passes the GO signal to

the status register of the CellML hardware model.

The CellML hardware model uses two memory mapped I/O interfaces to

read and write data from and to the on-chip memory respectively. Within the

model, two state machines are used to control the data transfer. Both state

machines comprise three states: Idle, Running and Stopping as shown in Fig-

ure 2.6.

For the read control state machine:

• Idle: This is the reset state. The state machine waits for the input_control

signal from the controller to be active. Upon moving to the Running state

the read address is loaded in from the controller;

• Running: Data is read from the on-chip memory. The read address is

incremented and the number of cells read is tracked. Once the specified

number of cells have been read the state machine moves to the Stopping

state.
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• Stopping: This state tells CellMLCore that the inputs from the on-chip

memory have all been loaded. From now on, the iterative computation

should use the previous iterations output as the inputs. It then moves

back to the Idle state.

For the write control state machine:

• Idle: This is the reset state. The state machine waits for the output_control

signal from CellMLCore to be active. Upon moving to the Running state

the write address is loaded in from the controller;

• Running: Data is written into the on-chip memory. The write address

is incremented and the number of cells written is tracked. Once the spe-

cified number of cells have been written the state machine moves to the

Stopping state.

• Stopping: This state tells the controller that the outputs from CellMLCore

have all been loaded to the on-chip memory and the controller can give

the control back to the host computer for the DMA transfers.

2.5 E X P E R I M E N T S

The experiments section is organized as follows. The hardware used in the

experiments is defined and the tests conducted (Section 2.5.1). Next, the syn-

thesis results are presented (Section 2.5.2) and the performance computed as

speedup over the single core CPU only implementation. Lastly, the results are

discussed and the potential speedup for a variety of the CellML models is

estimated.

2.5.1 Experimental Setup

The experimentation was hosted on an Altera Nios II Qsys RC environment,

chosen for its robustness and backed by a powerful tool chain facilitating the

rapid exploration of both hardware and software. The Nios II processor acts
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as the controlling system on the FPGA which is represented as the Controller

in Figure 2.4.

In the configuration the clock frequency was set at 100 MHz for the entire

system and tests were performed on the Terasic DE4 development board fea-

turing an Altera Stratix IV EP4SGX230 FPGA. The DE4 board is connected

with a 3.2 GHz Intel Core i5 3470 CPU and 16GB of RAM on the host machine

through a PCIe x8 interface. The host machine is running Ubuntu 12.10 and is

also used for the CPU only comparison tests.

The CellML hardware model implemented was based on the Hodgkin-

Huxley model described in Section 2.3.2. Two variations of the model were cre-

ated with and without the hard DSP blocks using generated floating point op-

erations from FloPoCo. The designs are compiled through Altera’s Quartus II

v12.1 to synthesize, place and route 1 - 4 components on the Stratix IV

EP4SGX230 device. Table 2.1 shows the number of equations and individual

floating point operations used for each component. From Quartus II, we have

extracted the total logic, registers and DSP blocks used to implement each

design and the maximum operating frequency ( fmax) of the final placed and

routed circuit.

To evaluate both variations of the CellML hardware model, 12 test cases are

used which varied the number of components (1 - 4) and the number of iter-

ations (10, 100 and 1000). These test cases were written in C. The data inputs

for these test cases are randomly generated single-precision floating-point val-

ues. The test cases are executed for both the CellML hardware variations (with

and without DSP blocks) and the CellML software model. The total time taken

for the data transfer and cell computation are recorded. The performance res-

ults are presented as the speedup compared to the pure software model. The

CellML software model is compiled with gcc 4.7.2 with -O3 level optimization.

2.5.2 Synthesis Results

The results of the individual floating point operations are shown in Table 2.2.

These results are generated using FloPoCo. According to the results, f mul with
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Operations Latency ALUTs Reg DSPs fmax(MHz)

fadd 12 269 622 0 531

fdiv 17 1171 1407 0 313

fmul (with DSPs) 4 73 219 4 851

fmul (no DSPs) 5 893 524 0 389

fexp (with DSPs) 17 436 854 2 198

fexp (no DSPs) 17 819 978 0 252

Table 2.2: Synthesis results of the floating point operations for Altera EP4SGX230

device.

Comps. Latency ALUTs Reg DSPs Area% fmax

1
D 98 5.7k 9.2k 24 6% 194

- 98 9.6k 10.6k 0 9% 237

2
D 98 9.7k 15.2k 48 10% 192

- 98 16,8k 17.9k 0 15% 242

3
D 98 13.2k 20.8k 76 13% 185

- 98 24.1k 25.4k 0 21% 229

4
D 98 17.0k 23.4k 120 16% 189

- 98 35.7k 30.7k 0 29% 223

Table 2.3: Synthesis results of Hodgkin-Huxley CellML hardware model with one to
four components using Altera EP4SGX230 device (D: with DSP blocks).

hard DSP blocks uses the fewest logic resources and it represents the simplest

placement and routing problem. Therefore, it achieves the highest operating

frequency. On the other hand, f div and f exp use more logic resources and

are more complex to place and route and hence require a lower operating

frequency.

Table 2.3 presents the results of the CellML hardware models as discussed

in Section 2.3 with 1 to 4 components chosen from the Hodgkin-Huxley model.

The results shows that the implementations using the DSP blocks generally are

more efficient in terms of area, but use a lower operating frequency. This is an

odd result since fewer logic resources represents simpler placement and rout-

ing and hence should achieve higher operating frequency. However, according

to Table 2.2, f exp with DSP blocks achieves the lowest operating frequency of

198 MHz, which restricts and lowers the overall operating frequency.
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Comps. Latency ALUTs Reg DSPs Area% fmax

0 - - 9.2k 9.4k 4 8% 99

1
D 98 13.5k 14.5k 28 12% 80

- 98 17.2k 16.3k 4 14% 111

2
D 98 17.8k 19.6k 52 15% 98

- 98 24.5k 22.5k 4 20% 124

3
D 98 21.7k 24.0k 80 18% 116

- 98 32.0k 29.5k 4 26% 100

4
D 98 25.1k 27.9k 124 21% 102

- 98 42.9k 37.6k 4 34% 104

Table 2.4: Synthesis results of the complete hardware system for Altera EP4SGX230

device (D: with DSP blocks).

The synthesis results for the overall system are discussed in Section 2.4 and

are presented in Table 2.4. The results shows that the maximum operating fre-

quencies are lower than the CellML hardware model shown in Table 2.3. This

is because other modules such as the IP Compiler of PCIe, Nios II processor

or DMA controllers use a more complex design and lower the operating fre-

quency.

2.5.3 Performance comparison

The performance results of the overall system containing the CellML hardware

model with 1 to 4 components are illustrated in Figure 2.7. For the hardware

model, the speedup is measured by the total time taken for the data transfer

between host machine and the FPGA device plus the cell computation time

within the FPGA is divided by the total time take for the CPU computation.

2.5.4 Discussion

From the performance results, the CellML hardware model has consistently

performed as fast or faster than the pure software model. The hardware im-

plementation has attained the speedup of up to 4.2x. This is a significant yet

not a dramatic speedup, since the Hodgkin-Huxley model requires relatively
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Figure 2.7: Performance results of CellML hardware model computation.

few floating point operations compared to other CellML models. From the

performance results, the speedup is nearly linear against number of the com-

ponents. Thus, within the resource capacity, larger models show more benefit

with hardware acceleration by attaining a greater speedup compared to pure

software models.

The synthesis results show that the hardware implementations using the

hard DSP blocks are more resource and area efficient than implementations

with pure logic elements. This means that more models can be fit into one

FPGA. However, the number of DSP blocks within one device is limited and,

so whether to use implementations with DSP blocks or not is not always pre-

determined.

The current system implementation still has room for improvement and op-

timization strategies include: increasing the operating frequency, parallelism

with multiple CellML hardware models and overlapping communication with

computation.
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2.6 C O N C L U S I O N S

This chapter proposes an approach for the hardware acceleration of biomed-

ical model calculations. Based on a CellML description of ODEs, hardware im-

plementations of these ODEs are generated. A software/hardware co-design

is developed to integrate the CellML hardware model with the software ele-

ments. The design is general and flexible and can be used for all kinds of

CellML models.

Using the Hodgkin-Huxley CellML model as a case study, an application

performance improvement of a factor of 4x has been achieved compared to

the pure-software CellML model. According to the scalability shown in the

speedup results, there is potential for further performance improvement with

more complex CellML models. In terms of the usability and feasibility of the

design, the focus is on using this general design in an automatic, rather than

manual way.





3 O D E - B A S E D D O M A I N - S P E C I F I C

S Y N T H E S I S T O O L

This chapter continues on from the hardware accelerator module designed

in Chapter 2, and presents a domain-specific high-level synthesis tool called

ODoST to automatically generate the hardware accelerator module. The con-

tents of this chapter have been submitted for publication as a research art-

icle, ODoST: Automatic Hardware Acceleration for Biomedical Model Integration, to

ACM Transactions on Reconfigurable Technology and Systems.

Contributions of this chapter are: (i) improvement of the hardware acceler-

ator module to be adopted in the auto generation framework. In the manual

module, a Nios II soft processor is used to handle the data flow on the FPGA,

while in this work, the processor is removed and replaced by a dedicated con-

troller, (ii) design, development and test of the domain-specific high-level syn-

thesis tool to generate the hardware accelerator modules from the high-level

description of biomedical models.

Experimental results of this chapter show that (i) FPGA implementations

have a significant performance advantage compared to single CPU and mul-

ticore implementations and a compatible processing speed against the GPU

implementation, (ii) FPGAs deliver much higher energy efficiency compared

to CPUs and GPUs.

53
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C H A P T E R A B S T R A C T

Numerical integration of biomedical models is employed by researchers to sim-

ulate dynamic biomedical systems. Models are often described mathematically

by Ordinary Differential Equations (ODEs) and their integration is often one

of the most computationally intensive parts of biomedical simulations. With

high inherent parallelism, hardware acceleration based on FPGAs has great

potential to increase the computational performance of the model integration,

whilst being very power efficient. However, with variant biomedical models,

manual hardware implementation is too complex and time consuming. The

advantages of FPGA designs can only be realised if there is a general solution

which can automatically convert these biomedical models into hardware de-

scription languages. In this chapter a domain specific high-level synthesis tool

called ODoST is proposed that automatically generates a FPGA-based hard-

ware accelerator module (HAM) from the high-level description. The investig-

ation also includes a general hardware architecture for this application domain.

The generated HAMs on real hardware are evaluated based on their resource

usage, processing speed and power consumption. The HAMs are compared

with single threaded and multicore CPUs with/without SSE optimisation and

a graphics card. The results show that FPGA implementations are faster than

all the CPU solutions for complex models and perform similarly to an auto-

generated GPU solution, whilst the FPGA implementations are significantly

more power efficient than the CPU and GPU solutions.

3.1 I N T R O D U C T I O N

Biomedical modelling often uses numerical integration of biomedical models

to simulate dynamic biomedical systems in order for researchers to under-

stand different physiological functions. Recently, the number of degrees-of-

freedoms (DOFs) used for mathematical models has increased rapidly due to

the increasing complexity of models and an increased accuracy requirement.

To simulate a model with a fine mesh size and running for millions of time
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steps includes a significant amount of computation which can be very time

consuming, even with today’s fastest CPUs [94].

The models used in such simulations, by their nature, are regular, relatively

small but performance-critical and highly data parallel. As such, special pur-

pose hardware, in particular FPGAs with a large amount of fine-grained par-

allelism, have promise for accelerating these models. Integrating the use of

FPGAs into the parallel processing of the simulations has the potential to lead

to higher performance with reduced energy consumption.

However, when compared to technologies such as multicore processors and

General Purpose Graphics Processing Units (GPGPUs), FPGAs have not been

widely adopted for accelerating applications. There are two major reasons for

this. First, developing a FPGA hardware design for a given application is much

more complex, time consuming and error prone than programming general

purpose processors. Second, it is hard to integrate general purpose processors

in parallel computing systems with FPGAs (referred to as hybrid systems).

Although previous studies [23, 57, 35] show that GPUs generally outperform

the FPGA architectures for streaming applications and enjoy a higher floating-

point performance, there is still a growing interest in research into using FP-

GAs as an accelerator tool due to its unrivaled flexibility, technology trends

and low power consumption.

In this thesis, a hardware accelerator with a FPGA-CPU heterogeneous ar-

chitecture is proposed for models described by CellML [34], an open standard

mark-up language based on XML. CellML is used by a variety of tools to de-

scribe biomedical models, e.g., OpenCMISS, a general purpose computational

library for solving field based equations with an emphasis on biomedical ap-

plications [24]. To reduce the effort in implementing accelerators from models,

an ODE-based Domain-specific Synthesis Tool (ODoST) is designed and im-

plemented to automatically create the accelerator framework. In this chapter,

the performance and synthesis results of the model accelerators are considered

for three models, each with increasing complexity. The performance of one of

the FPGA models is also compared with a GPU implementation of that model

obtained from a previous study.
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The chapter is organized as follows. Related work is discussed in Section 3.2.

In Section 3.3, a typical biomedical hardware accelerator module from a model

described by CellML is analysed and described. The implementation of the

ODoST is described in Section 3.4. In Section 3.5, the experimental results are

evaluated. The chapter is concluded in Section 2.6.

3.2 R E L AT E D W O R K

Biomedical models and simulations are used to understand normal and abnor-

mal functions of animals and humans. Mathematical models based on Ordin-

ary Differential Equations (ODEs) are not only used in the biomedical field, but

also extensively in other physical systems such as weather prediction, mobile

computing and thermal analysis. There are a number of modelling languages

that have been developed for storing and interchanging biological mathemat-

ical models. For example, the Mathematical Modelling Language (MML) [72],

the Systems Biology Markup Language (SBML) [54] and CellML [34]. Simula-

tion tools have also been developed to simulate models written in these model-

ling languages. Some of the tools are focused on validation and visualisation,

such as JSim [19], OpenCell [46], Virtual Cell [83], Matlab [65], LabView [70]

and Mathematica [98]. Other tools emphasise large scale and continuum sim-

ulations that require high performance computation. For example, the Cancer

Heart and Soft Tissue Environment (CHASTE) [79] and OpenCMISS [24]. This

thesis has designed and built an accelerator model based on CellML and is

intended to be used by OpenCMISS and other simulation packages.

Many case studies have been proposed and conducted using FPGAs to accel-

erate the simulation of biomedical or mathematical models. Yoshimi et al. [99]’s

accelerator of a fine-grained biochemical simulation achieved a 100x spee-

dup compared to a single processor during that time. Osana et al. [76] de-

veloped a solver-based tool, ReCSiP, for biochemical simulation using Xilinx’s

XC2VP70-5 and reported a 50 to 80 times speedup compared to Intel’s Pentium

4 processor. Thomas and Amano [93] proposed a pipelined architecture for a

stochastic simulation of chemical systems and reported that their architecture
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was 30-100 times faster compared to a pure software simulator. de Pimentel

and Tirat-Gefen [39] estimated a real time simulation of a heart-lung system

model which was expected to be 90 times faster than a PC. However, their

evaluation was calculated theoretically based on performance of the multiplier

on the device rather than a real implementation. Chen et al. [28] implemen-

ted a Runge-Kutta ODE solver using FPGAs and Simulink that resulted in a

100x speedup compared to a 2.2 GHz desktop. Most of these studies used a

manual design and implementation to develop a specialised accelerator model.

Manual design is impractical in biomedical/mathematical simulations since it

is time consuming and requires hardware development skills, often not found

in those with a biological background.

Apart from studies investigating acceleration of biomedical simulations with

FPGAs, researchers and software developers have favoured increasing the per-

formance of complex biomedical simulations using multicore and GPUs as

they require less programming. For instance, a 768-core SGI Altix 4700 shared

memory computing system simulated five milliseconds of a two billion equa-

tion heart activation problem in two hours [97]. Okuyama et al. [75] described

two acceleration methods for their physiological simulator, Flint, and gained

37x and 55x speedup compared to single threaded CPU. Shubhranshu [90] es-

tablished the superiority and cost effectiveness of a GPU based solution for a

CellML model simulation through a comparative analysis. His results are used

as a performance comparison with our results in Section 3.5. While multicore

processors, distributed systems and GPUs are all capable of doing parallel

computation in a time efficient way, they consume much more power thanFP-

GAs. Chen and Singh [27] compared the board power for an Intel Xeon W3690,

NVidia Tesla C2075 and Altera Stratix IV 530 and concluded that a FPGA used

about one fifth of power when compared to a multicore CPU and one tenth of

the power when compared to a GPU. Kestur et al. [59] tested BLAS on a FPGA,

CPU and GPU and the results showed that FPGAs offer comparable perform-

ance as well as 2.7 to 293 times better energy efficiency. Betkaoui et al. [22]

compared the energy efficiency for high productivity computing on FPGAs
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and GPUs against CPUs and obtained 3.7x efficiency with FPGAs and 2x effi-

ciency with GPUs against single threaded CPU implementations.

Due to the high requirement of development efforts and skills, many tools

have been developed for implementing applications on FPGAs through High

Level Synthesis (HLS) such as SPARK [49], DRFM [30], GAUT [31], LegUp [26]

and polyAcc [81]. These tools are used to automatically generate hardware

circuits from a high level representation, e.g. C, Matlab, Java, etc. In this thesis,

a domain specific synthesis tool called ODoST was designed and implemented.

This tool focuses on ODE-based mathematical models and aims to create the

complete datapath of a given model including the data communication and

software interfacing.

3.3 B I O M E D I C A L H A R D WA R E A C C E L E R AT O R M O D U L E

3.3.1 A Motivating Example

The motivation for this study came from an estimation of an electrical activa-

tion problem in the human heart. The approximate volume of a human heart

is 8.19× 105 mm3. To discretise the volume of the ventricles (about half of the

heart) into grids with 100 µm spacing would require 4.23× 108 grid points. At

each grid point a system of ODEs needs to be solved for each time instance.

If a model with 30 ODEs is used and assuming that 100 FLOPS are required

for one ODE evaluation, to simulate the model at each time instance would re-

quire 1.27× 1012 FLOPS. With a 1 ms time step, to simulate one minute of real

activation would require 7.62× 1016 FLOPS. If, for example, a processor could

compute 20 GFLOPs per core [78], a single core would require approximately

44 days for a simulation.

3.3.2 Biomedical Model Overview

Biomedical models are often represented by a set of ODEs describing time

varying variables and parameters. For the purpose of analysis and experi-
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ments, four models from the CellML model repository which contains 300+

models are selected. Each CellML model is component based and the com-

ponents are represented by one or more mathematical equations. In this sec-

tion, the Hodgkin-Huxley model of a giant squid axon1 is considered. The

model consists of 14 mathematical equations with 12 inputs and 14 out-

puts. For the purpose of this thesis, neither the underlining biophysical con-

cepts nor the complete model will be explained here, but instead, the “so-

dium_channel_m_gate” component is extracted which is a good representive

example of an ODE computation from the model. The equations for this com-

ponent are:

alpha_m =
0.1× (V + 25)

e
V+25

10 − 1
(3.1)

beta_m = 4× e
V
18 (3.2)

dm
dt

= alpha_m× (1−m)− (beta_m×m) (3.3)

alpha_m and beta_m are the rate constants and are intermediate variables.

V and m are state variables and dm
dt is the rate of change for m at time t. The

rate of change for V is computed by another component in the model. For a

single time step of model integration, the values of the intermediate variables

are computed, first based on the state variables (and parameters if they are

required). The rate of change for the state variable is then computed which is

dependent on the intermediate variables. Once the value of rate is available, a

numerical integration method is used to approximate the state value at next

time step. A variety of such numerical integration algorithms exists and, in

this thesis, a forward Euler’s method is used. The computation of the state

variable m at time t +4t is represented in Eq. (3.4).

mt+4t = mt +4t× dm
dt

(3.4)

1 http://models.cellml.org/exposure/5d116522c3b43ccaeb87a1ed10139016
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In order to achieve accurate results, the above process is performed and in-

tegrated in fine time steps. For example, to integrate 1 ms of the model at

one grid point, the time interval is divided into 1000 time steps and each time

step takes 1 µs. At each time step for the “sodium_channel_m_gate”, the com-

putations of Eqs. (3.1 - 3.3) are performed to obtain the rates of change and

then numerical integration is performed to find the new states after 1 µs. The

new state variables are then passed to the next step for the next time integra-

tion and so on. During this integration process, each grid point is integrated

individually and independent of other grid points.

The computational workflow is described in Figure 3.1. At the initialisation

phase, a predefined model is loaded. Analysis data (state variables and para-

meters) are initialised and passed to the model integration to obtain the state

variables and intermediate variables after one macro time step. Once finished,

the simulation time is incremented to the next macro time step and the new

state variables are passed to the spatial solver for numerical techniques such as

finite element analysis. On completion, the simulator updates the model and

passes new state variables and parameters to the model integrator for the next

macro time step integration.

The process of model integration as described is illustrated in the zoomed

in box in Figure 3.1. ∆t represents the macro time step of 1 ms and ∆t′ repres-

ents the micro time step of 1 µs. The algorithm requires spatial solving with

every macro time step. The overall problem then becomes a huge sequential

bottleneck since improving modelling accuracy by increasing the temporal res-

olution results in a long overall computation time. To solve this problem and

retain reasonable accuracy, one macro time step is divided into a number of mi-

cro time steps (e.g., 1000), spatial solving is performed every macro time step

and numerical integration is performed every micro time step. While each indi-

vidual model integration is sequential, they are all independent of each other

on a spatial level and hence massive parallelism supported by FPGAs can be

applied to the model integration over many, many grid points.
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Figure 3.1: General flow of model computation.
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Function Latency Logic Registers DSPs fmax(MHz)

FPAdd 12 269 622 - 523

FPDiv 17 1188 1407 - 308

FPMult 4 73 219 4 835

FPExp 17 436 878 2 195

FPLog 21 831 1210 18 175

FPPow 45 1808 3307 31 177

Table 3.1: FloPoCo resource use and performance for Stratix IV device.

3.3.3 Pipelined Floating Point Operations

As mentioned, biomedical models often contain a set of ODEs and hence arith-

metic operations are the key components for their equivalent hardware accel-

erator modules. Frequency and area are the two main factors that measure the

quality of an arithmetic operation on FPGAs. As each grid point computation

is independent, they can be integrated in parallel. In addition the computa-

tional logic in the hardware accelerator model can use a pipelined architecture

for increased performance.

During the computation, the number of pipeline stages is negligible com-

pared to the number of datasets passed into the pipeline data path and hence

all pipeline stages are active most of the time. Therefore, latency in the model

is not a relevant criterion and the objective is to generate a circuit with high

throughput. In turn, throughput is determined by the number of parallel cell

models in the FPGA and the frequency they operate at.

There are numerous floating point cores provided by the vendors of FP-

GAs or third party floating point platforms. These cores typically exploit the

freedom of an FPGA by providing the customisation of variable widths of ex-

ponent and mantissa to meet the designers’ specifications. They also offer IEEE

standard single and double precision cores that are used in the hardware ac-

celerator. In this thesis, FloPoCo [36], a floating point core generator, is used

to create the pipelined arithmetic operators. This tool provides great flexibility

for generating floating point operations in VHDL from C++ code. In order to

generate a floating point core, FloPoCo receives an input of the core operation
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features, such as target frequency, use of a pipeline, single or double precision,

enable or disable the Digital Signal Processing (DSP) blocks and the FPGA

manufacturer and model. The output is a synthesizable VHDL file with the

required input features. With this tool it is possible to change from a single

precision to double precision pipelined floating point core by only changing

the core generator parameters and thus saving rework. Table 3.1 displays the

resource usages and performance for the floating point cores on Stratix IV

Device generated by FloPoCo. In the table, “Logic” refers to the combinational

ALUTs (Adaptive Look-up Tables), “Registers” refers to the dedicated logic re-

gisters and “DSP” corresponds to the 18-bit DSP blocks embedded within the

device.

The ASAP (As Soon As Possible) clock cycle scheduling algorithm is adop-

ted as shown in Figure 3.2. It presents the pipelined datapath flow for Eqs. (3.1 -

3.3) discussed in Section 3.3.2. In each diagram, the horizontal axis is the time

in unit of cycles. One cycle is also one pipeline stage since it is fully pipelined.

The vertical axis represents the data sets that enter into the pipelines. One data

set is needed for one cell computation. Only the first three data sets are shown

for illustration but, in practice, there are many more. The offset between two

consequent data sets is one pipeline stage, which means data sets are pushed

into the pipeline every cycle until it is completely filled. The floating point oper-

ations are symbolically represented in the diagrams and their widths represent

number of cycles required to complete the operation. Each equation is imple-

mented separately with its own data set, datapath and output. Some equations

may contain sub branches. For example, in Eq. (3.3), alpha_m × (1− m) and

beta_m×m can be executed in parallel. Figure 3.2e illustrates the complete so-

dium_channel_m_gate integration. It connects the datapaths from individual

equations into a long datapath. In order to balance the pipeline, register delays

are inserted. For example, as beta_m finishes 24 cycles earlier than alpha_m, a

24-stage register path is inserted into the datapath in order to balance the

pipeline. Therefore, a pipeline system typically requires many registers which

will eventually become a bottleneck. To solve this problem, RAM-based shift

registers are used instead. According to our results, this type of shift register
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saves a significant amount of register consumption and has no negative impact

on performance.

3.3.4 Hardware Accelerator Module Architecture

The system architecture of the Hardware Accelerator Module (HAM) is shown

in Figure 3.3. It is composed of a host computer and a FPGA board connec-

ted through the PCIe interface. The arrows indicate the data communication

throughout the system. As described in Figure 3.1, a biomedical simulator such

as OpenCMISS initialises the variables and parameters and interacts with the

software module by a model_integrate function call. The software module is

used as a bridge application and interacts with the FPGA by sending and re-

ceiving data through the PCIe interconnects.

On the FPGA side, there is a PCIe IP core that interacts with the PCIe con-

nector and maps to the on-chip memory directly for the control signals and

through the DMA (Direct Memory Access) controller for the data transfer. The

received data from the host computer is written into on-chip memory through

the DMA controller. A controller is used to send/receive signals to/from the

host computer and interact with the CellML hardware model to control the

data transfer.

3.3.4.1 Software Module

The software module interacts with the simulator by providing the

model_integrate function call. It partitions data from the simulator into chunks

and transfers data to and from the FPGA chunk by chunk through the PCIe in-

terconnects and uses a DMA (Direct Memory Access) controller on the FPGA

to access its on-chip memory. To achieve this, it calls PCIe functions provided

by the PCIe driver. Figure 3.4 shows the flow of the software module. It first

initialises the PCIe connection and prepares data passed in by the simulator

to the FPGA in a favourable data format by dividing the data into chunks for

processing. Afterwards, it creates a control signal and grants the control to the

host computer.
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Figure 3.3: Hardware accelerator module system architecture.

The software module then allocates a DMA transfer and queues the transfer

into the DMA controller. Once the designated amount of data has been added,

the selected DMA controller starts performing all the DMA transfers in the

queue, and uses either polling or interrupts to check whether a transfer is

finished. Once all the data is written to the FPGA, the host passes the control to

the FPGA board for accelerator processing and waits until it finishes. Once the

host re-obtains control, the software module reads the results from the on-chip

memory of the FPGA through the DMA controller. Afterwards, it prepares the

data ready for simulator use and passes the next chunk for FPGA processing.

3.3.4.2 Data Control

The hardware infrastructure is shown on the right-hand side of Figure 3.3.

The hardware accelerator is interfaced with the on-chip memory through the

memory mapped I/O interfaces. The controller is also mapped to the on-chip

memory to share the data control signal with the host computer. The PCIe IP
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core is interfaced with the physical PCIe interconnects and transfers data to

and from the on-chip memory through a DMA controller on the FPGA.

Once the data transfer from the host computer to the on-chip memory has

completed, the data control is given to the hardware controller by the host

computer. The controller is connected with the hardware accelerator through

port mapping.

The hardware control is performed by a state machine illustrated in Fig-

ure 3.5. The state machine comprises of six states:

• Idle: This is the state when the host is in control. At this stage, the FPGA

continues checking the relevant sector in on-chip memory to obtain the

data control signal. When the FPGA board obtains the control from the

host, the state machine immediately moves the state to Read− ToFIFO.

• Read-ToFIFO: To balance the computation in the pipeline datapath, the

input data enters a FIFO buffer first. At this state, data is read from the

on-chip memory to a FIFO buffer. The read address is incremented and

the number of reads is tracked.

• Read-FromFIFO: Once all the inputs are in the FIFO buffer, the input

data is read from the FIFO buffer into the hardware accelerator cycle

by cycle. The model computation starts when the state machine enters

Read− FromFIFO.

• Compute: The Compute state starts when all the input data sets are

passed into the hardware accelerator. At each micro time step, the state

variables computed from the previous micro time step enter the pipeline.

The rates are then computed first according to the model and then the

numerical integration is performed to compute the new states for the

next time step. At the last micro time step, the intermediate and integ-

rated state variables are written into an output FIFO buffer and the state

machine moves to the Write− ToFIFO state.

• Write-ToFIFO: During this state, the hardware accelerator is doing the

final micro time step computation. The output data immediately enters a
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Figure 3.5: State machine for hardware data control.

FIFO buffer. Once the computation finishes, the state machine moves to

the Write− FromFIFO.

• Write-FromFIFO: Data is written into the on-chip memory from the FIFO

buffer. Once all the output data is available in the on-chip memory, the

FPGA passes control to the host by updating a control signal in the on-

chip memory and the state machine moves to the Idle state waiting for

the next set of input data. The host captures the control signal and activ-

ates the DMA to read the output data from the on-chip memory.
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3.3.4.3 Hardware Accelerator

The hardware accelerator is the core part in the HAM. It employs the pipelined

architecture to compute and integrate biomedical models over a certain num-

ber of grid points. A simplified structure of the hardware accelerator is shown

in Figure 3.6. The controller passes the input variables and control signal to

the accelerator.

The main parts of the accelerator are the model computation and model

integration steps which both use the pipeline architecture as illustrated in Fig-

ure 2.2. They are serially connected to form a long pipeline circuit. A multi-

plexer is inserted before the circuit and a demultiplexer is inserted after the

circuit. The multiplexer is selected by the control signal from the controller to

determine whether the data flow into the pipeline circuit is from the on-chip

memory or the output of previous time step computation. The control signal

is also passed into a shift counter component to generate an output control

signal. This signal is used to select the demultiplexer and determine whether

the results from the pipeline are outputted to the on-chip memory or passed

for the next time step computation.

3.4 O D E - B A S E D H I G H - L E V E L S Y N T H E S I S

The previous sections explored a hardware accelerator for biomedical models

with a HW/SW co-design structure. However, implementing such an acceler-

ator for a given biomedical model requires enormous effort which might off-

set the advantages of using a FPGA. This section proposes ODoST, a domain-

specific high-level synthesis (HLS) tool, for ODE-based biomedical simulations.

The tool is aimed at biomedical scientists and engineers, who often have little

knowledge of designing hardware, to create accelerators targeting FPGAs.
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Figure 3.6: Hardware accelerator structure.

3.4.1 ODoST Overview

ODoST stands for ODE-based Domain-specific Synthesis Tool. It generates

the HAM described in Section 3.3 with both software and hardware modules

from an ODE-based biomedical model. An overview of ODoST is shown in

Figure 3.7.

The design flow of ODoST is illustrated in Figure 3.8. ODoST contains three

phases: the analysis phase, generation phase and system integration phase. In

the analysis phase, an input biomedical model is read and analysed. The gen-

eration phase uses the analysis results to generate the software module, HDL

codes and configuration files for the hardware module. In the system integra-

tion phase, the configuration files are used to produces the entire hardware

module based on the HDL files generated from the generation phase.
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/*
There are a total of 10 entries in the algebraic variable array.
There are a total of 4 entries in each of the rate and state

variable arrays.
There are a total of 8 entries in the constant variable array.

*/
void i n i t C o n s t s ( f l o a t * CONSTANTS, f l o a t * RATES, f l o a t *STATES) { . . . }
void computeRates ( f l o a t VOI , f l o a t * CONSTANTS, f l o a t * RATES, f l o a t *

STATES , f l o a t * ALGEBRAIC) { . . . } �
Figure 3.9: C representation of model.

3.4.2 Input Model Format

The general structure of the input model in C99 is depicted in Figure 3.9. It is

derived from the C code representation of the CellML model, generated from

the XML and provided as an alternative representation of the model. Inside the

C code, state variables are referred to as STATES, intermediate variables are

referred to as ALGEBRAIC, parameters are referred to as CONSTANTS and

the rates of change for the states are referred to as RATES. Model initialisation

is done by a single call to initConsts, performing the CONSTANTS initialisa-

tion and populating STATES at the initial condition. computeRate calculates

ALGEBRAIC and RATES that are used to compute the next micro time step

values for STATES using Euler’s method. In terms of mathematical operations,

ODoST currently supports the following:

• addition (+), subtraction (-), multiplication (*), division (/),

• (natural) exponentiation (exp), logarithm (log), power (pow),

• floor (floor), absolute (abs),

• greater-equal (>=), less-equal(<=), logic and (and), logic or (or).

In addition, it also supports C-like inline conditional expressions for discon-

tinuities such as state transitions and/or changes in topology. These operations

are most frequently used and cover the majority of CellML models. ODoST

also provides the flexibility to add new functions if necessary.
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3.4.3 Analysis Phase

In the analysis phase, ODoST reads through the input biomedical model, ana-

lyses the model and obtains the following information for the generation phase:

• The size of STATES, CONSTANTS, ALGEBRAIC and RATES and the

total size of inputs and outputs;

• For the hardware module:

– The duration of the critical pipeline path;

– The equations set, containing equation specific information such as

output, inputs, start cycle and end cycle, duration, dependent equa-

tions, and operations. Individual operations within the equation are

represented with operands, output, operator, duration, start cycle

and process stage in the equation.

• For the software module:

– The extraction of computeRate and initConsts methods.

The computeRate and initConsts methods embedded in the biomedical model

can be directly extracted. To obtain the rest of the information from the main

body of the C code, the following processing steps are taken: expression ex-

traction, RPN (Reverse Polish Notation) conversion and datapath generation.

3.4.3.1 Expression Extraction

In the expression extraction step, ODoST first obtains the size of variables

defined in the model and reads through the mathematical equations of a bio-

medical model with the format described in Section 3.4.2. These equations

are normally in the form of an infix expression, where operators are written

in-between their operands. Infix notion is the most common representation

in mathematics and is used in most computer languages [42]. The expression

extraction contains the following sub-steps:

1. Identifying a statement with a mathematical equation;
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2. Identifying and parsing the input and output variables;

3. Parsing the mathematical statements from string into infix tokens. This

is generally straight forward but one challenge is to distinguish a negat-

ive sign from a subtraction operator. In order to do this, the following

rules are used to evaluate whether a minus sign is a negative sign or

subtraction operator:

• A minus sign immediately after another operator is a negative sign;

• A minus sign at the beginning is also a negative sign;

• A minus sign immediately after an (opening) parentheses is a neg-

ative sign and;

• A minus sign is a subtraction operator for all the other circum-

stances.

The above steps work well with systems that vary continuously. For condi-

tional expressions, the current solution is to divide the whole expression into

three chunks: the condition chunk, the true statement chunk and the false state-

ment chunk. Each chunk represents an equation that is passed to the remaining

steps individually for further processing.

After the expression extraction step, the size of STATES, CONSTANTS,

ALGEBRAIC and RATES and total size of inputs and outputs are obtained.

An equations set containing a list of equations is created with information

from the output_signal, input_signals and in f ix_tokens extracted from each

equation.

3.4.3.2 RPN Conversion

The second step is to convert the infix expression into postfix notation where

operators are written after their operands. Postfix is also known as Reverse

Polish Notation [42]. The postfix notation is easier to translate into HDL code

since the operators are evaluated strictly from left to right and it obviates the

need for parentheses that are required by infix notation. The RPN conversion

can use any algorithms known in the art (e.g., a shunting-yard algorithm [43]).
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3.4.3.3 Datapath Generation

The tokens of either operands or operators in the post f ix_tokens array are

evaluated from left to right. The traditional methodology to evaluate an RPN

expression is fairly straightforward. At each input token from left to right, if

the token is an operand, push it onto a stack. Otherwise, if it is an operator,

remove the most recent operands from stack, evaluate the operation and push

the result back onto the stack. Every token in the expression is evaluated and

finally the stack contains only a signal value which is the result of the expres-

sion.

In a typical biomedical model, individual equations contain variables and

numeric values. Therefore, compared to the original algorithm which only cal-

culates the values directly during the evaluation, the algorithm should separ-

ate the operands into signals for variables and values and focus on the signal

mappings to build the datapath circuit. Furthermore, operations within a math-

ematical equation may be dependent, but some independent operations can be

executed in parallel. Different operations require different times to complete.

Since the hardware accelerator is designed with a pipeline infrastructure, shift

registers are required to balance the pipeline. Thus, the number of cycles for

each shift register should also be accurately estimated.

The datapath representation is built by using Algorithm 3.1. Due to the

time-sliced fashion of the pipeline infrastructure, input data is continued to

be pushed into the pipeline. Since each operation takes a different amount of

cycles, time-based dependencies are implicitly introduced. The input signals

arrive to the circuit at the same time (i.e., the same clock cycle) but they are

consumed during different cycles depending on the stage of the operations.

In general, these are resolved by using registers to buffer the values of inter-

mediary signals until the set of inputs to a execution core are all valid. In the

algorithm, it is achieved by breaking the datapath into a set of execution stages

via an auxiliary stage counter.

Reading the postfix tokens from left to right, the algorithm first checks

whether the given token is an operator, a variable operand or a value oper-

and. All the available operators are predefined in the operators tuple. Variable
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Algorithm 3.1 Postfix to datapath representation
Require: operators, variable_definitions and value_definitions

Ensure: operations and internal_signals data structures
1: kernel Build-Datapath(tokens)
2: stack← []

3: stage← 0
4: for all token ∈ tokens do
5: if token ∈ value_definitions then
6: Push(stack, token)
7: else if token ∈ variable_definitions then
8: input_sig← Record-Input-Signal(token);
9: Push(stack, input_sig)

10: else if token ∈ operators then
11: operands← []

12: variable_operands← []

13: for i← 0, Num-Operands(token) do
14: operands[i]← Pop(stack)
15: if operands[i] ∈ variable_definitions then
16: variable_operands[i]← operands[i]
17: end if
18: end for
19: for all sig ∈ variable_operands do
20: if n← Stage-Available(sig) ≥ stage then
21: stage← n + 1
22: end if
23: end for
24: for all sig ∈ variable_operands do
25: Mark-Signal-Consumed(sig, stage)
26: end for
27: out_sig← Make-Internal-Signal();
28: Record-Operation(token, operands, out_sig, stage)
29: Push(stack, out_sig)
30: end if
31: end for
32: end kernel
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names are defined as upper case characters and values are defined as digits.

An operand stack is used to hold previous operands. If a token is a value, it is

pushed onto the stack directly (L5-6). If a token is a variable, an intermediate

input signal with unique name is created. Both the input token name and gen-

erated signal name are recorded into the internal_signals data structure. The

generated signal name is then pushed into the stack (L7-9).

If an operator is encountered, the necessary number of operands are popped

(L13–18) from the stack. The variable operand(s) extracted (L15-17) are checked

with their availability with the current stage. If one of the operands is not ready,

the operation is delayed to the next stage (L19-23). The variable operand(s) in

the internal_signals data structure are updated with the calculated stage and

marked as consumed (L24-26). An intermediate output signal with a unique

name is created and recorded into the internal_signals data structure (L27).

The operation is finally recorded into the operations data structure with the

operator, operands, output and stage (L28) and the output signal pushed onto

the stack for further processing (L29).

After the complete evaluation of the RPN expressions, the algorithm ends

with two data storage structures operations and internal_signals which are

ready to be passed into the generation phase for further processing. The

operations data structure holds the information of each operation within the

mathematical equation including the name of the functional core, required ex-

ecution time in the form of clock cycles, operands in the form of signal names

or numerical values, name of the output signal, stage and starting cycle. The

internal_signals data structure contains all the internal signals that are created

within the algorithm, the cycle when they are produced and the cycle and

stage when they are consumed, the name of the signal it receives the value

from and the name of the signal it passes the value to. There are three types of

internal signals generated and different prefixes are used to distinguish them

(XX represents the index of the signal):

• iXX: represents a signal coming from an input of the equation generated

by Record-Input-SignaL();
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• zXX: represents a signal from the output of an operation generated by

Make-Internal-Signal();

• pXX: for the operations with their outputs being registered, e.g. (A +

B) ∗ (C/D), the result from addition should be registered waiting for the

division to finish, an internal signal pXX is also created and recorded

within Make-Internal-Signal().

As discussed in Section 3.3, a general biomedical model is a set of ODEs and

mathematical functions. An ODE describes how a biomedical state, such as ion

concentration and membrane potential, changes over time. For the numerical

integration, the rate of change is first computed which is dependent on other

intermediate variables. A numerical method such as Euler’s method estimates

the state value at the next time instance based on the input rate and current

state value. To link these dependent equations, the duration of the individual

equations are also captured and passed to the generation phase for further

processing. Also, the partition size of processing is equal to the total duration

of the complete one micro time step model computation in terms of cycles. It

is recorded for control and memory size allocation.

3.4.3.4 Equations Aggregation

Once the datapaths of individual equations are built, ODoST loops through

the operations data structure for all the equations, builds the dependencies

between the equations and records them in an equations data structure. Each

element within equations holds the information of an individual equation in-

cluding inputs, output, start cycle, duration and depending equation(s). Also,

an equations_internal_signal data structure is built and records the internal

input/output signals between the equations.

3.4.4 Generation Phase

In the generation phase, a templating engine is used to perform the code and

configurations generation. A template is a plain-text file with embedded place-



80 ode-based domain-specific synthesis tool

Generator

Templates

Generated
Code

Static Code

Analysis
Results

Generated
repository

Figure 3.10: Generation structure.

holder blocks that must be substituted or processed by the templating engine.

Figure 3.10 shows the general generation structure. The results from the ana-

lysis phase are passed in and rendered into the pre-defined templates to create

software, HDL code or configurations using the templating engine. Jinja2 [85],

a Python based templating tool, is used for this work.

3.4.4.1 HDL Generation

In the HDL generation, ODoST creates the entire hardware accelerator, as

shown in Figure 3.3, that is to interact with the on-chip memory. The ab-

stract structure of the hardware accelerator is illustrated in Figure 3.6. The

hardware accelerator possesses a nested framework as shown in Figure 3.11.

ModelWrapper is the outer wrapper that interacts with the on-chip memory

for data exchange and controls the data flow to and from the hardware acceler-

ator. ModelCore handles the iterative integration of the model and ModelUnit

is responsible for one micro time step of model computation and model in-

tegration. ModelCompute contains an aggregate of ALGEBRAIC and RATES

computation. It uses shift registers in-between dependent equations to ensure



ode-based domain-specific synthesis tool 81

accurate pipeline flow. Similarly, ModelIntegration contains an aggregate of

numerical integration of STATES with Euler’s method.

ModelWrapper

ModelCore

ModelUnit

ModelCompute ModelIntegrate

Algebraic0

Algebraic1

...

Rates0

Rates1

euler0

euler1

Figure 3.11: Hardware accelerator nested framework.

According to the design illustrated in Figure 3.11, five HDL templates are

developed to be processed for the customisation. General codes without cus-

tomisation requirements are developed directly and referred to as “Static code”

in Figure 3.10, e.g., ModelIntegrate and EulerMethod in Figure 3.11, floating

point cores and shift registers etc. The major parts of the HDL templates to be

processed are:

equations computation Equations Computation is the main template

in HDL generation. Computations for individual equations are generated

based on this template. It is customised and builds one VHDL file for each or-

dinary equation and three files for equations with a conditional expression for
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e n t i t y { { output_s ignal } } _comp i s
gener ic ( S : i n t e g e r := 32 ) ;
port ( c l k : in s t d _ l o g i c ;

r s t : in s t d _ l o g i c ;
{%− f o r i in i n p u t _ s i g n a l s %}
{ { i } } : in s t d _ l o g i c _ v e c t o r ( S+1 downto 0 ) ;
{%− endfor %}
{ { output_s ignal } } : out s t d _ l o g i c _ v e c t o r ( S+1 downto 0 ) ) ;

end e n t i t y ; �
Figure 3.12: Templated entity declaration.

{%− f o r s in i n t e r n a l _ s i g n a l s %}
s i g n a l { { s [ ’ name ’ ] } } : s t d _ l o g i c _ v e c t o r ( S+1 downto 0 ) ;
{%− endfor %} �

Figure 3.13: Internal signals declaration.

evaluation, i.e., the true statement and false statement respectively. Examples

of customisations in the template are illustrated below:

• Entity declaration: Figure 3.12 shows a template fragment that declares

a VHDL entity block for an equation. Within the template, there are two

kinds of delimiters: {%...%} is used to execute statements and {{...}}

prints the result of the expression to the template. The entity name

uses the name of output_signal with the _comp suffix. The input sig-

nals and output signal of the entity are obtained from input_signals and

output_signal that are obtained from expression extraction.

• Internal signal declaration, Figure 3.13 shows the declaration of all the

internal signals required in the VHDL architecture block. These signal

names are obtained from iterating through the internal_signals results

from the datapath development.

• Signal shifting, Figure 3.14 shows the initiation of shift registers that are

used to delay the data signal by multiple clock cycles so that it can be

used in another operation. It loops through internal_signals, initialises

the shift register with a unique name and maps the number of cycles,

f rom signal and current signal name to the shi f t_register component.
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{%− f o r s in i n t e r n a l _ s i g n a l s %}
map_ { { s [ ’ from ’ ] } } _ { { s [ ’ name ’ ] } } _reg :

e n t i t y work . s h i f t _ r e g i s t e r
gener ic map ( c y c l e s => { { 1 + s [ ’ cyc les ’ ] } } )
port map ( c l k => clk ,

enable => ’ 1 ’ ,
s r _ i n => { { s [ ’ from ’ } } ,
s r_out => { { s [ ’ name ’ ] } } ) ;

{%− endfor %} �
Figure 3.14: Signal shifting.

{%− f o r o in operat ions %}
op_ { { loop . index } } _ i n s t :

e n t i t y work . { { o [ ’ core_name ’ ] } }
port map ( c l k => clk ,

r s t => r s t ,
{%− f o r i in o [ ’ inputs ’ ] %}
data { { loop . index|alphabet } } => { { i } } ,
{%− endfor %}
R => { { o [ ’ output ’ ] } } ) ;

{%− endfor %} �
Figure 3.15: Operations initiation and mapping.

• Operations initiation and mapping: Figure 3.15 shows the initiation of

operations and the port mapping of the inputs and output signals/values

of the operations. In particular, it loops through the operations, initialises

the function core of each operation with a unique name and maps the

inputs and output signals/values into the relevant ports.

modelcompute ModelCompute contains an aggregate of the

ALGEBRAIC and RATES computation. It connects the equations with

input/output data and dependent equations. The template for ModelCompute

has a similar code syntax as defined in the template for equations computation.

For example, the declaration of STATES, CONSTANTS, ALGEBRAIC and

RATES arrays in the entity declarations are customised according to their

sizes; internal signals and shift register declarations are customised from

equations_internal_signals; and the equation initialisations and mappings are

customised from the equations data structure as shown in Figure 3.16.
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{%− f o r e in equat ions %}
e n t i t y work . { { e [ ’ output ’ ] } } _comp

port map ( c l k => clk ,
r s t => r s t ,
{%− f o r i in e [ ’ inputs ’ ] %}
in_ { { i } } => { { i } } _in ,
{%− endfor %}
out_ { { e [ ’ output ’ ] } } => { { e [ ’ output ’ ] } } _out ) ;

{%− endfor %} �
Figure 3.16: Equations initiation and mapping.

modelunit ModelUnit is responsible for one micro time step model

computation and model integration. It interconnects ModelCompute with

ModelIntegrate directly since pipelines inside the two elements are already

balanced. Apart from specifying the size of the variable arrays in the entity,

the main customisation required is the cycles control for registering STATES,

CONSTANTS and VOI, which can be obtained from the durations of the

model computations and integrations.

modelcore ModelCore handles the iterative integration of the model.

Apart from the variables size specification, the customisation required for the

template is the total cycles for the whole macro time step integration, which is

derived from the duration of the model computation and integration and then

multiplied by number of micro time steps.

modelwrapper ModelWrapper is the outer wrapper that interacts with

the on-chip memory. It uses a state machine to control the data flow to and

from the hardware accelerator as described in Section 3.3.4.2. The main cus-

tomisation requirements of its template are the sizes of signals, FIFOs and the

start and end addresses of the input/output data in the on-chip memory. The

values for the customisation can be derived from the duration of the micro

time step computation and integration and the size of input/output variables.
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3.4.4.2 Configuration Generation

During the configuration generation, a set of configuration file templates are

used to generate configuration files and scripts for system integration. The

configuration file needs to be device specific since interconnection fabric is ne-

cessary. In our work, Qsys system integration tool provided by Altera [8] with

an Avalon bus is used. The Qsys provides an automatically generated intercon-

nect logic to connect intellectual property (IP) functions and subsystems. The

Qsys configurations are stored in a .qsys file that contains a clock source, an

on-chip memory, an IP Compiler for PCIe Express, a DMA controller and the

hardware accelerator subsystem. The hardware accelerator is generated using

a script written in the TCL scripting language [77]. Most subsystems and in-

terconnections in the Qsys configuration are identical for different biomedical

models except the hardware accelerator and the relevant memory allocation.

ODoST provides a template for the TCL script to generate the hardware ac-

celerator subsystem. The template sets up the module properties, file sets and

connection interfaces. The only customisation required is the specification of

source files for the equations, which are processed according to the sizes of

ALGEBRAIC and RATES variables.

The on-chip memory is used as the buffer for external inputs and outputs

and the information exchange between the host and the FPGA. The size of the

memory varies according to the input and output size for different models.

The memory uses dual port access. Figure 3.17 illustrates the allocation of

the on-chip memory. Addresses 0x00000000 to 0x000001FF are reserved for

information exchange between the host and the FPGA. Address 0x00000200 is

the start address IAs for the input data from the host to the FPGA. The end

address of the input data, IAe, is dependent on the input size. The offset of the

end address is the size of the inputs for each biomedical model Si multiplied

by the number of cells N. This size is multiplied by four, because numbers

are represented in IEEE 754 single precision floating point which takes 32 bits,

hence four bytes. Therefore, the end address for the input data in the on-chip

memory is:



86 ode-based domain-specific synthesis tool

0x00000000

0x00000001

...
Data Control0x00000100

No. of Cells0x00000101

No. of Cells0x00000102

No. of Iterations0x00000103

No. of Iterations0x00000104

...
Input Data0x00000200

Input Data0x00000201

Input Data0x00000202

Input Data...
Output Data0x00000aa0

Output Data0x00000aa1

Output Data0x00000aa2

Output Data...

MemoryAddress

Figure 3.17: On-chip memory allocation.

IAe = IAs + Si × N × 4− 1

The start address for the output data, OAs, from the FPGA to the host is

IAe + 1. Similarly, the end address of the output data, OAe, is dependent on

the size of outputs and is calculated as follows:

OAe = OA + So × N × 4− 1

where So is the size of the outputs.

For efficient memory and logic use, additional space is added to pad the

memory size to the next power of 2 bytes.

3.4.4.3 Software Module Generation

Each HAM includes a software module acting as a bridge between the biomed-

ical simulator and the hardware module. The flow of the software module is

discussed in Section 3.3.4.1. The module uses a PCIe library provided by Al-
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tera to initialise/finalise the PCIe connection, and exchange information and

data with the hardware module.

The template begins with constant definitions of the number of cells, sizes

of STATES, CONSTANTS, ALGEBRAIC and RATES and offset addresses in

the on-chip memory for the data control, number of micro time steps, number

of cells, input data stream and output data stream. Apart from the sizes of

variables that are put as placeholders and to be substituted by the analysis

results, the remaining constants are predefined.

For testing purposes, a simple simulation function and a pure software

comparison are included in the module. The C based template contains an

{{INIT_CONSTS}} and {{COMPUTE_RATES}} placeholders that are ready

for the initConsts and computeRates methods extracted directly from the model

input file. The initConsts method is used to initialise the model for both the

HAM and the pure software implementation that is used for comparison. The

computeRates method is used as the model computation for the pure software

implementation.

After the generation process, the generated module file in C format together

with a Makefile and the PCIe library comprise the software module of the

HAM.

3.4.5 System Integration

As mentioned earlier, Qsys is used for the system integration. The final system

contains the following components:

• An on-chip memory for information and data exchange between the host

and the FPGA;

• A customised hardware accelerator that interacts with the on-chip

memory through the Avalon Memory Mapped (Avalon-MM) interface

performing pipelined model computation and integration;

• A PCI Express IP core that connects the PCIe interconnection between the

host and the FPGA and interacts with the on-chip memory directly via
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the Avalon MM interface for signal transfer or through a DMA controller

for data transfer;

• A DMA controller that interacts with the on-chip memory via the Avalon

MM interface to perform memory transfer tasks between the PCI Express

IP core and the on-chip memory;

• A clock source that is defined by Altera Phase-Locked Loop (PLL) IP core

to synchronise the entire subsystems.

The system integration does not use any interactive GUI interface that is usu-

ally employed for digital hardware design, as in Quartus II. ODoST provides

two scripts aimed at command-line system integration and synthesis without

the need for user interaction. The first script executes the Qsys generator

command and creates a fully integrated synthesizable hardware module. The

second script executes the Quartus mapping, fitting, assembling and timing

commands and creates a programming file that is ready to be loaded on the

device. In other words, the generation of a hardware accelerator for a biomed-

ical model is truly automatic, starting from the high-level model specification

and resulting in an execution ready programming file for the FPGA board,

complemented by the corresponding host control software.

3.5 E VA L U AT I O N

To experimentally evaluate our proposed approach, ODoST was used to gener-

ate the HAMs based on a range of biomedical models. The HAMs are assessed

by their resource usage, processing speed and power efficiency. The processing

speed and power efficiency are also compared with CPU and GPU implement-

ations.
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3.5.1 Models

Four biomedical models ranging from low to high complexity were selected

from the CellML repository. The HAMs are generated by running ODoST on

these models. The four models are:

• The Hodgkin-Huxley model developed by Hodgkin and Huxley [53]

which describes the flow of electric current through the surface mem-

brane of the squid giant axon;

• The Beeler-Reuter model developed by Beeler and Reuter [21] which de-

scribes the membrane action potential of mammalian ventricular myocar-

dial fibres;

• The Hilemann-Noble model developed by Hilemann and Noble [51]

which describes extracellular calcium transients with tetramethylmurex-

ide in the rabbit atrium;

• The Tusscher-Noble-Noble-Panfilov (TNNP) model developed by Ten

Tusscher et al. [96] which describes human ventricular tissues.

To simplify, the one cell and one micro time step cell computation (including

the numerical integration) is defined as one iCell which stands for one itera-

tion cell. As a consequence, the cost per iCell is the average cost for one itera-

tion cell which includes the computation, communication and other overheads.

The complexity of the four models, given by the number of variables and float-

ing point operations for one iCell, are listed in Table 3.2. As can be seen, the

four models vary from low complexity (Hodgkin-Huxley) to high complexity

(TNNP) in order to provide a broad range of performance measurements. To

quantify the scalability of a typical HAM design, the spatial density (number

of cells) and temporal density (number of integration time steps) is also con-

sidered. A set of experiments are performed on the HAMs corresponding to

the four models and the measured results are represented and discussed in

the rest of this section.
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Model Name input(bytes) output(bytes) Add Sub Mul Div Exp Log Pow

Hodgkin-Huxley 48 56 13 11 21 10 6 0 2

Beeler-Reuter 80 104 49 34 60 28 25 1 1

Hilemaan-Noble 280 220 62 72 149 52 21 7 4

TNNP 252 336 129 64 156 129 52 26 4

Table 3.2: Metrics of the considered biomedical models.

Family Stratix IV
Device EP4SGX530KH40C2

Combinational ALUTs 424960

Memory ALUTs 212480

Registers 424960

Memory Bits 21233664

DSP Blocks 1024

Table 3.3: Stratix IV EP4SGX530KH40C2 device specifications.

3.5.2 Experimental Setup

The HAMs were generated by the ODoST tool from the available C code of the

biomedical models directly. Each HAM contained a hardware module and a

software module. Testbenches were generated automatically with the software

module. Minimal effort was sometimes required to adjust the C code of some

models into a format favourable ODoST. The ODoST tool terminates with the

output of a hardware module of the core accelerator coded in VHDL, all the

required external IP cores, Quartus project configurations and a script for auto

synthesis. The auto synthesis script converts the hardware module to a bin-

ary FPGA configuration. Both the hardware module generation process and

synthesis process require Altera’s Quartus II 12.1 software suite. Although the

generation processes by the ODoST tool normally takes a few minutes to com-

plete, it is worth noting that the synthesis time for the hardware modules were

significantly higher, ranging between half an hour to three hours depending

on the complexity of the model. Finally, the software module generated by the

ODoST tool embeds the control program and test stimulus.
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In the FPGA test platform, the clock frequency was set to 100 MHz for

the entire system and tests were performed on the Terasic DE4 development

board [91] featuring an Altera Stratix IV EP4SGX530 FPGA. The DE4 board

was connected with a 3.2 GHz Intel Core i5-3470 CPU and 16GB of RAM on

the host machine. Communication was through a PCIe x4 interface which sup-

ports up to a 10 Gb/s data transfer rate. The hardware module was compiled

by the Quartus synthesis tool and the software module was compiled with

GCC 4.8.2. Table 3.3 lists the total device capacity.

The CPU test platform was an Intel Xeon E5-4650 @2.7 GHz with eight cores

and 16 hardware threads [55]. The CPU was at a higher specification than the

one used for the host machine in the FPGA test platform. In addition, the

system had the Intel compiler suite installed which is one of the faster com-

pilers for x86 and supports comprehensive auto-vectorisation using Streaming

SIMD Extensions (SSE). The pure software implementations were compiled

with icc 14.0.2 running on a Linux 2.6.32-358 64-bit kernel. For each biomedical

model, four software test cases are measured for comparison with the relevant

HAM: single thread unoptimised, single thread with SSE optimisation, sixteen

threads unoptimised and sixteen threads optimised with SSE.

The results of the Beeler-Reuter Model were also compared to previous GPU

results [90]. The GPU test platform that was used was a NVidia Tesla C2070

GPU with 448 Streaming processor cores and 6 GB of GDDR5 memory [73]

attached to a system with an Intel Xeon X5650 @2.67 GHZ with 6 cores and

12 GB of DDR3 RAM. Shubhranshu [90] developed an unoptimised and auto-

mated GPU implementation and a hand optimised GPU implementation. The

automated GPU implementation is used to compare with the same automat-

ically generated HAM for the Beeler-Reuter Model. The hand optimised GPU

implementation will be refered to when studying energy consumption in Sec-

tion 3.5.5. The GPU device to host computer transfer rate configured in his

experiment was 8 Gb/s.
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3.5.3 Synthesis Results

The Quartus compiler uses a set of modules to convert the synthesizable hard-

ware modules (in VHDL) into output files for device programming. In the ex-

periments, a script generated by ODoST was used to automate the compilation

processes with the Analysis & Synthesis, Fitter, Assembler, and TimeQuest Tim-

ing Analyzer. The resulting synthesis results are used to estimate the resource

consumption and clock frequency of the HAMs.

3.5.3.1 Resource Consumption

The estimated resource consumptions were obtained from the Quartus Fitter.

The resources were divided into categories of Logic, Registers, Memory and

DSPs. The total device capacities for these resources are listed in Table 3.3.

The units of resource consumption are represented as a percentage of the total

device capacity in Figure 3.18. All four generated HAMs passed the first step

of the Quartus compilation: analysis and synthesis. However, the HAM for the

TNNP model did not pass the Quartus Fitter because its DSP requirement ex-

ceeded the DSP blocks available within the device. The percentage of resource

usage for each model was observed to be consistent with its complexity. The

number of floating point cores is the most critical factor that contributes to

logic, registers and DSPs consumption. Of these floating point cores, multi-

pliers, exponential functions, power functions and logarithms use DSP blocks.

DSPs provide an order of magnitude higher performance with lower power

consumptions than pure logic elements. However, when they are used heavily

to accelerate these floating point cores, DSPs become a bottleneck compared

to other resources in the device.

From Figure 3.18, there are more than 50% of resources left after simple cell

models such as the Hodgkin-Huxley model and the Beeler-Reuter model have

been programmed. These resources can be utilised by replicating the pipeline

datapaths in the HAM so that double, triple or even more cells could be ex-

ecuted in parallel. For complex cell models such as the TNNP model, further

optimisations can be performed before the high-level synthesis processes by
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Figure 3.18: Synthesis resource usage results of the generated HAMs.
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Figure 3.19: Synthesis performance results of the generated HAMs with their pipeline
latencies.

ODoST. For example, multipliers are implemented using DSPs, however, these

DSPs can be substituted by a pure logic implementation in order to save on

DSPs; mathematical equations can be reformulated to favour resource utilisa-

tion.

3.5.3.2 Predicted Clock Frequency

In Figure 3.19, the latencies for the critical path of the pipeline are presented

as a bar chart with a unit of cycles. The values are obtained from the model

analysis phase of the auto generation by ODoST. Fmax, represented as a line

chart in the figure, refers to the predicted maximum clock frequency (MHz)

from the Quartus TimeQuest timing analysis.

From Figure 3.19, the generated HAMs show good scalability with respect

to frequency versus model complexity. Fmax is limited by the performance of in-

dividual floating point cores. The predicted Fmax reaches frequencies between

130 MHz and 140 MHz with a reasonable fall-off for complex models. Accord-

ing to the synthesis results, from the Hodgkin-Huxley model to the Hilemann-
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Noble model, the maximum frequency drop-off is within 5%. This is a very

small drop compared to the increase in complexity. With a fully pipelined

design in the HAMs, the throughput approximates 1 cell/cycle during the en-

tire computation, hence the performance is dependent on the frequency. More

importantly, the relatively stable frequency across models together with the

same throughput of 1 cell/cycle across all models will result in a significantly

higher speed up compared to the pure software computation (which will slow

down for more complex models).

3.5.4 Performance Results

The performance results of the generated HAMs are presented using two met-

rics, the scalability and processing speed. In the scalability analysis, we meas-

ure the scalability of the design by varying the number of cells and the number

of micro time steps. The purpose of this analysis is to capture the performance

behaviour of the basic HAMs with a different percentage of their pipeline util-

isation and a different temporal density. The number of cells processed in the

HAM is varied from 10 to the maximum number of cells allowed (increasing

by a step of 10 cells) to completely fill its pipeline. In practise, it will always

be run with a full pipeline, the investigation of scalability is to confirm expect-

ations. In terms of the number of micro time steps for integration of each cell,

10, 100 and 1000 iterations are tested. Varying the number of time steps can be

a trade-off between speed and accuracy.

The processing speed measures the cells per second throughput for all three

available HAMs and the results are compared to the CPU and GPU implement-

ations.

3.5.4.1 Scalability Analysis

The scalability analysis is shown in Figure 3.20. The scalability analysis was

performed on the Hodgkin-Huxley model and the Beeler-Reuter model, since

their results are adequate to reflect the performance with varying model com-

plexity, number of cells (spatial density) and number of iterations (temporal
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Figure 3.20: Average execution time per iCell of the HAMs over number of cells and
micro time steps.

density). In general, in large scale simulations, the number of cells to process

is several orders of magnitude larger than the pipeline length. This scalability

test is to confirm correct behaviour and, in practise, the pipelines are always

fully filled.

With the number of micro time steps fixed, the average time for one iCell

execution is approximately inversely related to the number of cells to be pro-

cessed. The results are represented by different coloured lines in Figure 3.20.

The capacity of the pipeline and data communication buffer are strictly linked.

Within the capacity range, the more cells processed (increasing spatial dens-

ity), the less average time per cell is spent and the better the performance.

It is expected that maximum performance can only be obtained when the

pipeline is fully filled and the experiments were performed to confirm this.

The software module partitions and organises the workload so that each parti-

tion completely fills the pipeline. The communication overhead is included in

the measurement and the partitioning into sets does not create any additional

overhead.

In terms of the number of micro time steps, according to Figure 3.20, a higher

temporal density result in a reduced average time per iCell. This is because

more integration time steps lead to more intensive computation and the total

ratio of computation time to the data communication time increases. The input
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and output data per cell is shown in Table 3.2. As the number of cells per

partition is fixed, with increased temporal density, the per cell time decreases at

a diminishing rate. Eventually the overhead for input/output transfer becomes

negligible. General biomedical simulations favour higher temporal densities

due to accuracy and stability requirements, so in the rest of the experiments, a

temporal density of 1000 micro time steps was used to compare with the CPU

and GPU implementations. 1000 iterations or more are realistic values used in

practice [86].

Comparing the iCell computation times across the different biomedical mod-

els, Figure 3.20 shows that, with a low number of cells, the simpler model

(Hodgkin-Huxley) takes less time than the more complex model (Beeler-Reuter).

However, the gap shrinks with an increasing number of processing cells as pre-

dicted from the synthesis results in Section 2.5.2. When both the models are

processing with their pipelines at full capacity, they achieve a similar per iCell

computation time.

3.5.4.2 Processing speed

The results of the three generated HAMs compared to the CPU implementa-

tions are shown in Figure 3.21. Since the TNNP model is too large to fit onto

the test FPGA board, performance result for this model was unavailable. Two

generations of Altera FPGAs have been released since the Stratix IV (Stratix V

and Stratix 10) which offer more logic elements and DSP blocks and are large

enough for this model [13, 10]. The processing speed is measured in terms of

the number of iCells per second on all the test platforms. Each test case uses

a biomedical simulation of 1 ms with a 1 µs micro time integration step for

around 200,000 cells (the actual number of cells are a multiple of the HAM’s

pipeline latency closest to 200,000). The FPGA result for the Beeler-Reuter

model is also compared to the equivalent GPU results in Figure 3.22. It is

no surprise that the GPU implementation is much better if hand optimised,

but for fairness only automatically generated implementations are compared.

Figure 3.21 shows side by side bar charts for the HAM processing speed

compared to the CPU implementations. The left hand side presents the spee-
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dup of performance relative to CPU1 and the right hand side displays the

number of iCells per second for the implementations. The results show that

the HAMs have stable performance on the FPGA over all the models tested.

Complex models performed at a slightly slower speed than simple model

due to reduced operating frequency and an increased data communication re-

quirement with more inputs/outputs. However, the performance for complex

models reduces significantly when compared to simple models on CPU-based

implementations. It follows that the HAM for complex models would have

increased speedup over the CPU implementations as CPU implementations

have the same tendencies across all models. SSE optimised implementations

have around twice the speedup compared to non-optimised implementations

and sixteen threaded implementations have around 10 times the speedup com-

pared to the single threaded implementations. All three HAMs demonstrate

significant performance advantages over the CPU1, CPU1SSE, CPU16 imple-

mentations. For the best case from the experiments, the FPGA-based imple-

mentation has a 32x speedup compared to CPU1 and 15x to CPU1SSE. For

the Beeler-Reuter and Hilemann-Noble models with a medium to large size,

the HAM implementations also outperform the CPU16 and CPU16SSE imple-

mentations. GPU results are referenced from work done by Shubhranshu [90],

but are only available for the Beeler-Reuter’s model. According to Figure 3.22,

the automated GPU implementation gains similar throughput compared to the

FPGA-based implementation.

It is worthwhile to note that the above implementations across the three test

platforms are all automatically generated with minimal effort of design and

development. The performance of all the implementations can be improved

with manual optimisation. For example, a manual SSE intrinsics implementa-

tion with third party optimised advanced mathematical functions can achieve

about 2-3 times speedup compared to auto-vectorisation. The GPU implement-

ation can be optimised after implementing shared memory, memory coalescing

and constant memory [90]. It can achieve about 5 times speedup compared to

unoptimised GPU implementation. For the FPGA implementations, there are
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also optimisation strategies like equation optimisation, resource fitting and

multiple pipelines. These optimisations are covered in Chapter 4.

3.5.5 Power Efficiency

Power efficiency is compared between the HAMs, the best performing CPU

implementations (CPU16SSE) and the CUDA-based GPU implementation. The

power requirement for the three testing platforms is shown in Table 3.4. The

FPGA power usage is estimated using Altera’s PowerPlay Power Analyser. The

PowerPlay Power Analyser supports accurate power estimations executed at

the post-fit phase of the design cycle. To have a fair comparison with a CPU

and GPU, we specify the device power characteristics to maximum and junc-

tion temperature to the maximum possible degree. The estimated power re-

quirement for the three models were 12.3 W, 15 W and 22 W respectively. The

power usage increases with increased model complexity. The CPU power us-

age is estimated at 130 W and the GPU power usage is estimated at 238 W, both

using the Thermal Design Power (TDP). The TDP of a device is the maximum

amount of heat generated by the device that the cooling system is required to

dissipate in a typical operation. We believe that the TDP is a reasonable estim-

ate of the power consumption for the CPU and GPU during cell computation

and integration. This is based on the fact that the repeated use of SIMD instruc-

tions usually employs the CPU at the TDP limit [56]. For the GPU, we have

included the hand optimised version which is likely to work at the TDP limit.

For the auto generated GPU version the power consumption estimate might

be less accurate.

The power efficiency of the three models on each platform is measured by

the processing speed obtained from Figure 3.21 divided by the power require-

ment for each device/model from Table 3.4. The resulting values in cells per

second per watt are converted to the unit of kWh and are presented in Fig-

ure 3.23. The results show that FPGA has a better power efficiency than both

CPU16SSE and GPU over all models, with nearly 4x the power efficiency of

CPU16SSE on the Hodgkin-Huxley model, over 10x the power efficiency of
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Testing Platform Power
Measurement

(W)

Measurement Basis

Stratix IV
EP4SGX530

Hodgkin-Huxley 12.3
PowerPlay Power AnalyzerBeeler-Reuter 15

Hilemaan-Noble 22

Xeon E5-4650 130 Thermal Design Power

Tesla C2070 238 Thermal Design Power

Table 3.4: Power requirements for the three testing platforms.
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CPU16SSE and 14.5x the efficiency of a GPU on the Beeler-Reuter Model and

over 7x the power efficiency of CPU16SSE on the Hilemann-Noble model. The

CPU16SSE and GPU power efficiencies are more closely matched. The auto-

mated GPU implementation may not be executing at the TDP limit since it

is not fully optimised. The optimised GPU implementation [90] shown in the

dotted bar is more realistic. The current auto-generated HAM has around 3x

the power efficiency of the hand optimised GPU implementation and there is

potential for further optimisations. So, in general, the FPGA implementations

are significantly more power efficient than the relevant CPU and GPU imple-

mentations, whilst having comparable or better processing speed for complex

models.

3.6 C O N C L U S I O N S

This chapter proposes an approach for the hardware acceleration of biomedical

models. ODoST, an ODE-based Domain-specific Synthesis Tool is implemen-

ted and used to generate the software/hardware co-design of the hardware

accelerator module. The design is general, flexible and applicable for a large

range of biomedical models. The thesis uses CellML models and evaluates the

hardware accelerator modules for three models with diverse complexity. The

results show that FPGAs can provide a highly energy efficient solution with re-

markable processing performance compared to both multicore processors and

GPUs.



4 P E R FO R M A N C E O P T I M I S AT I O N

A N D R E S O U R C E U T I L I S AT I O N

Results from Chapter 3 shows that larger models are not suitable for hardware

acceleration due to the physical capacity limit of a FPGA. In this chapter, sev-

eral optimisation strategies are proposed aimed at relieving the capacity limits

and further increasing the performance of hardware accelerators. The contents

of this chapter have been submitted for publication as a research article, Per-

formance Optimisation Strategies for Automatically Generated FPGA Accelerators

for Biomedical Models, in the Journal of Concurrency and Computation: Practice

and Experience.

Contributions of this chapter include: (i) proposing several strategies in-

cluding compiler optimisation, resource fitting and balancing, and multiple

pipelines, (ii) analysis and investigation of the effectiveness of the proposed

strategies, and (iii) application of these strategies for the automatic HAM gen-

eration process provided by ODoST.

Experimental results from this chapter show that (i) optimised FPGA imple-

mentations provide significant improvements in processing performance and

energy efficiency, and (ii) optimisation relieves the capacity limits of a FPGA

enabling larger models to be implemented.

103
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C H A P T E R A B S T R A C T

Biomedical models that are mathematically described by Ordinary Differen-

tial Equations (ODEs), are often one of the most computationally intensive

parts of simulations. With high inherent parallelism, hardware acceleration

based on FPGAs has potential to increase the computational performance of

the ODE model integration, whilst being very power-efficient. ODoST, ODE-

based Domian-specific Synthesis Tool, is a tool proposed in previous chapters

to automatically generate a complete hardware/software co-design framework

for computing models based on CellML. Although it provides remarkable

performance and high energy efficiency when compared to CPUs and GPUs,

there is still potential for optimisation. In this chapter we investigate a set of

optimisation strategies including compiler optimisation, resource fitting and

balancing, and multiple pipelines. They all have in common that they can be

performed automatically, and can hence be integrated into the domain spe-

cific high level synthesis tool. The optimised Hardware Accelerator Modules

(HAMs) generated by ODoST are evaluated on real hardware based on criteria

such as their resource usage, processing speed and power consumption. The

results are compared with single threaded and multicore CPUs with/without

SSE optimisation and a graphics card. The results show that the proposed

optimisation strategies provide significant performance improvement and res-

ult in higher energy efficient HAMs. Furthermore, the resources of the target

FPGA device can be more efficiently utilised in order to fit larger biomedical

models than before.

4.1 I N T R O D U C T I O N

CellML [34] is an open standard mark-up language based on XML that defines

custom biomedical models based on differential algebraic equations (DAEs).

CellML is used by a variety of tools to describe the DAE models, e.g.,

OpenCMISS, a general purpose computational library for solving field based

equations with an emphasis on biomedical applications [24]. Such modelling
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often uses numerical integration of ODEs to simulate dynamic systems in or-

der for researchers to understand different physiological functions. To simulate

a model with a fine mesh size, running for millions of time steps, requires a

significant amount of computation which can be very time consuming, even

with today’s fastest CPUs [94].

In Chapter 2, a hardware accelerator with a FPGA-CPU heterogeneous ar-

chitecture for biomedical models described by CellML has been designed. The

HAM (Hardware Accelerator Module) provides an acceleration approach fo-

cusing on reconfigurable hardware aimed at high performance with reduced

energy consumption. To reduce the effort in implementing accelerators from

CellML models, an ODE-based Domain-specific Synthesis Tool (ODoST) has

been designed and implemented to automatically create the HAM accelerator

framework from a CellML input in Chapter 3. Three CellML models with

diverse complexity have been evaluated. The results show that FPGAs can

provide a highly energy efficient solution with remarkable processing perform-

ance compared to both multicore processors and GPUs.

In the previous chapter, it was shown that large models, such as the model

of human ventricular tissue, do not fit into the Terasic DE4 board used for the

experiments, due to the exhaustive use of resources. Small to medium models

fit well into the DE4 board but there are plenty of resources remaining idle

which should be used for potential performance improvement.

In this chapter, three optimisation strategies are proposed to overcome or

mitigate these limitations. They are equation optimisation, resource fitting and

balancing, and multiple pipelines. These strategies are used to optimise the

HAMs before, and after, they are generated by ODoST. Two CellML models are

used in the evaluation and results show that with multiple pipelines medium

sized models can achieve significant improvement in both processing speed

and power efficiency. For large models, equation optimisation and resource

fitting/balancing techniques can assist the models to fit into a selected device.

This chapter is organized as follows. Related work is discussed in Section 4.2.

In Section 4.3, the HAM structure and ODoST that have been proposed in

the previous chapters are discussed. The three optimisation strategies are de-
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scribed in Section 4.4, 4.5 and 4.6. In Section 4.7, these optimisation strategies

are evaluated in experiments. The chapter is concluded in Section 4.8.

4.2 R E L AT E D W O R K

Biomedical models and simulations are used to understand normal and ab-

normal functions of animals and humans. Apart from CellML, other model-

ling languages such as the Mathematical Modelling Language (MML) [72] and

the Systems Biology Markup Language (SBML) [54] have been developed for

storing and interchanging biological models. Tools have also been developed

to simulate models written in those modelling languages. Among them, sev-

eral tools emphasise large scale, continuum simulations that require high

performance computation, such as the Cancer Heart and Soft Tissue Envir-

onment (CHASTE) [79] and OpenCMISS [24]. In this thesis, an accelerator

model based on CellML is designed and built which is intended to be used by

OpenCMISS and other simulation packages.

Many case studies have used FPGAs to accelerate the simulation of biomed-

ical models. Yoshimi et al. [99]’s accelerator of a fine-grained biochemical sim-

ulation achieved a 100x speedup compared to a single processor during that

time. Osana et al. [76] developed a solver-based tool, ReCSiP, for biochemical

simulations using Xilinx’s XC2VP70-5 and reported a 50 to 80 times speedup

compared to Intel’s Pentium 4 processor. Thomas and Amano [93] proposed

a pipelined architecture for a stochastic simulation of chemical systems and

reported that their architecture was 30-100 times faster compared to a pure

software simulator. de Pimentel and Tirat-Gefen [39] estimated that a real time

simulation of a heart-lung system model was expected to be 90 times faster

than a PC. However, their evaluation was calculated theoretically based on the

performance of the multiplier on the device rather than a real implementation.

Chen et al. [28] implemented a Runge-Kutta ODE solver using FPGAs and

Simulink that resulted a 100x speedup compared to a 2.2 GHz desktop CPU.

Most of these studies used a manual design and implementation to develop

a specialised accelerator model. Manual design is impractical for biomedic-
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al/mathematical simulations since it is time consuming and requires hardware

development skills, often not found in those researchers with a biological back-

ground.

Due to the high requirement of development efforts and skills, many tools

have been developed for implementing applications on FPGAs through High

Level Synthesis (HLS) such as SPARK [49], DRFM [30], GAUT [31], LegUp [26]

and polyAcc [81]. These tools are used to automatically generate hardware

circuits from a high level representation, e.g., C, Matlab, Java, etc. In this thesis,

a domain specific synthesis tool called ODoST is designed and implemented,

which focuses on ODE-based mathematical models and aims at creating the

complete datapath of a given model including the data communication and

software interfacing.

Equation or compiler optimisation strategies are widely discussed in the

mathematical field. These strategies include common subexpression elimina-

tion [29], partial product reduction [74] and multivariate Horner scheme op-

timisation [82]. These commonly used equation optimisation strategies were

used as well as other strategies aimed at reducing the hardware resource us-

age. In this thesis, a LLVM based implementation is developed to optimise the

original CellML C code to achieve optimised C code with a lower hardware

resource consumption.

A few tools or strategies have been developed in order to fit large designs

into target devices where high resources are utilised. Tessier and Giza [92] out-

lined a procedure to determine the appropriate partitioning of programmable

logic and interconnection area to minimise overall device area. Liang et al. [62]

formulated a module selection problem and discussed strategies to solve the

problem. DeHon [40] presented a hierarchical array design to balance the inter-

connects and logic use. Each strategy is designed to satisfy a specified domain

of problems and, in this thesis, our module is divided into operations and a

resource balancing algorithm is performed on each individual operation.
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4.3 H A M A N D O D O S T

4.3.1 Biomedical Model Overview

Biomedical models are often represented by a set of ODEs describing time

varying variables and parameters. In this thesis, four biomedical models from

CellML model repository1 containing 300+ models are selected. Each CellML

model is component based and components are represented by one or more

mathematical equations or expressions. For example, the equations:

alpha_m =
−(V + 47)

e−
V+47

10 − 1
(4.1)

beta_m = 40× e−0.056×(V+72) (4.2)

dm
dt

= alpha_m× (1−m)− (beta_m×m) (4.3)

represent the component of “sodium current m gate” in the Beeler-Reuter model2,

a model that describes the mammalian ventricular action potential. The model

contains a total of 13 components with 26 mathematical equations/expres-

sions. Each CellML model contains a list of state variables (e.g., V and m) that

are time dependent, a list of rate constants and intermediate variables (e.g.,

alpha_m and beta_m) and the rates of the states (e.g., dm
dt ) at time t. For a single

time step of a model integration, the values of the intermediate variables are

first computed based on the state variables (and rate constants if they are re-

quired). The rate of change for the state variable is then computed which is

dependent on the intermediate variables. Once the value of rate is available,

a numerical integration method is used to approximate the state value at the

next time step. A variety of such numerical integration algorithms exist and, in

this thesis, a forward Euler’s method [16] is used. This method is a simple and

1 http://www.cellml.org/model
2 http://models.physiomeproject.org/e/9a
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fast numerical method that is widely used. According to Euler’s method, the

computation of the state variable m at time t +4t is represented in Eq. (4.4).

mt+4t = mt +4t× dm
dt

(4.4)

In order to achieve accurate and stable results, the above process is per-

formed using fine time steps. For example, to integrate 1 ms of the model, the

time interval is divided into 1000 time steps with each time step taking 1 µs. At

each time step for the “sodium_current_m_gate”, the computations in Eqs. (4.1

- 4.3) are performed first to obtain the rates of change and then numerical

integration is performed to find the new states after 1 µs. The new state vari-

ables are then passed to the next step for the next time integration and so

on. During this integration process, each point is integrated individually and

independently of other points.

4.3.2 Hardware Accelerator Module

A Hardware Accelerator Module (HAM) architecture to accelerate biomedical

models has been developed using pipelined floating point operations. The

pipelined structure allows a multiple number of independent cells to be ac-

cessed cycle by cycle and hence achieve one cell operation per cycle through-

put. The hardware/software co-design architecture is shown in Figure 4.1, and

is composed of a host computer and a FPGA board connected through a PCIe

interface. The arrows indicate the data communication flows throughout the

system. The software module is used as a bridge application from the bio-

medical simulator such as OpenCMISS [24] which interacts with the FPGA by

sending and receiving data through the PCIe interconnects.

On the FPGA side, there is a PCIe IP core that interacts with the PCIe con-

nector and maps to the on-chip memory directly for the control signals, and

through the DMA (Direct Memory Access) controller for data transfer. The

data received from the host computer is written into on-chip memory through

the DMA controller. An FPGA data flow controller is implemented as two state
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Simulator

Host FPGA

Software Module

PCIe Driver

PCIe Host

Controller
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PCIe IP Core

PCIe Connector

Figure 4.1: Hardware accelerator module system architecture.

machines that are used to send/receive signals to/from the host computer and

interact with the CellML hardware model to control the data transfer flow.

4.3.3 ODE-based Domain Specific Synthesis Tool

Although it is generally agreed that hardware accelerators using FPGAs have

the potential for energy efficient performance improvement, implementing

such an accelerator for a given biomedical model requires an enormous ef-

fort which might offset the advantages of using FPGA. Therefore, ODoST, a

domain-specific High-Level Synthesis (HLS) tool, for ODE-based biomedical

simulations has been developed (refer to Chapter 3). The tool is aimed at bio-

medical scientists and engineers, who often have little knowledge of designing

hardware accelerators targeting FPGAs.

ODoST stands for ODE-based Domain-specific Synthesis Tool. It generates

the HAM with both the software and hardware modules from an ODE-based
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biomedical model. ODoST contains three phases: the analysis phase, genera-

tion phase and system integration phase. In the analysis phase, ODoST reads

a biomedical input model in C99 format, converts equations from infix format

to a HDL favourable data structure through postfix processing. In the gen-

eration phase, ODoST uses the Jinja2 [85] template engine to generate HDL

codes and configuration scripts based on the data from the analysis phase. In

the system integration phase, the configuration files are used to produce the

entire hardware module based on the HDL files from the generation phase.

The automatic generation process is complete as the produced software and

hardware modules are ready to run on the hardware.

Evaluation on real hardware of the HAMs generated by ODoST from se-

lected CellML models was performed and compared against CPU and GPU

implementations. The results show that FPGAs can provide a highly energy

efficient solution and remarkable processing performance compared to both

multicore processors and GPUs. Although the HAM design already showed

a significant speed up, there is still potential for further optimisation. Three

optimisation strategies: compiler optimisation, resource fitting and balancing,

and multiple pipelines, are proposed and discussed in the rest of this chapter.

4.4 C O M P I L E R O P T I M I S AT I O N

Compiler optimisation is a process to minimise or maximise some attributes

of a computer program. Most modern software compilers provide automatic

optimisation techniques that are not provided by ODoST. Therefore, the previ-

ous evaluation is not an entirely fair comparison until C-based CellML models

are optimised for hardware processing (in a similar way as software compilers

do) before being processed by ODoST.

The most common goals for compiler optimisations are either to improve

a program’s execution speed on a software programmable processor, or to

reduce its code size and thereby its memory footprint. These goals are inter-

twined, as a program executing less instructions is both faster and smaller,

and a smaller program may execute faster due to cache effects. Architecture-
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independent transformations therefore share the basic idea of eliminating re-

dundant computations. This can be achieved by reusing the results of equival-

ent computations, or by evaluating constant operations at compile time.

In the targeted code optimisation for ODoST, there is a similar but not

identical goal, as the aim is to optimise for lower hardware resource con-

sumption after the high-level synthesis process. Arguably this can be similar

to optimising for code size and the usefulness of well-known optimisations,

the LLVM’s implementations, is investigated. LLVM [61] is a compiler infra-

structure written in C++ and is designed for compile-time, link-time, run-time

and “idle-time” optimisation of a program written in arbitrary programming

languages.

4.4.1 Local Optimisations

LLVM facilitates local algebraic simplifications through pattern matching and

replacement, as well as constant folding and a simple form of dead code elim-

ination.

The local transformations either reduce the number of instructions, or nor-

malise instructions into a canonical form. These normalisations are important,

because they allow the other transformations to match for fewer patterns, and

create more constant folding opportunities.

Figure 4.2 shows examples of patterns that are applicable to the CellML

equation systems. Eq. (4.5) moves constants to the right-hand side of com-

mutative operations. Operations involving their respective neutral element are

eliminated in Eq. (4.6). Subtractions and divisions are replaced in favour of

commutative and simpler additions and multiplications with the inverse con-

stant in Eqs. (4.7 and 4.8). Eq. (4.9) transforms a multiplication with −1 into a

negation, which is encoded as 0− x, because the LLVM-IR (intermediate rep-

resentation) does not contain a dedicated negation instruction. Eqs. (4.10 and

4.11) are used to eliminate the extra subtraction where possible. The square

operation is transformed from a call to the generic power function to a single

multiplication in Eq. (4.12). Eqs. (4.13 - 4.16) show the application of constant
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c⊕ x ⇒ x⊕ c (4.5)
x + 0, x · 1⇒ x (4.6)

x− c1 ⇒ x + c2 with c2 = −c1 (4.7)
x/c1 ⇒ x · c2 with c2 = 1/c1 (4.8)

x · (−1)⇒ 0− x (4.9)
(0− x) + c1 ⇒ c1 − x (4.10)
(0− x) · c1 ⇒ x · c2 with c2 = −c1 (4.11)

x2 ⇒ x · x (4.12)
c1 ⊕ c2 ⇒ c3 with c3 = c1 ⊕ c2 (4.13)

(x⊕ c1)⊕ c2 ⇒ x⊕ c3 with c3 = c1 ⊕ c2 (4.14)
(x · c1 + c2) · c3 ⇒ x · c4 + c5 with c4 = c1 · c3 (4.15)

and c5 = c2 · c3

(c1 − x · c2) · c3 ⇒ c4 − x · c5 with c4 = c1 · c3 (4.16)
and c5 = c2 · c3

Figure 4.2: Exemplary transformations done by LLVM [61]. x denotes an unknown
value, the ci are constants, ⊕ is either an addition or a multiplication, ± is
either an addition or subtraction.

folding where Eq. (4.15 and 4.16) are even performed on distributive expres-

sions if the number of operations can be reduced thereby.

These equations hold for floating-point arithmetic, with the exception of

Eq. (4.8), which is only safe to do if the reciprocal is accurate, and Eqs. (4.14 -

4.16). In a proposed Unsafe mode, they are performed unconditionally.

For all these transformations, a simple store-to-load forwarding is performed.

This connects consumers of a model variable to the defining expression, cir-

cumventing the effect that the underlying pairs of array stores and loads nor-

mally break the def-use chain in the intermediate representation.
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Algorithm 4.1 Algorithm to turn VP into a minimal series of multiplications
Require: V : Value and P : int

1: X : Value
2: Powers : map(int->Value)
3: k,R : int
4: k← Load(P)
5: X ← Powers[0]← V
6: for i = 1 to k do
7: X ← Power[i]← new mul X, X
8: end for
9: R = {rm, ..., r0} ← P− 2k

10: for all rj ∈ R with rj = 1 do
11: X← new mul X, Powers[j]
12: end for
13: return X

4.4.2 Common Subexpression Elimination

Common subexpression elimination is a compiler optimisation strategy that

eliminates commonly used subexpressions. It can be applied either locally in

an equation, or globally, among a set of equations. For example:

y = x · a + b

z = x · a + c
(4.17)

can be transformed to:

tmp = x · a

y = tmp + b

z = tmp + c

(4.18)

which eliminates one multiplication.

4.4.3 Higher-order powers

Algorithm 4.1 is used to transform VP for an LLVM Value V and an integer

power P into a minimal sequence of multiplications.
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First, V2k
is constructed with 2k ≤ P ⇔ k = bld(P)c, and store it along-

side the intermediate powers V20
, . . . , V2k−1

in the map Powers. This requires

k multiplications. Then, R is defined to satisfy VP = V2k · VR, and construct

VR by reusing the pre-calculated values from the map Powers corresponding

to the bits set in the binary representation of R. This requires as many multi-

plications as non-zero bits in R minus 1. One additional multiplication is used

in the calculation i.e., V30 = V16 · V14, 4 multiplications are required by V16,

and 2 additional multiplications are required by V14 = V8 · V4 · V2 while the

V8, V4, V2 results are reused, plus 1 multiplication for the final product. The

resource consumption of a generic power function on FPGA is equivalent to

around 8 multipliers. According to the calculation above, the case P = 31 is

the first to require 8 multiplications, therefore allowing us to implement all

integer powers < 31 with at most 7 multiplications.

4.4.4 Exponential Function Simplification

Exponential relations are common in biological processes modelled by CellML

descriptions. This justifies an extra effort towards the optimisation of expres-

sions involving the exponential function. Expressions of the form:

exp(x · a + b) · c (4.19)

are focused on. Here constant subexpressions are underlined. The second mul-

tiplication can be folded into the existing addition by using the power laws,

which is beneficial in our cost model e.g.,

exp(x · a + b + lnc) (4.20)

Applying this pattern without an existing addition has replaced one multi-

plication by an adder. This results in an overall saving of resource usage since

a multiplication is generally more expensive than an addition.
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Additional operations can be saved by separating the variable and constant

parts of the expressions in sets of n expressions of the form:

exp(x · a1 + b1)

...

exp(x · an + bn)

(4.21)

In the special case a1 = · · · = an, the multiplication can be reused across the

expressions which reduces the number of multiplications by n − 1. Alternat-

ively, splitting and reusing the variable exponentiation leads to:

t1 ← exp(x · a1)

t1 · exp(b1)

...

t1 · exp(bn)

(4.22)

which adds one multiplication, but eliminates n − 1 exponentiations and n

additions.

4.4.5 Source-to-source Optimiser

According to the optimisation strategies discussed above, a LLVM-based source-

to-source optimiser, cellml-opt, was developed. The optimiser generates optim-

ised C code from the original CellML model which uses standard C that fol-

lows a fixed scheme. LLVM’s C frontend clang parses the C code of the CellML

model and constructs the LLVM intermediate representation (IR). cellml-opt re-

constructs the model’s C representation from the LLVM IR.

Program equations of the model map to the LLVM functions. Both C-built-

in arithmetic operators (e.g., *, +) and functions defined in the C math library,

such as power and exponential functions, are mapped one-to-one to the re-

spective LLVM instructions. Program variables are accessed via pointer values

constructed from the function’s arguments. The particular variable and the in-

dex in an array, e.g., STATES[2], can be easily determined from LLVM’s special
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GetElementPtr instruction used by a load or a store instruction. The input vari-

ables for each equation are treated as independent variables, made possible by

the fact that the input code follows a fixed scheme where this is guaranteed.

This enables the alias analysis framework of LLVM to detect that all variable

accesses, excluding the ones with the same base and index, are independent.

On the other hand, all variable accesses with the same base and index can be

identified to a single value, greatly helping later optimisations.

The optimised output C code looks almost the same as the input code in

terms of style and structure. A simple intermediate representation, “EqIR”, is

introduced in cellml-opt so that the models original equations are transformed

into a list of pairs, where a pair consists of a left-hand side expression and a

right-hand side expression. The EqIR is then mapped into LLVM IR. Before

the resulting C code is finally emitted from the EqIR, temporary variables are

added to the equation system to represent LLVM values that are reused across

different expressions.

4.5 R E S O U R C E F I T T I N G A N D B A L A N C I N G

In a previous chapter, we used ODoST to generate HAMs using the FloPoCo

generated floating point cores with DSPs. Generally, DSPs provide an order

of magnitude higher performance with lower power consumption. However,

DSPs are a limited resource within one FPGA and they can become a bottle-

neck compared to other resources in the device. In order to solve the problem

of exhaustive use of DSPs, FloPoCo also provides floating point cores employ-

ing only logic elements. Apart from FloPoCo, there are numerous existing

floating point cores provided by the vendors of FPGAs and other third party

floating point platforms. Some floating point cores employ DSP blocks and

others use pure logic. There is no right answer to the question which floating

point core is the best, since it depends on the FPGA resource capacity and the

particular biomedical model. With the given resources and model, an effective

resource allocation algorithm can provide better resource utilisation and hence

increase the computational throughput. Before such an algorithm is proposed,
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Family Stratix IV Stratix V
Device EP4SGX530KH40C2 EP5SGXEA7N2F45C2

Equivalent LEs 531,200 622,000

Registers 424,960 938,880

Memory Bits 21,233,664 50,000,000

DSPs 1024 768

(a) Altera FPGAs

Family Virtex-6 Virtex-7
Device XC6VHX565T XC7V485T

Logic Cells 566,784 485,760

Registers 708,480 607,200

Memory Bits 32,832,000 37,080,000

DSP Slices 864 2,800

(b) Xilinx FPGAs

Table 4.1: Resource capability for selected devices.

the resources of a FPGA and the resource usage of selected floating point cores

are briefly discussed.

4.5.1 FPGA Resource Capacity

The heterogeneous nature of modern reconfigurable devices means it is com-

plicated to determine the capacity of a FPGA. The evaluation of the generated

HAMs from previous chapters shows that the logic, registers, memory and

DSPs are the four key resources consumed in the implementation, and so the

capacities of these resources is focused on. Table 4.1 lists four selected high-end

FPGAs from two leading FPGA vendors. The resources of different FPGA gen-

erations and vendors are organised differently, however, they follow the similar

principle that the main resources are formed by logic, registers, memory and

DSPs.

The basic building blocks of the Altera’s Stratix series are the Adaptive Logic

Modules (ALMs) that provide logic and dedicated registers. However, Stratix V

devices use enhanced ALMs that contain 6% more logic and double the num-

ber of registers compared to Stratix IV ALMs. In Xilinx’s Virtex series, the Con-
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figurable Logic Blocks (CLBs) are the main logic resources for implementing

circuits. The Altera and Xilinx FPGAs also provide DSP blocks that implement

multiplication, multiply-add, multiply-accumulate (MAC), and dynamic shift

functions efficiently. They can be effectively used by floating point multipliers,

exponential functions, power functions and logarithms to reduce logic usage

and achieve high performance. From Table 4.1, we refer to the equivalent logic

elements (LEs) for the Altera FPGAs and logic cells for the Xilinx FPGAs so

that they can be compared.

The Altera Stratix EP4SGX530 FPGA built in the Terasic DE4 board [91] is

the target FPGA device in investigations and evaluations in this thesis. Instead

of using the equivalent LEs which is used for comparision between different

FPGAs, we use the Adaptive Look-Up Tables (ALUTs) in the analysis. The Al-

tera Stratix EP4SGX530 FPGA contains 212,480 ALMs. Each ALM is composed

of two ALUTs, two registers and other logic and interconnects. The ALUTs

are used for either combinational or memory and the capacity of ALUTs in

the EP4SGX530 FPGA is 424,960. Registers refers to the Dedicated Logic Re-

gisters (DLRs).

4.5.2 Floating Point Cores

As mentioned, there are numerous existing floating point cores provided by

the vendors of FPGAs and other third party floating point platforms. These

cores typically exploit the freedom of an FPGA by providing customisation of

variable widths and of exponent and mantissa size to meet designers’ specifica-

tions. They also offer IEEE standard single and double precision cores that are

used in the proposed hardware accelerator. This section describes two floating

point cores, Altera Floating Point Megafunctions and FloPoCo.

4.5.2.1 Altera Floating Point Megafunctions

Altera provides a comprehensive set of IEEE 754-compliant floating point oper-

ations as IP modules for their FPGAs [5]. The Altera floating point megafunc-

tions support single and double precision selection and single extended con-



120 performance optimisation and resource utilisation

Function Output
Latency

ALUTs DLRs ALMs DSPs Fmax

ALTFP_ADD_SUB 7 576 345 375 - 227

ALTFP_DIV 33 1646 2074 1441 - 308

6 207 304 212 16 358

ALTFP_MULT 5 138 148 100 4 274

ALTFP_EXP 17 631 521 448 19 275

ALTFP_LOG 21 1950 1864 1378 8 385

Table 4.2: Altera single precision Floating Point Megafunctions resource usage and
frequency estimation for Stratix IV Devices.

figurable precision and can be parameterised by balancing the frequency at

which the operators run and the pipeline latency of the operator hardware to

fine-tune its overall performance, power and area. The typical resource usages

and latencies of the typical single precision Altera floating point cores are dis-

played in Table 4.2 for the target FPGA. Altera Floating Point Megafunctions

support round-to-nearest-even rounding mode, the default of IEEE-754-1985.

They also support exception signals for underflow and overflow.

4.5.2.2 FloPoCo

FloPoCo, standing for Floating Point Cores, is an open source generator of

arithmetic cores for FPGAs [36]. In difference to IEEE floating point represent-

ations, FloPoCo has a special floating point format with an additional two-bit

prefix. The two bits are only used to signal special-case numbers, namely 00 for

zero, 01 for normal numbers, 10 for infinities, and 11 for NaN. In IEEE, these

exception signals are handled by the exponent and mantissa. This saves quite

a lot of decoding/encoding logic. The main drawback of this format is when

results have to be stored in memory as they consume two more bits. However,

FPGA embedded memory can accommodate 36-bit data, so adding two bits to

a 32-bit IEEE-754 format is harmless as long as data resides within the FPGA.

Conversion only needs to take place when passing data to and from the host

PC.

In the hardware acceleration design, floating point cores are generated in-

dividually. The resource usage and latencies of the generated single precision
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Function Output
Latency

ALUTs DLRs ALMs DSPs Fmax

FPAdd 12 269 622 395 - 523

FPDiv 17 1188 1407 1116 - 308

FPMult 4 73 219 132 4 835

5 893 524 725 - 370

FPExp 17 436 878 507 2 195

17 816 939 755 - 237

FPLog 21 831 1210 808 18 175

22 1434 1885 1399 2 331

FPPow 45 1808 3307 2058 31 177

50 3884 4359 3620 5 232

Table 4.3: Resource usage and frequency estimation of FloPoCo generated single pre-
cision floating point cores for Stratix IV Devices.

compatible FloPoCo Floating Point Cores for Stratix IV devices with DSPs and

without DSPs are displayed in Table 4.3. The resource usage depends on the

configurations specified during the generation, especially whether to use the

DSP blocks or not. FPAdd and FPDiv are only implemented with pure logic. FP-

Mult, FPExp, FPLog and FPPow contain implementations that either favour the

use of DSP blocks with hardware multipliers or pure logic. For devices with

a large number of DSPs, but a lack of logic, floating point implementations

with DSPs are favoured otherwise implementations with pure logic are pre-

ferred. Furthermore, multiple variants of a single operation can also be used

together in a larger design, e.g., mixing pure logic implementations and DSP

implementations, to achieve better resource utilisation and balance.

4.5.3 Resource Allocation Techniques

For biomedical models that do not fit on a given FPGA after equation optim-

isation, resource fitting techniques can be used to balance the logic, register,

memory and DSP consumption. This process is called the resource planning

process and is performed on the original or optimised C code of the CellML

models. Memory in the HAM implementations is mainly used as a data buffer

and RAM-type shift registers and it is unlikely to reach the memory capacity
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Variation ALUTs (%) DLRs (%) DSPs (%)

Altera (A) 0.0325 0.0348 0.389

FloPoCo-DSP (B) 0.0172 0.0515 0.389

FloPoCo-logic (C) 0.210 0.123 0

Table 4.4: Resources percentage usage of the three variations of floating point multi-
plication.

of an FPGA before the other resources. Therefore, in our resource allocation

algorithm, we only consider the logic, registers and DSPs. Since the number of

a certain type of operation within the original or optimised CellML model is

fixed, we deal with each operation individually aiming at achieving the min-

imum usage of each resource, while the differences between the percentage

resource usage are minimised.

4.5.3.1 Formulating the Problem

Multipliers are used as a case study for the underlying resource allocation

techniques, but the same technique apply to the optimisation of other operat-

ors. According to the floating point multiplication cores illustrated in Table 4.2

and 4.3, there are three variants of a multiplier. We define the three variants as

A - the Altera implementation, B - the FloPoCo implementation with DSPs and

C - the FloPoCo implementation with the pure logic. The percentage usage of

the three variants are summarised in Table 4.4. Let PLA, PLB and PLC denote

the percentage usage of logic for each variant of multiplier. Let PRA, PRB and

PRC denote the percentage usage of registers for each variant and PDA, PDB

and PDC denote the percentage usage of DSPs for each variant, respectively.

In a FPGA design, let NA, NB and NC stand for the number of multipliers im-

plemented as variant A, B, C, respectively for each variant in a CellML model

and N stand for the total number of multipliers in the model. Therefore, the

following condition must be satisfied:

NA + NB + NC = N (4.23)
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with NA, NB, NC, N ∈N0. The total usage of each resource is:

PL = PLA · NA + PLB · NB + PLC · NC (4.24)

PR = PRA · NA + PRB · NB + PRC · NC (4.25)

PD = PDA · NA + PDB · NB + PDC · NC (4.26)

For the FPGA resource balancing problem, best values for NA, NB and NC

need to be determined to minimise the maximum resource usage, Pmax, which

is the potential bottleneck. The maximum resource usage is usually minimised

by increasing the usage of other resources and hence the pair-wise gap between

each resource usage is minimised to achieve the resource balance purpose. The

problem can be expressed as minimising Pmax in the following expression:

Pmax = max(PL, PR, PD) (4.27)

4.5.3.2 Exhaustive Algorithm

The above problem can be naively solved by an exhaustive algorithm. The

algorithm enumerates all possible value combinations of NA, NB and NC that

adhere to Eq. (4.23), calculates Pmax for each combination and keeps track of

the values that make Pmax the smallest. This naturally leads to the optimal

solution of the problem. The complexity of the algorithm is high when the

number of implementation choices, k, is high. It is the number of all possible

weak compositions of N into exactly k parts, which is the following binomial

coefficient:

O(exhaustive) =

 N + k− 1

k− 1

 (4.28)

For the three alternative implementations considered here the order is:

(N + k− 1)!
(k− 1)!((N + k− 1)− (k− 1))!

=
(N + 2)!

2N!
=

(N + 2)(N + 1)
2

= O(N2)

(4.29)
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Due to the size of typical problems (e.g., in the optimised TNNP model used

in the evaluation, N = 166) and the limited number of choices, in many cases,

the exhaustive algorithm is still adequate for the resource balancing problem.

4.5.3.3 Multivariate Equations

The minimised value of Pmax is required. As said, one way is to minimise

the pair-wise difference between each resource usage. Eqs. (4.24 - 4.26) can be

reformulated into:

PLA · NA + PLB · NB + PLC · NC ≈ PRA · NA + PRB · NB + PRC · NC (4.30)

PRA · NA + PRB · NB + PRC · NC ≈ PDA · NA + PDB · NB + PDC · NC (4.31)

Eqs. (4.30 and 4.31) together with Eq. (4.23) are simply a ternary linear equa-

tion set that can be solved directly. These multivariate equations are easy to

solve by hand and there are also many existing computational tools/libraries

that can be used to solve these equations, e.g., Matlab [68]. However, one con-

straint of the equations is that NA, NB and NC should be natural numbers, but

the results for the equation set may end up with negative or non-integer val-

ues which are not acceptable in this analysis. If any result is negative, it can be

replaced with zero and we solve the remaining linear equations. Non-integer

results can be simply replaced with the nearest integers.

4.5.3.4 Greedy Algorithm

An alternative for this problem is to use an effective greedy algorithm. A

greedy algorithm is proposed for the resource balancing problem as illustrated

in Algorithm 4.2. In this greedy algorithm, six schemes are defined as illus-

trated in Table 4.5, to reduce the value of Pmax in each execution. Table 4.5,

used in the greedy algorithm, is created following the rules that (i) variant

combinations to increment/decrement are selected to reduce the gap between

the resources with maximum and minimum percentage usage, (ii) each com-

bination should occur only once, and (iii) looping situations are avoided, i.e.

in one step, NA++; NB-- and in the next step, NB++, NA--. The algorithm
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Scheme Action Condition

PL > PD > PR NB++; NA-- NA > 0
PR > PL > PD NA++; NC-- NC > 0
PR > PD > PL NA++; NB-- NB > 0
PD > PL > PR NA-- ; NC++ NA > 0
PL > PR > PD NB++; NC-- NC > 0
PD > PR > PL NB-- ; NC++ NB > 0

Table 4.5: Schemes for reducing PT used in the greedy algorithm.

starts with the selection of the initial conditions by choosing the best values

of NA, NB, NC and Pmax from a set of preselected or randomly generated con-

ditions. In every iteration, the selectScheme method is called to choose the

scheme with newNA, newNB and newNC according to the order of the PL, PR

and PD, given that the condition of the scheme is satisfied. newPmax is then

calculated. The newPmax is compared with the value of the current Pmax. If the

newPmax is smaller, it will continue to update the current Pmax and NA, NB, NC

from new values and perform the next iteration check, otherwise, it reaches

the local optimum and the results are returned.

The greedy algorithm is more efficient than the exhaustive algorithm. The

worst case complexity is (k− 1) ·N iterations where initial condition is NA = N

and then all is changed to the condition with NB = N and then to NC = N and

so forth. The complexity is then at most O(kN), which is much better than the

exhaustive algorithm. However, the solution can stop at a local optimum and

the optimal solution cannot be guaranteed. Careful selection of initial values

can help the algorithm to find high quality solutions, as can be seen in the

evaluation of the next section.

There are further alternatives for the resource balancing. For example, an

integer linear program (ILP), that could be solved with an ILP solver like

CPLEX [33]. However, the proposed algorithms already achieve quite satis-

factory performance and prove the concept.



126 performance optimisation and resource utilisation

Algorithm 4.2 Greedy algorithm for resource balancing
Require: N
Ensure: NA + NB + NC = N and NA >= 0, NB >= 0, NC >= 0

1: kernel Greedy(N)
2: Pmax ← 100
3: newNA, newNB, newNC, newPmax ← GetsInitialValues(N)
4: while newPmax < Pmax do
5: NA← newNA
6: NB← newNB
7: NC ← newNC
8: Pmax ← newPmax
9: newNA, newNB, newNC = SelectScheme(NA, NB, NC)

10: newPmax ← CalculatePmax(newNA, newNB, newNC)
11: end whilereturn NA, NB, NC, Pmax
12: end kernel

4.5.3.5 Evaluation of the Resource Balancing Techniques

To test our techniques, the three techniques/algorithms discussed above were

evaluated with 50, 100, 200, 400 and 500 multipliers to determine the proper

values for NA, NB and NC so that the maximum individual percentage resource

usage is minimised. The results are shown in Table 4.6.

Of the three techniques, the exhaustive algorithm is easy to implement and

accurate, but the execution complexity is the highest. The use of multivariate

equations is low in complexity, but it is very likely that the results are negative

or non-integer values and thus further equation formulation and solution is

required. It is also not guaranteed to obtain optimised results and accuracy of

the results are highly dependent on the selection of equations. For example,

choosing three equations from Eqs. (4.23, 4.30 and 4.31) and PL ≈ PD. The

greedy algorithm has low complexity, however, it depends on the initial values

and may end up with a local optimum. In the evaluation, the results of the

greedy algorithm are often identical to the exact result (N = 50 to 400). For

a large problem size (N = 500), the greedy algorithm does not work so well,

because all the initial conditions chosen by the algorithm are larger than the

board capacity (i.e., >100%) and therefore, a new random condition is chosen.

In addition, the algorithm is likely to find a local optimum. Since the problem

size in the resource fitting/balancing algorithm is often relatively small, the

exhaustive algorithm is suggested to ensure the best results.
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N Techniques NA NB NC Pmax(%)

50

Exhaustive Algorithm 0 18 32 7.03

Multivariate Equations -75/0 91/19 34/31 7.39

Greedy Algorithm 0 18 32 7.03

100

Exhaustive Algorithm 0 36 64 14.06

Multivariate Equations -150/0 -182/37 68/63 14.39

Greedy Algorithm 0 36 64 14.06

200

Exhaustive Algorithm 0 72 128 28.12

Multivariate Equations -300/0 -364/74 136/126 28.79

Greedy Algorithm 0 72 128 28.12

400

Exhaustive Algorithm 0 144 256 56.24

Multivariate Equations -600/0 729/148 271/252 57.57

Greedy Algorithm 0 144 256 56.24

500

Exhaustive Algorithm 0 180 320 70.30

Multivariate Equations -750/0 911/185 339/315 71.97

Greedy Algorithm 172 13 315 71.965

Table 4.6: Evaluation results for the resource balancing example for a different num-
bers of multipliers (For multivariate equations method, the results for the
first equations set Eqs. (4.23, 4.30 and 4.31) contain negative values where
the additional equations set is required).

4.6 M U LT I P L E P I P E L I N E S

The generated hardware accelerator module is implemented with a fully

pipelined architecture. This architecture approach targets high performance

applications, allowing new inputs to be applied with every clock cycle. For

large biomedical models that use most of the resources on a FPGA, a single

pipeline is sufficient. For small to medium sized biomedical models, the HAMs

with a single pipeline only use a fraction of the available resources and the re-

maining resources remain idle. With multiple pipelines, the performance of the

HAM can be easily improved. Multiple pipelines can be implemented in two

ways, either by expanding the temporal direction or by replicating in the spa-

tial direction. We name the two methodologies, Extended Pipeline and Parallel

Pipeline, respectively.
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Figure 4.3: Single pipeline flow.

4.6.1 Single Pipeline

The single pipeline flow is illustrated in Figure 4.3. As described in Section 4.3,

the operations of the complete pipeline correspond to the calculation of all the

equations of the model. This calculation needs to be repeated many times for

one data item, once for each micro time step. The set of pipelines shown in

the figure illustrate that the same pipeline is started on each subsequent data

input. Each block in a pipeline represents one operation and with every cycle a

new data item enters. Once a data item has passed through the entire pipeline,

the output of the last stage is fed back to the input of the pipeline for the next

micro time step.

For t micro time steps of cell integration, each input data is iterated through

a single pipeline for t times. To complete the entire macro time step integration

of one input data set, with a p cycles/stage pipeline, it requires p · t cycles of

computation. In the pipeline structure, the maximum number of cells allowed

for computation of one data chunk depends on the number of pipeline stages,

p. After the first data item completes the entire macro time step integration, it

requires another p− 1 cycles to finish the whole data chunk (i.e., to drain the

pipeline) before the outputs are available to the host. Therefore, the total time

used for the computation of p cells is (p · t + p− 1) cycles. Compared to the
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Figure 4.4: Extended pipeline flow.

non-pipelined structure where each cell is computed sequentially (p · p · t), the

speedup of the single pipeline is:

SpeedUppipe =
ExecTimenon−pipe

ExecTimepipe
=

p2 · t
p · t + p− 1

(4.32)

With a 100 stage pipeline of 1000 iterations, the speedup of a pipelined com-

putation against a non-pipelined computation is 99.9. Consequently, filling and

draining the pipeline is negligible for the speedup for typical values for the

pipeline size and the number of iterations.

4.6.2 Extended Pipeline

The numerical integration of differential equations involves repetitive calcu-

lations where the same operations are repeated with an integrated data set.

The extended pipeline approach expands the pipeline in the temporal direc-

tion so that two or more identical single pipelines are joined sequentially to

form a long pipeline. Figure 4.4 shows an extended pipeline that joins two

single pipelines. The output of the last stage of the first pipeline is the input

of the second pipeline, as can be seen in the figure, and so forth for multiple

concatenated pipelines.

For a t micro time steps cell integration, each input data is iterated through

a single pipeline for t times. Therefore, an extended pipeline that joins n single

pipelines reduces the pipeline iterations to t/n (for simplicity assuming here

that t is divisible by n). However, the length of the pipeline increases n times so

it requires p · n cycles to complete the pipeline. The latency for one cell integ-
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ration does not change. But since the pipeline length increases, the maximum

number of input cells allowed for computation in one data chunk increases to

p · n. In other words, once the pipeline is full, the computation and integration

for p · n cells is done in parallel. Therefore the total time used for the compu-

tation of p · n cells is (p · t + p · n− 1) cycles. Compared to the non-pipelined

structure, the speedup of the extended pipeline is then:

SpeedUpext−pipe =
ExecTimenon−pipe

ExecTimeext−pipe
=

p2 · t · n
p · t + p · n− 1

(4.33)

For two 100 stage single pipelines with 1000 iterations that are joined into one

200 stage extended pipeline, the speedup against a non-pipelined computation

is 199.6.

However, since one extended pipeline contains n cell iterations, it is required

that the number of iterations to be divisible by n. In order to get the correct

results, a more complicated state machine is needed in the controller to obtain

the right output from the extended pipeline.

4.6.3 Parallel Pipelines

Alternatively, multiple pipelines can be implemented in parallel. Figure 4.5

shows such implementation with two identical parallel executing pipelines

represented in different colour. The set of pipelines shown in the same colour

indicates that the same pipeline is reused on subsequent input data sets. The

two parallel executing pipelines are neither data dependent nor instruction

dependent and can be treated as two completely isolated accelerators. They

are repeatedly doing the same operations with different input data sets.

Each pipeline in the parallel pipeline structure is executing exactly the same

operations as the single pipeline. Since n pipelines are executing in parallel,

parallel pipelines can achieve n× speedup compared to single pipeline. There-

fore, its speedup compared to the non-pipelined structure is:

SpeedUppara−pipe =
ExecTimenon−pipe

ExecTimepara−pipe
=

p2 · t · n
p · t + p− 1

(4.34)
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Figure 4.5: Parallel pipeline flow (Different colours represents different pipelines ex-
ecuting in parallel).

For two parallel pipelines each with 100 stages, the speedup with 1000 itera-

tions against a non-pipelined computation is 199.8.

The advantages of parallel pipelines are that they are easy to implement and

the same principle can be used across multiple FPGA boards. Therefore, the

parallel pipeline is selected for implementation and evaluation.

4.6.4 Implementation

The implementation of the parallel pipeline is based on the basic HAM model

that is discussed in Section 4.3. The controller and the hardware accelerator

are multiplied by n and they are interconnected with the on-chip memory in-

dividually. Each controller and hardware accelerator are associated with an ID

which determines the chunk of the cells in the on-chip memory that the accel-

erator deals with and the bits of the control signal the controller corresponds

to.

The HDL codes and configurations are generated by ODoST are ready for

Qsys [8] integration. The Qsys configuration is then modified by increasing
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the on-chip memory size and creating multiple hardware accelerators mapped

to the on-chip memory. Each controller/accelerator is operating individually

and in parallel with no interaction with other controllers/accelerators. There-

fore, the only change the software module needs to determine is when all the

accelerators finish their work. To achieve this, individual controller signals are

aggregated to a global signal and the software module reads the global signal

to receive the computation completion indication.

To automate the process, the ODoST can be configured based on n, the num-

ber of pipelines. The templates including the Qsys configuration template and

the software module template can be adjusted to suit the parallel pipelines as

required.

4.7 E VA L U AT I O N

This section undertakes an experimental evaluation of the three proposed op-

timisation strategies. The experiments use the strategies on two selected bio-

medical models. The optimisations are used in conjunction with the previously

proposed ODoST software that automatically creates the HAMs for the two

models. The HAMs and optimisation technologies are assessed according to

their resource usage, processing speed and power efficiency. The processing

speed and power efficiency are also compared against CPU and GPU imple-

mentations of the models.

4.7.1 Experimental Setup

Two biomedical models were selected for the evaluation:

• Beeler-Reuter model developed by Beeler and Reuter [21] describing the

membrane action potentials of mammalian ventricular myocardial fibres;

• TNNP model developed by Ten Tusscher et al. [96] describing action

potentials in human ventricular tissue.
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Pipelines 1 2 3

Input (bytes) 80 160 240

Output (bytes) 104 208 312

Addition 49 98 147

Subtraction 34 78 102

Multiplication 60 120 180

Division 28 56 84

Exponential Function 25 50 75

Logarithm 1 2 3

Power Function 1 2 3

Table 4.7: Operations and I/O of Beeler-Reuter models show increasing linearly with
the number of pipelines.

The Beeler-Reuter model was selected because it has GPU results available for

comparison. The model has low to medium complexity and the auto gener-

ated HAM fits well on the DE4 board. In fact, according to previous results,

only 33% of the resources (with DSP usage being the highest) are used and the

other resources remain idle (Chapter 3). Given these available resources, mul-

tiple pipelines were instantiated as discussed in Section 4.6, using the parallel

pipeline approach.

The Beeler-Reuter model with two parallel pipelines HAM and three parallel

pipelines HAM were evaluated in the experiments and the required operations

and I/O of the model are listed in Table 4.7.

The TNNP model was selected due to its high complexity. Indeed, the model

is so large that its HAM with the initial ODoST generation does not fit onto the

Stratix IV EP4SGX530 board used in the evaluation (Chapter 3). So in this eval-

uation, the C code equations of the TNNP model are first optimised using the

equations optimisation (Section 4.4) and then reformulated with the proposed

resource fitting approach (Section 4.5).

Table 4.8 compares the operations and the I/O of the original C code of

the model with the optimised C code. As expected, there is no change in the

I/O, but there are noticable changes in the number of operations. The op-

timised code uses more additions, subtractions and multiplication, however it

has significantly reduced the much more resource hungry division and power
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Model TNNP (original) TNNP (optimised)

Input (bytes) 252 252

Output (bytes) 336 336

Addition 114 129

Subtraction 64 91

Multiplication 156 166

Division 129 84

Exponential Function 52 51

Logarithm 4 4

Power Function 26 2

Table 4.8: Operations and I/O of an optimised TNNP model against the original
model.

function operations. Essentially, the latter has been replaced in most cases with

multiplication, leading to the drop from 26 to only 2 operations. This will signi-

ficantly reduce the FPGA resource requirements as shown in the next section.

As before, ODoST is used to generate the HAM from the optimised C code.

The CPU test platform is an Intel Xeon E5-4650 @2.7 GHz with eight cores

and 16 hardware threads [55]. This platform is selected due to its higher core

counts and multi-socket capability compared to desktop-grade CPUs. It is a

faster CPU than the one used for the host machine in the FPGA test platform.

In addition, this system has the Intel compiler suite installed which is one of

the faster compilers for x86 and supports comprehensive auto-vectorisation

using Streaming SIMD Extensions (SSE). The pure software implementations

are compiled with icc 14.0.2 running on a Linux 2.6.32-358 64-bit kernel. For

each biomedical model, four software test cases are measured for comparison

with the relevant HAM: single thread unoptimised, single thread with SSE

optimisation, sixteen threads unoptimised and sixteen threads optimised with

SSE.

The results of the Beeler-Reuter Model are also compared to the previous

GPU results of Shubhranshu [90]. The GPU test platform that was used was

an NVidia Tesla C2070 GPU with 448 Streaming processor cores and 6 GB of

GDDR5 memory [73] attached to a system with an Intel Xeon X5650 @2.67

GHZ with 6 cores and 12 GB of DDR3 RAM. Shubhranshu developed an un-
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optimised and automated GPU implementation and a hand optimised GPU

implementation. The GPU device to host computer transfer rate configured in

his experiment was 8 Gb/s.

4.7.2 Synthesis Results

In these experiments, we use the Quartus compiler to convert the synthes-

izable hardware modules, generated by ODoST, into output files for device

programming. As before, a script generated by ODoST is used to automate

the compilation processes using the Analysis & Synthesis, the Fitter, the As-

sembler, and the TimeQuest Timing Analyzer modules. The synthesis results

are used here to estimate the resource consumption and clock frequency of the

HAMs. For completeness, the usage of the Altera FPGA specific ALMs are also

included in the resource analysis (see the resource discussion in Section 4.5).

4.7.2.1 Resource Consumption

The estimated resource consumption is obtained from the Quartus Fitter. The

resources are divided into categories of Logic, Registers, Memory, DSPs and

ALMs. The total device capacities are listed in Table 4.1. “Logic” refers to the

Combinational ALUTs, “Registers” refers to the Dedicated Registers, “DSPs”

refers to the DSP blocks implemented by 18x18 hardware multipliers, “Memory”

refers to the memory bits and ALMs refers to the Adaptive Logic Modules.

For the Beeler-Reuter model, the resource consumptions of the HAMs with

one, two and three pipelines are represented as a percentage of the total device

capacity in Figure 4.6. According to the results, the resource usage grows with

the number of pipelines, but not in a strictly linear fashion. Logic, Registers

and Memory usage grows slower and only the DSP usage grows in a strictly

proportionally manner. This can be explained by the complex relation between

ALMs and the other resource categories. Some minor equation reformulation

was applied for the three pipelines implementation since the ALM usage did

overflow without it, which is very difficult to predict due to the multiple roles

of ALMs.
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Figure 4.6: Synthesis resource usage results of the HAMs for the Beeler-Reuter model.
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Model TNNP (without balancing) TNNP (with balancing)

ALUTs 42% 67%
DLRs 82% 88%
DSPs 88% 59%

Table 4.9: Estimated resource consumption of TNNP HAM before and after resource
allocation optimisation (Estimates calculated as sums of resource usages for
each operation).

For the TNNP model, the resource consumption of the non-optimised and

optimised HAMs is illustrated in Figure 4.7. The non-optimised HAM does

not fit onto the DE4 board since it uses up all the available DSPs and has an

overflow for the ALMs. The optimised HAM for the TNNP model using the

proposed equations optimisation, however, fits onto the DE4 board well.

Since the TNNP model with equation optimisation is already sufficient to ex-

ecute the hardware accelerator on the DE4 board, it is not necessary to perform

a further resource balancing optimisation on the model, unless the resource

usage could be reduced to under half of the total resource capacity so that par-

allel pipeline optimisation, i.e., implementing two pipelines, can be used. The

optimised TNNP model (i.e., after equations optimisation) was analysed with

the exhaustive resource allocation algorithm for multipliers, divisions, expo-

nential functions, logarithms and power functions. As shown by the resource

estimation in Table 4.9, although the optimisation with resource allocation al-

gorithm can achieve better resource balance, especially between the logic and

DSPs, it is still not possible for two models to fit on the same FPGA. Therefore,

resource allocation optimisation is not adopted for the TNNP model.

Interestingly, there are differences between the estimated resource usage and

the resource usage in the synthesis reports of the Quartus Synthesiser. The

consumption of DLRs and DSPs after synthesis are less than the estimated

usage, since the Quartus Synthesiser performs a further resource optimisation

step through register and memory packing [2] on the overall HAM. The ALUT

consumption after synthesis is more than the estimate because the estimate

does not include other logic components such as the controller, the on-chip

memory, the DMA and the PCIe IP core.
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Figure 4.7: Synthesis resource usage results of the non-optimised and optimised
HAMs for the TNNP model.

Number of Pipelines Fmax(MHz)

1 134.59

2 128.9
3 127.86

Table 4.10: Predicted clock frequencies for the HAMs of the Beeler-Reuter model.

4.7.2.2 Predicted Clock Frequency

The predicted maximum clock frequency Fmax is obtained from the synthesis

results performed by Quartus TimeQuest Timing Analyzer. For the design,

the operating conditions are set to the slow timing model, with a voltage of

900 mV, and temperature of 85 °C. Table 4.10 displays the frequency values for

the different number of pipelines for the Beeler-Reuter model.

The HAMs show good scalability with respect to frequency versus number

of pipelines. The frequency used in the implementation is 125 MHz. The pre-

dicted Fmax reaches acceptable frequencies between 125 MHz and 135 MHz

with reasonable fall-off for more pipelines. The maximum frequency drop-off

is around 5%. This is a very small drop compared to nearly triple of the ex-

pected performance increase. With a fully pipelined and parallel design in the

HAMs, the throughput for the three pipeline implementation approximates
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3 cells/cycle during the entire computation. This is a significant performance

advantage compared to the throughput for the single pipeline implementation

which is approximately 1 cell/cycle.

The predicted maximum clock frequency for the optimised HAM of the

TNNP model is 126.31 MHz. Comparing to the models previously evaluated

in Chapter 3, there is a slight fall in Fmax. This is reasonable and reflects the

complexity of the design compared to the others. Using a FPGA at the upper

limit of its capacity usually leads to a drop in frequency as the placement of

components cannot be fully optimised for speed by the fitter.

4.7.3 Performance Results

The performance of the HAMs are presented by their processing speed. For

both the Beeler-Reuter model and the TNNP model, the processing speed

measures throughput as the number of micro time step cell integrations per

second. To simplify, we define the unit iCells/s which stands for iteration cells

per second. The results are compared to the CPU implementations of the two

models. For the Beeler-Reuter model, the results are also compared against a

GPU implementation [90].

Figure 4.8 presents the processing speed of the Beeler-Reuter model across

the different implementations. Figure 4.8a presents the throughputs across the

implementations in the unit of iCells per second. Figure 4.8b displays speedup

against the CPU1 implementation. Each test case measures a biomedical simu-

lation of 1 ms duration with 1 µs micro time step integration for 537,000 cells

(number of pipeline stages (179) times maximum capable number of pipelines

(3) times 1000). The hand optimised GPU implementation is only used here

for a general comparison as all the other implementations in the evaluation

are fully automated (or can be fully automated).

As shown in the figures, the two pipeline implementation achieves 1.91 spee-

dup and the three pipeline implementation achieves 2.71 speedup compared

to the single pipeline implementation, hence the results are within 10% of the

theoretical optimal value. This is a reflection of the increase in the commu-
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FPGA-n: HAM implementation, where n represents the number of pipelines

CPU1: unoptimised, one thread CPU1SSE: SSE4.2 optimised, one thread

CPU16: unoptimised, sixteen threads, OpenMP CPU16SSE: SSE4.2 optimised, sixteen threads, OpenMP

GPU-a: Auto generated GPU impelmentation GPU-a: Manual GPU impelmentation with hand optimisation

Figure 4.8: Processing speed of the HAMs compared to the CPU and GPU implement-
ations for the Beeler-Reuter model (the bar with dotted pattern represents
the hand optimised GPU implementation where all the other implementa-
tions in the evaluation are fully automated or can be fully automated).
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nication overhead since, although the pipelines are executing in parallel, the

data transfer is still in serial and a n-pipelines computation requires n times of

data to be transferred. The three pipeline HAM implementation with the most

resource utilisation displays a great performance advantage compared to the

CPU implementations (57.5x speedup) and automated GPU implementation

(2.5x speedup). It reaches just over half of the processing speed compared to

the hand optimised GPU implementation.

Figure 4.9 presents the processing speed of the TNNP model on the FPGA

and CPU platforms. Each test case measures a biomedical simulation of 1 ms

duration with 1 µs micro time step integration for 364,000 cells (number of

pipeline stages (364) times 1000). FPGA denotes the results for the HAM imple-

mentation with the other notations as before. Figure 4.9a presents the through-

put across the implementations in the unit of iCells per second. Figure 4.9b

displays speedup against the CPU1 implementation. The HAM implementa-

tion has significant performance advantage over all the CPU implementations

with nearly a 55x speedup compared to the single threaded unoptimised im-

plementation, 26x speedup compared to the single threaded implementation

with SSE optimisation, 3.6x speedup compared to the sixteen threaded unop-

timised implementation and 2.4x speedup compared to the sixteen threaded

implementation with SSE optimisation.

4.7.4 Power Efficiency

For the Beeler-Reuter model power efficiency is compared between the HAMs,

the best performing CPU implementation (CPU16SSE) and the CUDA-based

GPU implementations. The power requirements for the three testing platforms

are shown in Table 4.11. Since resources are not fully consumed in the FPGA,

the FPGA power usage is estimated by Altera’s PowerPlay Power Analyser.

The PowerPlay Power Analyser supports accurate power estimations and is

executed at the post-fit phase of the design cycle. The estimated power re-

quirement for the three HAM implementations are 15 W, 19.2 W and 24.1 W

respectively. The power usage increases with increased resource consumption.
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Figure 4.9: Processing speed of the HAMs compare to the CPU implementations for
the TNNP model.

For the triple pipelined HAM implementation, both the ALMs and the DSPs

are approaching the resource capacity. A power estimation of 24.1 W is close to

25 W, the maximum power consumption allowed for a x8 PCI Express card [89].

To allow a fair comparison with the CPU and GPU, we assume the worst case

for the FPGA and specify the device power characteristics to maximum and

junction temperature to the maximum. The CPU power usage is estimated at

130 W and the GPU power usage is estimated at 238 W, both using the Thermal

Design Power (TDP). The TDP of a device is the maximum amount of heat gen-

erated by the device that the cooling system is required to dissipate in a typical

operation [80]. The TDP should be a good estimate for power consumption for

the CPU during cell computation and integration, because the repeated use of

SIMD instructions usually employs the CPU at the TDP limit [56]. For the GPU,

the hand optimised implementation is likely to work at the TDP limit. For auto

generated GPU implementation the power consumption estimate might be less

accurate. For that reason, the hand optimised GPU version is also included in

the comparison, even though all other implementations are mostly generated

automatically.

The power efficiency of the Beeler-Reuter model on each platform is meas-

ured by the processing speed obtained from Figure 4.8 divided by the power
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Testing Platform

Power
Measure-

ment
(W)

Measurement
Basis

Stratix IV
EP4SGX530

One Pipeline 15 PowerPlay
Power
Analyzer

Two Pipelines 19.2
Three Pipelines 24.1

Xeon E5-4650 130

Thermal
Design
Power

Tesla C2070 238

Thermal
Design
Power

Table 4.11: Power requirement for the Beeler-Reuter model on the three testing plat-
forms.

FPGA-1 FPGA-2 FPGA-3 CPU16SSE GPU-a GPU-m
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·1013

1.
08
·1

013

1.
62
·1

013

1.
82
·1

013

1.
01
·1

012

7.
43
·1

011 3.
5
·1

012

iC
el

ls
pe

r
kW

h

Model Power Efficiency
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Figure 4.10: Power consumption of the HAM, CPU and GPU implementations for the
Beeler-Reuter model (the bar with dotted pattern represents the hand op-
timised GPU implementation where all the other implementations in the
evaluation are fully automated or can be fully automated).
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Testing Platform

Power
Measure-

ment
(W)

Measurement Basis

Stratix IV EP4SGX530 25

Maximum Power
Consumption
through x8 PCIe

Xeon E5-4650 130
Thermal Design
Power

Table 4.12: Power requirement for the TNNP model on the two testing platforms.

requirement for each type of implementation from Table 4.11. The resulting val-

ues in iCells per watt second are converted to iCells per kWh and are presen-

ted in Figure 4.10. The results show that across the three FPGA implement-

ations, the triple pipeline HAM implementation is the most power efficient.

Although Table 4.11 shows that the power usage increases with increased re-

source consumption, its growth rate does not compete with the performance

increase. Therefore, there is still a trend of improved power efficiency with an

increasing number of pipelines, but obviously not as much as the improve-

ment of processing speed. Compared to the CPU16SSE and GPU implement-

ations, the FPGA implementations show significantly better power efficiency.

The triple pipelined HAM implementation is 18x more power efficient than

the CPU16SSE implementation and is still 5.2x more power efficient than the

hand optimised GPU implementation, despite the non-automatic nature of this

implementation.

For the TNNP model, power efficiency is compared between the HAM and

the best performing CPU implementation (CPU16SSE). The power require-

ment for the two testing platforms is shown in Table 4.12. Since both the

DSPs and ALMs are approaching the resource capacity of the FPGA, the FPGA

power usage is specified to 25 W, the maximum power consumption allowed

through a x8 PCI Express card [89]. The CPU power usage is estimated at

130 W using the TDP.

Again, the power efficiency of the TNNP model on the FPGA and CPU

platforms is measured from the processing speed obtained from Figure 4.9 di-
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Figure 4.11: Power consumption of the HAM and CPU implementations for the TNNP
model.

vided by the power requirement for each device/model from Table 4.12. The

resulting values in iCells per kWh are presented in Figure 4.11. The results

demonstrate that the HAM implementation is 12.5x more power efficient than

the CPU16SSE implementation, whilst it also outperformed the CPU16SSE im-

plementation by more than a factor of two.

4.8 C O N C L U S I O N S

This chapter proposes a set of optimisation strategies aimed at reducing re-

source consumption and increasing performance for the hardware acceleration

modules that are generated by ODoST. The strategies are diverse and address

the high-level synthesis process at different points: optimising the input, op-

timising the resource consumption and replicating modules for a better util-

isation of the FPGAs. These strategies are all suitable for automatic high-level

synthesis and integrate well into ODoST. After studying the various optim-

isation approaches, this chapter evaluates the optimised hardware accelerator

modules for two biomedical CellML models. The results demonstrate that the

optimised HAMs with parallel pipelines can provide significant improvements

in processing performance and energy efficiency. Apart from the performance

improvements, the optimisations are also useful to fit larger CellML models
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onto a FPGA device. In the future, further optimisations have the potential to

improve the performance, e.g., overlapping communication with communica-

tion and advancing the compiler and resource fitting optimisations.



5 C O N C L U S I O N S

Biomedical applications involving large scale simulations requiring heavy com-

putation are generally limited by the available computational hardware and

the acceptable duration of simulation. These large scale simulations usually

contain portions of code that are evaluated a very large number of times and

which contribute significantly to the overall computational runtime. These por-

tions are, often in general, regular and easy to parallelise. As such, FPGAs with

large amount of fine-grained parallelism, have promise for accelerating these

type of simulations and can be expected to lead to higher performance, at a

lower cost and with less power consumption.

However, compared to multicore processors and GPUs, FPGAs are not widely

used by biomedical scientists and engineers possibly due to their lack of hard-

ware expertise. Developing a hardware design for a given application is much

more challenging than programming general purpose processors. It is all but

trivial to combine general purpose processors with the reconfigurable com-

puting capacity of the FPGAs. Furthermore, FPGAs have limited usable area,

which create difficulties in implementing large size biomedical models. Hence,

designs need to be optimized for size to be implementable on a FPGA with

limited number of resources.

This thesis investigated and developed a hardware accelerator with a hard-

ware/software co-design system especially designed for biomedical models.

The pipeline based accelerator provides a general and feasible framework that

can be applied to a range of applications that would benefit from acceleration.
147
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Preliminary evaluation results from the manually implemented hardware ac-

celerator module (HAM) showed good scalability and performance speedup

compared to a pure software implementations. This performance improvement

could have a benefit if the time and effort to implement and debug the acceler-

ator could be significantly reduced.

Based on these early results, the thesis has advanced along two facets: 1) auto-

matic generation of hardware accelerators from a high-level description of

biomedical models, and 2) accelerator optimisation strategies to fully utilise

the resources in a FPGA. The two facets are integrated together to provide a

packaged solution to easily create high performance hardware accelerators for

biomedical scientists or engineers without hardware design expertise.

automatic generation of hardware accelerators An ODE-

based Domain-specific Synthesis Tool, ODoST, was implemented and used to

generate the software/hardware co-design of the accelerator from the high-

level description of a biomedical model. The design is general, flexible and

capable over a large range of biomedical models. Using a set of CellML mod-

els with diverse complexity as case studies, the ODoST has generated the

corresponding HAMs that have been thoroughly tested and evaluated. The

results show that FPGAs can provide a highly power efficient solution with re-

markable processing performance compared to both multicore processors and

GPUs.

The generated HAMs, despite significant speedups, were limited in scalab-

ility by the amount of available hardware resources. Accelerators for complex

biomedical models may not fit well into a FPGA device. While the ultimate

solution would be to use either a larger FPGA board or multiple FPGA boards

attached to the host, some alternative strategies may assist in better utilising

existing resources in the target FPGA.

accelerator optimisations Optimisation strategies aimed at improv-

ing performance and usability of the generated HAMs have been proposed in

the thesis. The strategies, including compiler optimisation, resource balancing
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and parallel pipelining, address the high-level synthesis process at different

points: optimising the input, optimising the resource consumptions and rep-

licating modules for a better utilisation of the FPGAs. While these strategies

are diverse in nature, they are all suitable for automatic high-level synthesis

and integrate well into ODoST. The optimised HAMs are implemented and

evaluated and the results demonstrate that the optimised HAMs can provide

significant improvements in processing performance and power efficiency as

well as relieving the capacity limits of a FPGA device to fit larger models.

Future Avenues of Research

As demonstrated in this thesis, FPGAs show great potential as hardware ac-

celerators for biomedical modelling and simulation. The presented hardware

accelerator design and the high-level synthesis tool will help to give biomedical

scientists and engineers the ease of adopting FPGAs in order to obtain better

performance and less power consumption. This research provides foundation

for future research. Key areas for further investigation include:

• Multiple devices. The optimisation strategies discussed in the thesis en-

able some large models to be usable with our target FPGA. However,

larger models may require much more resource capacity. One solution

is upgrading to a more powerful FPGA board. An alternative solution is

using multiple FPGA boards attached to the same host through different

PCIe ports. CellML-based biomedical models can be divided into com-

ponents and allocated to those boards. On the other hand, performance

of a model can be further improved with more parallel pipelines using

multiple FPGA boards. The partitioning and the interaction between the

components needs to be investigated.

• Multiple models. The existing HAM with a hardware/software co-design

structure is suitable for biomedical simulations with a single model. Ex-

tending the current accelerator module to support multiple CellML-based

models is one of the future directions to solve some coupled problems.
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• Multiple levels of precision. Single precision floating point numbers are

used throughout this thesis. Single Precision is fast and area efficient but,

using double precision computing for floating point arithmetic opera-

tions provides higher accuracy at the expense of more resources. Benefit-

ing from multiple device acceleration, double precision support is one of

the future areas of research.

• Overlapped communication and computation. Overlapped communica-

tion through the PCIe interconnects and computation within the FPGA

was not considered in this thesis. This can be explored to propose a gen-

eric way to handle high-bandwidth data exchange.



A E X A M P L E C E L L M L M O D E L S

A.1 H O D G K I N - H U X L E Y M O D E L

a.1.1 Mathematics

“environment” component

This component has no equations.

“membrane” component

i_Stim =


−20 if (time ≥ 10) ∧ (time ≤ 10.5)

0 otherwise.

d(V)

d(time)
=
−((−(i_Stim) + i_Na + i_K + i_L))

Cm

“sodium_channel” component

E_Na = (E_R− 115)

i_Na = g_Na ∗ (m)3 ∗ h ∗ (V − E_Na)

151
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“sodium_channel_m_gate” component

alpha_m =
0.1 ∗ (V + 25)(

e
V+25

10 − 1
)

beta_m = 4 ∗ e
V
18

d(m)

d(time)
= (alpha_m ∗ (1−m)− beta_m ∗m)

“sodium_channel_h_gate” component

alpha_h = 0.07 ∗ e
V
20

beta_h =
1(

e
V+30

10 + 1
)

d(h)
d(time)

= (alpha_h ∗ (1− h)− beta_h ∗ h)

“potassium_channel” component

E_K = E_R + 12

i_K = g_K ∗ n4 ∗ (V − E_K)

“potassium_channel_n_gate” component

alpha_n =
0.01 ∗ (V + 10)(

e
V+10

10 − 1
)

beta_n = 0.125 ∗ e
V
80

d(n)
d(time)

= (alpha_n ∗ (1− n)− beta_n ∗ n)

“leakage_current” component

E_L = (E_R− 10.613)

i_L = g_L ∗ (V − E_L)
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a.1.2 C-code Representation

1 /*

2 There are a total of 10 entries in the algebraic variable array.

3 There are a total of 4 entries in each of the rate and state variable arrays.

4 There are a total of 8 entries in the constant variable array.

5 */

6 /*

7 * VOI is time in component environment (millisecond).

8 * STATES[0] is V in component membrane (millivolt).

9 * CONSTANTS[0] is E_R in component membrane (millivolt).

10 * CONSTANTS[1] is Cm in component membrane (microF_per_cm2).

11 * ALGEBRAIC[4] is i_Na in component sodium_channel (microA_per_cm2).

12 * ALGEBRAIC[8] is i_K in component potassium_channel (microA_per_cm2).

13 * ALGEBRAIC[9] is i_L in component leakage_current (microA_per_cm2).

14 * ALGEBRAIC[0] is i_Stim in component membrane (microA_per_cm2).

15 * CONSTANTS[2] is g_Na in component sodium_channel (milliS_per_cm2).

16 * CONSTANTS[5] is E_Na in component sodium_channel (millivolt).

17 * STATES[1] is m in component sodium_channel_m_gate (dimensionless).

18 * STATES[2] is h in component sodium_channel_h_gate (dimensionless).

19 * ALGEBRAIC[1] is alpha_m in component sodium_channel_m_gate (per_millisecond).

20 * ALGEBRAIC[5] is beta_m in component sodium_channel_m_gate (per_millisecond).

21 * ALGEBRAIC[2] is alpha_h in component sodium_channel_h_gate (per_millisecond).

22 * ALGEBRAIC[6] is beta_h in component sodium_channel_h_gate (per_millisecond).

23 * CONSTANTS[3] is g_K in component potassium_channel (milliS_per_cm2).

24 * CONSTANTS[6] is E_K in component potassium_channel (millivolt).

25 * STATES[3] is n in component potassium_channel_n_gate (dimensionless).

26 * ALGEBRAIC[3] is alpha_n in component potassium_channel_n_gate (per_millisecond).

27 * ALGEBRAIC[7] is beta_n in component potassium_channel_n_gate (per_millisecond).

28 * CONSTANTS[4] is g_L in component leakage_current (milliS_per_cm2).

29 * CONSTANTS[7] is E_L in component leakage_current (millivolt).

30 * RATES[0] is d/dt V in component membrane (millivolt).

31 * RATES[1] is d/dt m in component sodium_channel_m_gate (dimensionless).

32 * RATES[2] is d/dt h in component sodium_channel_h_gate (dimensionless).

33 * RATES[3] is d/dt n in component potassium_channel_n_gate (dimensionless).

34 */

35 void

36 i n i t C o n s t s ( double * CONSTANTS, double * RATES, double *STATES)

37 {

38 STATES [ 0 ] = −75;

39 CONSTANTS[ 0 ] = −75;

40 CONSTANTS[ 1 ] = 1 ;

41 CONSTANTS[ 2 ] = 1 2 0 ;

42 STATES [ 1 ] = 0 . 0 5 ;

43 STATES [ 2 ] = 0 . 6 ;

44 CONSTANTS[ 3 ] = 3 6 ;

45 STATES [ 3 ] = 0 . 3 2 5 ;

46 CONSTANTS[ 4 ] = 0 . 3 ;
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47 CONSTANTS[ 5 ] = CONSTANTS[ 0 ] + 1 1 5 . 0 0 0 ;

48 CONSTANTS[ 6 ] = CONSTANTS[ 0 ] − 1 2 . 0 0 0 0 ;

49 CONSTANTS[ 7 ] = CONSTANTS[ 0 ] + 1 0 . 6 1 3 0 ;

50 }

51 void

52 computeRates ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

53 {

54 ALGEBRAIC[ 1 ] = − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 5 0 . 0 0 0 0 ) /( exp(− (STATES [ 0 ] + 5 0 . 0 0 0 0 ) /10 .0000 ) −

1 . 0 0 0 0 0 ) ;

55 ALGEBRAIC[ 5 ] = 4 . 0 0 0 0 0 * exp(− (STATES [ 0 ] + 7 5 . 0 0 0 0 ) /18 .0000 ) ;

56 RATES [ 1 ] = ALGEBRAIC[ 1 ] * ( 1 . 0 0 0 0 0 − STATES [ 1 ] ) − ALGEBRAIC[ 5 ] * STATES [ 1 ] ;

57 ALGEBRAIC[ 2 ] = 0 .0700000 * exp(− (STATES [ 0 ] + 7 5 . 0 0 0 0 ) /20 .0000 ) ;

58 ALGEBRAIC[ 6 ] = 1 .00000/( exp(− (STATES [ 0 ] + 4 5 . 0 0 0 0 ) /10 .0000 ) +1 .00000 ) ;

59 RATES [ 2 ] = ALGEBRAIC[ 2 ] * ( 1 . 0 0 0 0 0 − STATES [ 2 ] ) − ALGEBRAIC[ 6 ] * STATES [ 2 ] ;

60 ALGEBRAIC[ 3 ] = − 0 . 0 1 0 0 0 0 0 * ( STATES [ 0 ] + 6 5 . 0 0 0 0 ) /( exp(− (STATES [ 0 ] + 6 5 . 0 0 0 0 ) /10 .0000 ) −

1 . 0 0 0 0 0 ) ;

61 ALGEBRAIC[ 7 ] = 0 . 1 2 5 0 0 0 * exp ( ( STATES [ 0 ] + 7 5 . 0 0 0 0 ) /80 .0000 ) ;

62 RATES [ 3 ] = ALGEBRAIC[ 3 ] * ( 1 . 0 0 0 0 0 − STATES [ 3 ] ) − ALGEBRAIC[ 7 ] * STATES [ 3 ] ;

63 ALGEBRAIC[ 4 ] = CONSTANTS[ 2 ] *pow(STATES [ 1 ] , 3 . 0 0 0 0 0 ) *STATES [ 2 ] * ( STATES [ 0 ] − CONSTANTS

[ 5 ] ) ;

64 ALGEBRAIC[ 8 ] = CONSTANTS[ 3 ] *pow(STATES [ 3 ] , 4 . 0 0 0 0 0 ) * ( STATES [ 0 ] − CONSTANTS[ 6 ] ) ;

65 ALGEBRAIC[ 9 ] = CONSTANTS[ 4 ] * ( STATES [ 0 ] − CONSTANTS[ 7 ] ) ;

66 ALGEBRAIC[ 0 ] = (VOI>=10.0000&&VOI<=10 .5000 ? 20 .0000 : 0 . 0 0 0 0 0 ) ;

67 RATES [ 0 ] = − (− ALGEBRAIC[ 0 ] +ALGEBRAIC[ 4 ] +ALGEBRAIC[ 8 ] +ALGEBRAIC [ 9 ] ) /CONSTANTS[ 1 ] ;

68 }

69 void

70 computeVariables ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

71 {

72 ALGEBRAIC[ 1 ] = − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 5 0 . 0 0 0 0 ) /( exp(− (STATES [ 0 ] + 5 0 . 0 0 0 0 ) /10 .0000 ) −

1 . 0 0 0 0 0 ) ;

73 ALGEBRAIC[ 5 ] = 4 . 0 0 0 0 0 * exp(− (STATES [ 0 ] + 7 5 . 0 0 0 0 ) /18 .0000 ) ;

74 ALGEBRAIC[ 2 ] = 0 .0700000 * exp(− (STATES [ 0 ] + 7 5 . 0 0 0 0 ) /20 .0000 ) ;

75 ALGEBRAIC[ 6 ] = 1 .00000/( exp(− (STATES [ 0 ] + 4 5 . 0 0 0 0 ) /10 .0000 ) +1 .00000 ) ;

76 ALGEBRAIC[ 3 ] = − 0 . 0 1 0 0 0 0 0 * ( STATES [ 0 ] + 6 5 . 0 0 0 0 ) /( exp(− (STATES [ 0 ] + 6 5 . 0 0 0 0 ) /10 .0000 ) −

1 . 0 0 0 0 0 ) ;

77 ALGEBRAIC[ 7 ] = 0 . 1 2 5 0 0 0 * exp ( ( STATES [ 0 ] + 7 5 . 0 0 0 0 ) /80 .0000 ) ;

78 ALGEBRAIC[ 4 ] = CONSTANTS[ 2 ] *pow(STATES [ 1 ] , 3 . 0 0 0 0 0 ) *STATES [ 2 ] * ( STATES [ 0 ] − CONSTANTS

[ 5 ] ) ;

79 ALGEBRAIC[ 8 ] = CONSTANTS[ 3 ] *pow(STATES [ 3 ] , 4 . 0 0 0 0 0 ) * ( STATES [ 0 ] − CONSTANTS[ 6 ] ) ;

80 ALGEBRAIC[ 9 ] = CONSTANTS[ 4 ] * ( STATES [ 0 ] − CONSTANTS[ 7 ] ) ;

81 ALGEBRAIC[ 0 ] = (VOI>=10.0000&&VOI<=10 .5000 ? 20 .0000 : 0 . 0 0 0 0 0 ) ;

82 } �
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A.2 B E E L E R - R E U T E R M O D E L

a.2.1 Mathematics

“environment” component

This component has no equations.

“membrane” component

d(V)

d(time)
=

(Istim− (i_Na + i_s + i_x1 + i_K1))
C

“sodium_current” component

i_Na =
(

g_Na ∗ (m)3 ∗ h ∗ j + g_Nac
)
∗ (V − E_Na)

“sodium_current_m_gate” component

alpha_m =
−(1) ∗ (V + 47)(
e−(0.1)∗(V+47) − 1

)
beta_m = 40 ∗ e−(0.056)∗(V+72)

d(m)

d(time)
= (alpha_m ∗ (1−m)− beta_m ∗m)

“sodium_current_h_gate” component

alpha_h = 0.126 ∗ e−(0.25)∗(V+77)

beta_h =
1.7(

e−(0.082)∗(V+22.5) + 1
)

d(h)
d(time)

= (alpha_h ∗ (1− h)− beta_h ∗ h)

“sodium_current_j_gate” component

alpha_j =
0.055 ∗ e−(0.25)∗(V+78)(

e−(0.2)∗(V+78) + 1
)

beta_j =
0.3(

e−(0.1)∗(V+32) + 1
)
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d(j)
d(time)

= (alpha_j ∗ (1− j)− beta_j ∗ j)

“slow_inward_current” component

E_s = (−(82.3)− 13.0287 ∗ ln (Cai ∗ 0.001))

i_s = g_s ∗ d ∗ f ∗ (V − E_s)

d(Cai)
d(time)

=

(
−(0.01) ∗ i_s

1
+ 0.07 ∗ (0.0001− Cai)

)

“slow_inward_current_d_gate” component

alpha_d =
0.095 ∗ e

−((V−5))
100(

1 + e
−((V−5))

13.89

)
beta_d =

0.07 ∗ e
−((V+44))

59(
1 + e

(V+44)
20

)
d(d)

d(time)
= (alpha_d ∗ (1− d)− beta_d ∗ d)

“slow_inward_current_f_gate” component

alpha_ f =
0.012 ∗ e

−((V+28))
125(

1 + e
(V+28)

6.67

)
beta_ f =

0.0065 ∗ e
−((V+30))

50(
1 + e

−((V+30))
5

)
d( f )

d(time)
= (alpha_ f ∗ (1− f )− beta_ f ∗ f )

“time_dependent_outward_current” component

i_x1 =
x1 ∗ 8− 3 ∗

(
e0.04∗(V+77) − 1

)
e0.04∗(V+35)
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“time_dependent_outward_current_x1_gate” component

alpha_x1 =
5− 4 ∗ e

(V+50)
12.1(

1 + e
(V+50)

17.5

)
beta_x1 =

0.0013 ∗ e
−((V+20))

16.67(
1 + e

−((V+20))
25

)
d(x1)

d(time)
= (alpha_x1 ∗ (1− x1)− beta_x1 ∗ x1)

“time_independent_outward_current” component

i_K1 = 0.0035 ∗

 4 ∗
(

e0.04∗(V+85) − 1
)

(
e0.08∗(V+53) + e0.04∗(V+53)

) + 0.2 ∗ (V + 23)(
1− e−(0.04)∗(V+23)

)


“stimulus_protocol” component

Istim =



IstimAmplitude if (time ≥ IstimStart) ∧ (time ≤ IstimEnd) ∧ time

−IstimStart− (
⌊

time−IstimStart
IstimPeriod

⌋
IstimPeriod)

5 IstimPulseDuration

0 otherwise.

a.2.2 C-code Representation

1 /*

2 There are a total of 18 entries in the algebraic variable array.

3 There are a total of 8 entries in each of the rate and state variable arrays.

4 There are a total of 10 entries in the constant variable array.

5 */

6 /*

7 * VOI is time in component environment (ms).

8 * STATES[0] is V in component membrane (mV).

9 * CONSTANTS[0] is C in component membrane (uF_per_mm2).

10 * ALGEBRAIC[0] is i_Na in component sodium_current (uA_per_mm2).

11 * ALGEBRAIC[14] is i_s in component slow_inward_current (uA_per_mm2).

12 * ALGEBRAIC[15] is i_x1 in component time_dependent_outward_current (uA_per_mm2).

13 * ALGEBRAIC[16] is i_K1 in component time_independent_outward_current (uA_per_mm2).

14 * ALGEBRAIC[17] is Istim in component stimulus_protocol (uA_per_mm2).
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15 * CONSTANTS[1] is g_Na in component sodium_current (mS_per_mm2).

16 * CONSTANTS[2] is E_Na in component sodium_current (mV).

17 * CONSTANTS[3] is g_Nac in component sodium_current (mS_per_mm2).

18 * STATES[1] is m in component sodium_current_m_gate (dimensionless).

19 * STATES[2] is h in component sodium_current_h_gate (dimensionless).

20 * STATES[3] is j in component sodium_current_j_gate (dimensionless).

21 * ALGEBRAIC[1] is alpha_m in component sodium_current_m_gate (per_ms).

22 * ALGEBRAIC[8] is beta_m in component sodium_current_m_gate (per_ms).

23 * ALGEBRAIC[2] is alpha_h in component sodium_current_h_gate (per_ms).

24 * ALGEBRAIC[9] is beta_h in component sodium_current_h_gate (per_ms).

25 * ALGEBRAIC[3] is alpha_j in component sodium_current_j_gate (per_ms).

26 * ALGEBRAIC[10] is beta_j in component sodium_current_j_gate (per_ms).

27 * CONSTANTS[4] is g_s in component slow_inward_current (mS_per_mm2).

28 * ALGEBRAIC[7] is E_s in component slow_inward_current (mV).

29 * STATES[4] is Cai in component slow_inward_current (concentration_units).

30 * STATES[5] is d in component slow_inward_current_d_gate (dimensionless).

31 * STATES[6] is f in component slow_inward_current_f_gate (dimensionless).

32 * ALGEBRAIC[4] is alpha_d in component slow_inward_current_d_gate (per_ms).

33 * ALGEBRAIC[11] is beta_d in component slow_inward_current_d_gate (per_ms).

34 * ALGEBRAIC[5] is alpha_f in component slow_inward_current_f_gate (per_ms).

35 * ALGEBRAIC[12] is beta_f in component slow_inward_current_f_gate (per_ms).

36 * STATES[7] is x1 in component time_dependent_outward_current_x1_gate (dimensionless)

37 * ALGEBRAIC[6] is alpha_x1 in component time_dependent_outward_current_x1_gate (

per_ms).

38 * ALGEBRAIC[13] is beta_x1 in component time_dependent_outward_current_x1_gate (

per_ms).

39 * CONSTANTS[5] is IstimStart in component stimulus_protocol (ms).

40 * CONSTANTS[6] is IstimEnd in component stimulus_protocol (ms).

41 * CONSTANTS[7] is IstimAmplitude in component stimulus_protocol (uA_per_mm2).

42 * CONSTANTS[8] is IstimPeriod in component stimulus_protocol (ms).

43 * CONSTANTS[9] is IstimPulseDuration in component stimulus_protocol (ms).

44 * RATES[0] is d/dt V in component membrane (mV).

45 * RATES[1] is d/dt m in component sodium_current_m_gate (dimensionless).

46 * RATES[2] is d/dt h in component sodium_current_h_gate (dimensionless).

47 * RATES[3] is d/dt j in component sodium_current_j_gate (dimensionless).

48 * RATES[4] is d/dt Cai in component slow_inward_current (concentration_units).

49 * RATES[5] is d/dt d in component slow_inward_current_d_gate (dimensionless).

50 * RATES[6] is d/dt f in component slow_inward_current_f_gate (dimensionless).

51 * RATES[7] is d/dt x1 in component time_dependent_outward_current_x1_gate (

dimensionless).

52 */

53 void

54 i n i t C o n s t s ( double * CONSTANTS, double * RATES, double *STATES)

55 {

56 STATES [ 0 ] = −84 .624 ;

57 CONSTANTS[ 0 ] = 0 . 0 1 ;

58 CONSTANTS[ 1 ] = 4e−2;

59 CONSTANTS[ 2 ] = 5 0 ;

60 CONSTANTS[ 3 ] = 3e−5;
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61 STATES [ 1 ] = 0 . 0 1 1 ;

62 STATES [ 2 ] = 0 . 9 8 8 ;

63 STATES [ 3 ] = 0 . 9 7 5 ;

64 CONSTANTS[ 4 ] = 9e−4;

65 STATES [ 4 ] = 1e−4;

66 STATES [ 5 ] = 0 . 0 0 3 ;

67 STATES [ 6 ] = 0 . 9 9 4 ;

68 STATES [ 7 ] = 0 . 0 0 0 1 ;

69 CONSTANTS[ 5 ] = 1 0 ;

70 CONSTANTS[ 6 ] = 50000 ;

71 CONSTANTS[ 7 ] = 0 . 5 ;

72 CONSTANTS[ 8 ] = 1000 ;

73 CONSTANTS[ 9 ] = 1 ;

74 }

75 void

76 computeRates ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

77 {

78 ALGEBRAIC[ 1 ] = − 1 . 0 0 0 0 0 * ( STATES [ 0 ] + 4 7 . 0 0 0 0 ) /( exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 4 7 . 0 0 0 0 ) ) −

1 . 0 0 0 0 0 ) ;

79 ALGEBRAIC[ 8 ] = 4 0 . 0 0 0 0 * exp ( − 0 . 0 5 6 0 0 0 0 * ( STATES [ 0 ] + 7 2 . 0 0 0 0 ) ) ;

80 RATES [ 1 ] = ALGEBRAIC[ 1 ] * ( 1 . 0 0 0 0 0 − STATES [ 1 ] ) − ALGEBRAIC[ 8 ] * STATES [ 1 ] ;

81 ALGEBRAIC[ 2 ] = 0 . 1 2 6 0 0 0 * exp ( − 0 . 2 5 0 0 0 0 * ( STATES [ 0 ] + 7 7 . 0 0 0 0 ) ) ;

82 ALGEBRAIC[ 9 ] = 1 .70000/( exp ( − 0 . 0 8 2 0 0 0 0 * ( STATES [ 0 ] + 2 2 . 5 0 0 0 ) ) +1 .00000 ) ;

83 RATES [ 2 ] = ALGEBRAIC[ 2 ] * ( 1 . 0 0 0 0 0 − STATES [ 2 ] ) − ALGEBRAIC[ 9 ] * STATES [ 2 ] ;

84 ALGEBRAIC[ 3 ] = 0 .0550000 * exp ( − 0 . 2 5 0 0 0 0 * ( STATES [ 0 ] + 7 8 . 0 0 0 0 ) ) /( exp ( − 0 . 2 0 0 0 0 0 * (

STATES [ 0 ] + 7 8 . 0 0 0 0 ) ) +1 .00000 ) ;

85 ALGEBRAIC[ 1 0 ] = 0 .300000/( exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 3 2 . 0 0 0 0 ) ) +1 .00000 ) ;

86 RATES [ 3 ] = ALGEBRAIC[ 3 ] * ( 1 . 0 0 0 0 0 − STATES [ 3 ] ) − ALGEBRAIC[ 1 0 ] * STATES [ 3 ] ;

87 ALGEBRAIC[ 4 ] = 0 .0950000 * exp(− (STATES [ 0 ] − 5 . 0 0 0 0 0 ) /100 .000 ) /(1 .00000+ exp(− (STATES

[ 0 ] − 5 . 0 0 0 0 0 ) /13 .8900 ) ) ;

88 ALGEBRAIC[ 1 1 ] = 0 .0700000 * exp(− (STATES [ 0 ] + 4 4 . 0 0 0 0 ) /59 .0000 ) /(1 .00000+ exp ( ( STATES

[ 0 ] + 4 4 . 0 0 0 0 ) /20 .0000 ) ) ;

89 RATES [ 5 ] = ALGEBRAIC[ 4 ] * ( 1 . 0 0 0 0 0 − STATES [ 5 ] ) − ALGEBRAIC[ 1 1 ] * STATES [ 5 ] ;

90 ALGEBRAIC[ 5 ] = 0 .0120000 * exp(− (STATES [ 0 ] + 2 8 . 0 0 0 0 ) /125 .000 ) /(1 .00000+ exp ( ( STATES

[ 0 ] + 2 8 . 0 0 0 0 ) /6 .67000 ) ) ;

91 ALGEBRAIC[ 1 2 ] = 0 .00650000 * exp(− (STATES [ 0 ] + 3 0 . 0 0 0 0 ) /50 .0000 ) /(1 .00000+ exp(− (STATES

[ 0 ] + 3 0 . 0 0 0 0 ) /5 .00000 ) ) ;

92 RATES [ 6 ] = ALGEBRAIC[ 5 ] * ( 1 . 0 0 0 0 0 − STATES [ 6 ] ) − ALGEBRAIC[ 1 2 ] * STATES [ 6 ] ;

93 ALGEBRAIC[ 6 ] = 0 .000500000 * exp ( ( STATES [ 0 ] + 5 0 . 0 0 0 0 ) /12 .1000 ) /(1 .00000+ exp ( ( STATES

[ 0 ] + 5 0 . 0 0 0 0 ) /17 .5000 ) ) ;

94 ALGEBRAIC[ 1 3 ] = 0 .00130000 * exp(− (STATES [ 0 ] + 2 0 . 0 0 0 0 ) /16 .6700 ) /(1 .00000+ exp(− (STATES

[ 0 ] + 2 0 . 0 0 0 0 ) /25 .0000 ) ) ;

95 RATES [ 7 ] = ALGEBRAIC[ 6 ] * ( 1 . 0 0 0 0 0 − STATES [ 7 ] ) − ALGEBRAIC[ 1 3 ] * STATES [ 7 ] ;

96 ALGEBRAIC[ 7 ] = − 82 .3000 − 1 3 . 0 2 8 7 * log ( STATES [ 4 ] * 0 . 0 0 1 0 0 0 0 0 ) ;

97 ALGEBRAIC[ 1 4 ] = CONSTANTS[ 4 ] * STATES [ 5 ] * STATES [ 6 ] * ( STATES [ 0 ] − ALGEBRAIC [ 7 ] ) ;

98 RATES [ 4 ] = − 0 .0100000 *ALGEBRAIC[14 ]/1 .00000+ 0 . 0 7 0 0 0 0 0 * ( 0 . 0 0 0 1 0 0 0 0 0 − STATES [ 4 ] ) ;

99 ALGEBRAIC[ 0 ] = ( CONSTANTS[ 1 ] *pow(STATES [ 1 ] , 3 . 0 0 0 0 0 ) *STATES [ 2 ] * STATES[ 3 ] +CONSTANTS

[ 3 ] ) * ( STATES [ 0 ] − CONSTANTS[ 2 ] ) ;
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100 ALGEBRAIC[ 1 5 ] = STATES [ 7 ] * 0 . 0 0 8 0 0 0 0 0 * ( exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 7 7 . 0 0 0 0 ) ) − 1 . 0 0 0 0 0 ) /

exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 3 5 . 0 0 0 0 ) ) ;

101 ALGEBRAIC[ 1 6 ] = 0 . 0 0 3 5 0 0 0 0 * ( 4 . 0 0 0 0 0 * ( exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 8 5 . 0 0 0 0 ) ) − 1 . 0 0 0 0 0 )

/( exp ( 0 . 0 8 0 0 0 0 0 * ( STATES [ 0 ] + 5 3 . 0 0 0 0 ) ) +exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 5 3 . 0 0 0 0 ) ) ) +

0 . 2 0 0 0 0 0 * ( STATES [ 0 ] + 2 3 . 0 0 0 0 ) / (1 .00000 − exp ( − 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 2 3 . 0 0 0 0 ) ) ) ) ;

102 ALGEBRAIC[ 1 7 ] = (VOI>=CONSTANTS[5]&&VOI<=CONSTANTS[6]&&VOI − CONSTANTS[ 5 ] − f l o o r ( (

VOI − CONSTANTS[ 5 ] ) /CONSTANTS[ 8 ] ) *CONSTANTS[8] <=CONSTANTS[ 9 ] ? CONSTANTS[ 7 ] :

0 . 0 0 0 0 0 ) ;

103 RATES [ 0 ] = (ALGEBRAIC[ 1 7 ] − ALGEBRAIC[ 0 ] +ALGEBRAIC[14 ]+ALGEBRAIC[15 ]+ALGEBRAIC[ 1 6 ] ) /

CONSTANTS[ 0 ] ;

104 }

105 void

106 computeVariables ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

107 {

108 ALGEBRAIC[ 1 ] = − 1 . 0 0 0 0 0 * ( STATES [ 0 ] + 4 7 . 0 0 0 0 ) /( exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 4 7 . 0 0 0 0 ) ) −

1 . 0 0 0 0 0 ) ;

109 ALGEBRAIC[ 8 ] = 4 0 . 0 0 0 0 * exp ( − 0 . 0 5 6 0 0 0 0 * ( STATES [ 0 ] + 7 2 . 0 0 0 0 ) ) ;

110 ALGEBRAIC[ 2 ] = 0 . 1 2 6 0 0 0 * exp ( − 0 . 2 5 0 0 0 0 * ( STATES [ 0 ] + 7 7 . 0 0 0 0 ) ) ;

111 ALGEBRAIC[ 9 ] = 1 .70000/( exp ( − 0 . 0 8 2 0 0 0 0 * ( STATES [ 0 ] + 2 2 . 5 0 0 0 ) ) +1 .00000 ) ;

112 ALGEBRAIC[ 3 ] = 0 .0550000 * exp ( − 0 . 2 5 0 0 0 0 * ( STATES [ 0 ] + 7 8 . 0 0 0 0 ) ) /( exp ( − 0 . 2 0 0 0 0 0 * (

STATES [ 0 ] + 7 8 . 0 0 0 0 ) ) +1 .00000 ) ;

113 ALGEBRAIC[ 1 0 ] = 0 .300000/( exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 3 2 . 0 0 0 0 ) ) +1 .00000 ) ;

114 ALGEBRAIC[ 4 ] = 0 .0950000 * exp(− (STATES [ 0 ] − 5 . 0 0 0 0 0 ) /100 .000 ) /(1 .00000+ exp(− (STATES

[ 0 ] − 5 . 0 0 0 0 0 ) /13 .8900 ) ) ;

115 ALGEBRAIC[ 1 1 ] = 0 .0700000 * exp(− (STATES [ 0 ] + 4 4 . 0 0 0 0 ) /59 .0000 ) /(1 .00000+ exp ( ( STATES

[ 0 ] + 4 4 . 0 0 0 0 ) /20 .0000 ) ) ;

116 ALGEBRAIC[ 5 ] = 0 .0120000 * exp(− (STATES [ 0 ] + 2 8 . 0 0 0 0 ) /125 .000 ) /(1 .00000+ exp ( ( STATES

[ 0 ] + 2 8 . 0 0 0 0 ) /6 .67000 ) ) ;

117 ALGEBRAIC[ 1 2 ] = 0 .00650000 * exp(− (STATES [ 0 ] + 3 0 . 0 0 0 0 ) /50 .0000 ) /(1 .00000+ exp(− (STATES

[ 0 ] + 3 0 . 0 0 0 0 ) /5 .00000 ) ) ;

118 ALGEBRAIC[ 6 ] = 0 .000500000 * exp ( ( STATES [ 0 ] + 5 0 . 0 0 0 0 ) /12 .1000 ) /(1 .00000+ exp ( ( STATES

[ 0 ] + 5 0 . 0 0 0 0 ) /17 .5000 ) ) ;

119 ALGEBRAIC[ 1 3 ] = 0 .00130000 * exp(− (STATES [ 0 ] + 2 0 . 0 0 0 0 ) /16 .6700 ) /(1 .00000+ exp(− (STATES

[ 0 ] + 2 0 . 0 0 0 0 ) /25 .0000 ) ) ;

120 ALGEBRAIC[ 7 ] = − 82 .3000 − 1 3 . 0 2 8 7 * log ( STATES [ 4 ] * 0 . 0 0 1 0 0 0 0 0 ) ;

121 ALGEBRAIC[ 1 4 ] = CONSTANTS[ 4 ] * STATES [ 5 ] * STATES [ 6 ] * ( STATES [ 0 ] − ALGEBRAIC [ 7 ] ) ;

122 ALGEBRAIC[ 0 ] = ( CONSTANTS[ 1 ] *pow(STATES [ 1 ] , 3 . 0 0 0 0 0 ) *STATES [ 2 ] * STATES[ 3 ] +CONSTANTS

[ 3 ] ) * ( STATES [ 0 ] − CONSTANTS[ 2 ] ) ;

123 ALGEBRAIC[ 1 5 ] = STATES [ 7 ] * 0 . 0 0 8 0 0 0 0 0 * ( exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 7 7 . 0 0 0 0 ) ) − 1 . 0 0 0 0 0 ) /

exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 3 5 . 0 0 0 0 ) ) ;

124 ALGEBRAIC[ 1 6 ] = 0 . 0 0 3 5 0 0 0 0 * ( 4 . 0 0 0 0 0 * ( exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 8 5 . 0 0 0 0 ) ) − 1 . 0 0 0 0 0 )

/( exp ( 0 . 0 8 0 0 0 0 0 * ( STATES [ 0 ] + 5 3 . 0 0 0 0 ) ) +exp ( 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 5 3 . 0 0 0 0 ) ) ) +

0 . 2 0 0 0 0 0 * ( STATES [ 0 ] + 2 3 . 0 0 0 0 ) / (1 .00000 − exp ( − 0 . 0 4 0 0 0 0 0 * ( STATES [ 0 ] + 2 3 . 0 0 0 0 ) ) ) ) ;

125 ALGEBRAIC[ 1 7 ] = (VOI>=CONSTANTS[5]&&VOI<=CONSTANTS[6]&&VOI − CONSTANTS[ 5 ] − f l o o r ( (

VOI − CONSTANTS[ 5 ] ) /CONSTANTS[ 8 ] ) *CONSTANTS[8] <=CONSTANTS[ 9 ] ? CONSTANTS[ 7 ] :

0 . 0 0 0 0 0 ) ;

126 } �



example cellml models 161

A.3 H I L E M A N N - N O B L E M O D E L

a.3.1 Mathematics

“environment” component

This component has no equations.

“membrane” component

RTONF =
R ∗ T

F

i_Stim =



stim_amplitude if (time ≥ stim_start) ∧ (time ≤ stim_end) ∧ time

−stim_start−
(⌊

time−stim_start
stim_period

⌋
stim_period

)
5 stim_duration

0 otherwise.

d(V)
d(time) =

−((i_Stim+i_K1+i_b_Na+i_b_Ca+i_b_K+i_NaK+i_NaCa+i_Na+i_si))
C_m

“fast_sodium_current” component

E_mh = RTONF ∗ ln
(

Na_o + 0.12 ∗ K_c
Na_i + 0.12 ∗ K_i

)
i_Na = g_Na ∗ (m)3 ∗ h ∗ (V − E_mh)

“fast_sodium_current_m_gate” component

E0_m = (V + 41)

alpha_m =


2000 if |E0_m| < delta_m

200∗E0_m
(1−e−(0.1)∗E0_m)

otherwise.

beta_m = 8000 ∗ e−(0.056)∗(V+66)

d(m)

d(time)
= (alpha_m ∗ (1−m)− beta_m ∗m)
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“fast_sodium_current_h_gate” component

alpha_h = 20 ∗ e−(0.125)∗(V+75)

beta_h =
2000(

1 + 320 ∗ e−(0.1)∗(V+75)
)

d(h)
d(time)

= (alpha_h ∗ (1− h)− beta_h ∗ h)

“sodium_potassium_pump” component

i_NaK =

i_NaK_max∗K_c
(K_mK+K_c) ∗ Na_i

(K_mNa + Na_i)

“sodium_background_current” component

E_Na = RTONF ∗ ln
(

Na_o
Na_i

)
i_b_Na = g_b_Na ∗ (V − E_Na)

“calcium_background_current” component

E_Ca = 0.5 ∗ RTONF ∗ ln
(

Ca_o
Ca_i

)
i_b_Ca = g_b_Ca ∗ (V − E_Ca)

“Na_Ca_exchanger” component

i_NaCa =
k_NaCa∗

(
e

gamma∗(n_NaCa−2)∗V
RTONF ∗(Na_i)n_NaCa∗Ca_o−e

(gamma−1)∗(n_NaCa−2)∗V
RTONF ∗(Na_o)n_NaCa∗Ca_i

)
(1+d_NaCa∗(Ca_i∗(Na_o)n_NaCa+Ca_o∗(Na_i)n_NaCa))∗(1+ Ca_i

0.0069)

“potassium_background_current” component

i_b_K = g_b_K ∗ (V − E_K)

“time_independent_potassium_current” component

E_K = RTONF ∗ ln
(

K_c
K_i

)

i_K1 =

g_K1∗K_c
(K_c+K_m_K1) ∗ (V − E_K)(

1 + e
((V−E_K)−10)∗2

RTONF

)
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“second_inward_calcium_current” component

i_si = (i_siCa + i_siK + i_siNa)

i_siCa =
4∗P_si∗d∗CaChon∗(V−50)

RTONF(
1− e

−(1)∗(V−50)∗2
RTONF

) ∗
(

Ca_i ∗ e
100

RTONF − Ca_o ∗ e
−(2)∗(V−50)

RTONF

)

i_siK =
0.002∗P_si∗d∗CaChon∗(V−50)

RTONF(
1− e

−(1)∗(V−50)
RTONF

) ∗
(

K_i ∗ e
50

RTONF − K_c ∗ e
−(1)∗(V−50)

RTONF

)

i_siNa =
0.01∗P_si∗d∗CaChon∗(V−50)

RTONF(
1− e

−(1)∗(V−50)
RTONF

) ∗
(

Na_i ∗ e
50

RTONF − Na_o ∗ e
−(1)∗(V−50)

RTONF

)

“second_inward_calcium_current_d_gate” component

E0_d = ((V + 24)− 5)

alpha_d =


120 if |E0_d| < delta_d

30∗E0_d(
1−e

−(1)∗E0_d
4

) otherwise.

beta_d =


120 if |E0_d| < delta_d

12∗E0_d(
e

E0_d
10 −1

) otherwise.

d(d)
d(time)

= (alpha_d ∗ (1− d)− beta_d ∗ d)

“second_inward_calcium_current_f_Ca_gate” component

E0_ f = (V + 34)

alpha_ f _Ca =


25 if |E0_ f | < delta_ f

6.25∗E0_ f(
e

E0_ f
4 −1

) otherwise.
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beta_ f _Ca =
12(

1 + e
−(E0_ f )

4

)

d( f _Ca)
d(time)

= ((120 ∗ (1− f _Ca) ∗ CaCho f f + (1− f _Ca) ∗ (1− CaCho f f ))

∗beta_ f _Ca− alpha_ f _Ca ∗ f _Ca)

CaCho f f =
Ca_i

(0.001 + Ca_i)

CaChon = (1− f _Ca) ∗ (1− CaCho f f )

“sarcoplasmic_reticulum_calcium_pump” component

K_1 =
K_cyca ∗ K_xcs

K_srca

K_2 = (Ca_i + Ca_up ∗ K_1 + K_cyca ∗ K_xcs + K_cyca)

i_up =

(
Ca_i
K_2

∗ alpha_up− Ca_up ∗ K_1
K_2

∗ beta_up
)

“calcium_release” component

PrecFrac = ((1− ActFrac)− ProdFrac)

VoltDep = e0.08∗(V−40)

RegBindSite =
(

Ca_i
(Ca_i + 0.0005)

)2

ActRate = (600 ∗VoltDep + 500 ∗ RegBindSite)

InactRate = (60 + 500 ∗ RegBindSite)

d(ActFrac)
d(time)

= (PrecFrac ∗ ActRate− ActFrac ∗ InactRate)

d(ProdFrac)
d(time)

= (ActFrac ∗ InactRate− 0.6 ∗ ProdFrac)

i_rel =

((
ActFrac

(ActFrac + 0.25)

)2

∗ K_m_rel + K_leak_rate

)
∗ Ca_rel
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“calcium_translocation” component

i_trans = (Ca_up− Ca_rel) ∗ alpha_tr

“extracellular_sodium_concentration” component

This component has no equations.

“intracellular_sodium_concentration” component

d(Na_i)
d(time)

=
−(1)

1 ∗V_i ∗ F
∗ (i_Na + i_b_Na + i_NaK ∗ 3 + i_NaCa ∗ 3 + i_siNa)

“extracellular_calcium_concentration” component

d(Ca_o)
d(time)

=

(
(Cab− Ca_o) ∗ K_di f f − 1 ∗ (i_siCa + i_NaCa + i_b_Ca)

2 ∗ 1 ∗Ve ∗ F

)

“extracellular_potassium_concentration” component

This component has no equations.

“intracellular_potassium_concentration” component

d(K_i)
d(time)

=
−(1)

1 ∗V_i ∗ F
∗ ((i_K1 + i_siK + i_b_K)− 2 ∗ i_NaK)

“intracellular_calcium_concentration” component

V_Cell = 3.141592654 ∗ (radius)2 ∗ length

V_i_ratio = (((1−V_e_ratio)−V_up_ratio)−V_rel_ratio)

V_i = V_Cell ∗V_i_ratio

Ve = V_Cell ∗V_e_ratio

d(Ca_i)
d(time)

= ((((
−1

2 ∗ 1 ∗V_i ∗ F
∗ ((i_siCa + i_b_Ca)− 2 ∗ i_NaCa)

+
i_rel ∗V_rel_ratio

V_i_ratio
)− dCaCalmoddt)− dCaTropdt)− i_up)
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d(Ca_up)
d(time)

=

(
V_i_ratio

V_up_ratio
∗ i_up− i_trans

)
d(Ca_rel)
d(time)

=

(
V_up_ratio
V_rel_ratio

∗ i_trans− i_rel
)

d(Ca_Calmod)
d(time)

= (alpha_Trop ∗ Ca_i ∗ (Calmod− Ca_Calmod)

−beta_Calmod ∗ Ca_Calmod)

d(Ca_Trop)
d(time)

= (alpha_Trop ∗ Ca_i ∗ (Trop− Ca_Trop)− beta_Trop ∗ Ca_Trop)

dCaCalmoddt = (alpha_Calmod ∗ Ca_i ∗ (Calmod− Ca_Calmod)

−beta_Calmod ∗ Ca_Calmod)

dCaTropdt = (alpha_Trop ∗ Ca_i ∗ (Trop− Ca_Trop)− beta_Trop ∗ Ca_Trop)

a.3.2 C-code Representation

1 /*

2 There are a total of 40 entries in the algebraic variable array.

3 There are a total of 15 entries in each of the rate and state variable arrays.

4 There are a total of 55 entries in the constant variable array.

5 */

6 /*

7 * VOI is time in component environment (second).

8 * STATES[0] is V in component membrane (millivolt).

9 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).

10 * CONSTANTS[1] is T in component membrane (kelvin).

11 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).

12 * CONSTANTS[49] is RTONF in component membrane (millivolt).

13 * CONSTANTS[3] is C_m in component membrane (microF).

14 * ALGEBRAIC[24] is i_K1 in component time_independent_potassium_current (nanoA).

15 * ALGEBRAIC[18] is i_b_Na in component sodium_background_current (nanoA).

16 * ALGEBRAIC[20] is i_b_Ca in component calcium_background_current (nanoA).

17 * ALGEBRAIC[23] is i_b_K in component potassium_background_current (nanoA).

18 * ALGEBRAIC[14] is i_NaK in component sodium_potassium_pump (nanoA).

19 * ALGEBRAIC[21] is i_NaCa in component Na_Ca_exchanger (nanoA).

20 * ALGEBRAIC[12] is i_Na in component fast_sodium_current (nanoA).

21 * ALGEBRAIC[35] is i_si in component second_inward_calcium_current (nanoA).
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22 * ALGEBRAIC[3] is i_Stim in component membrane (nanoA).

23 * CONSTANTS[4] is stim_start in component membrane (second).

24 * CONSTANTS[5] is stim_end in component membrane (second).

25 * CONSTANTS[6] is stim_period in component membrane (second).

26 * CONSTANTS[7] is stim_duration in component membrane (second).

27 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).

28 * CONSTANTS[9] is g_Na in component fast_sodium_current (microS).

29 * ALGEBRAIC[8] is E_mh in component fast_sodium_current (millivolt).

30 * CONSTANTS[10] is Na_o in component extracellular_sodium_concentration (millimolar).

31 * STATES[1] is Na_i in component intracellular_sodium_concentration (millimolar).

32 * CONSTANTS[11] is K_c in component extracellular_potassium_concentration (millimolar

).

33 * STATES[2] is K_i in component intracellular_potassium_concentration (millimolar).

34 * STATES[3] is m in component fast_sodium_current_m_gate (dimensionless).

35 * STATES[4] is h in component fast_sodium_current_h_gate (dimensionless).

36 * ALGEBRAIC[5] is alpha_m in component fast_sodium_current_m_gate (per_second).

37 * ALGEBRAIC[10] is beta_m in component fast_sodium_current_m_gate (per_second).

38 * CONSTANTS[12] is delta_m in component fast_sodium_current_m_gate (millivolt).

39 * ALGEBRAIC[0] is E0_m in component fast_sodium_current_m_gate (millivolt).

40 * ALGEBRAIC[1] is alpha_h in component fast_sodium_current_h_gate (per_second).

41 * ALGEBRAIC[6] is beta_h in component fast_sodium_current_h_gate (per_second).

42 * CONSTANTS[13] is i_NaK_max in component sodium_potassium_pump (nanoA).

43 * CONSTANTS[14] is K_mK in component sodium_potassium_pump (millimolar).

44 * CONSTANTS[15] is K_mNa in component sodium_potassium_pump (millimolar).

45 * ALGEBRAIC[16] is E_Na in component sodium_background_current (millivolt).

46 * CONSTANTS[16] is g_b_Na in component sodium_background_current (microS).

47 * ALGEBRAIC[19] is E_Ca in component calcium_background_current (millivolt).

48 * CONSTANTS[17] is g_b_Ca in component calcium_background_current (microS).

49 * STATES[5] is Ca_o in component extracellular_calcium_concentration (millimolar).

50 * STATES[6] is Ca_i in component intracellular_calcium_concentration (millimolar).

51 * CONSTANTS[18] is k_NaCa in component Na_Ca_exchanger (nanoA).

52 * CONSTANTS[19] is n_NaCa in component Na_Ca_exchanger (dimensionless).

53 * CONSTANTS[20] is d_NaCa in component Na_Ca_exchanger (dimensionless).

54 * CONSTANTS[21] is gamma in component Na_Ca_exchanger (dimensionless).

55 * ALGEBRAIC[22] is E_K in component time_independent_potassium_current (millivolt).

56 * CONSTANTS[22] is g_b_K in component potassium_background_current (microS).

57 * CONSTANTS[23] is g_K1 in component time_independent_potassium_current (microS).

58 * CONSTANTS[24] is K_m_K1 in component time_independent_potassium_current (millimolar

).

59 * ALGEBRAIC[30] is i_siCa in component second_inward_calcium_current (nanoA).

60 * ALGEBRAIC[31] is i_siK in component second_inward_calcium_current (nanoA).

61 * ALGEBRAIC[33] is i_siNa in component second_inward_calcium_current (nanoA).

62 * CONSTANTS[25] is P_si in component second_inward_calcium_current (

nanoA_per_millimolar).

63 * STATES[7] is d in component second_inward_calcium_current_d_gate (dimensionless).

64 * STATES[8] is f_Ca in component second_inward_calcium_current_f_Ca_gate (

dimensionless).

65 * ALGEBRAIC[29] is CaChon in component second_inward_calcium_current_f_Ca_gate (

dimensionless).
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66 * ALGEBRAIC[7] is alpha_d in component second_inward_calcium_current_d_gate (

per_second).

67 * ALGEBRAIC[11] is beta_d in component second_inward_calcium_current_d_gate (

per_second).

68 * CONSTANTS[26] is delta_d in component second_inward_calcium_current_d_gate (

millivolt).

69 * ALGEBRAIC[2] is E0_d in component second_inward_calcium_current_d_gate (millivolt).

70 * ALGEBRAIC[26] is alpha_f_Ca in component second_inward_calcium_current_f_Ca_gate (

per_second).

71 * ALGEBRAIC[27] is beta_f_Ca in component second_inward_calcium_current_f_Ca_gate (

per_second).

72 * ALGEBRAIC[28] is CaChoff in component second_inward_calcium_current_f_Ca_gate (

dimensionless).

73 * CONSTANTS[27] is delta_f in component second_inward_calcium_current_f_Ca_gate (

millivolt).

74 * ALGEBRAIC[25] is E0_f in component second_inward_calcium_current_f_Ca_gate (

millivolt).

75 * ALGEBRAIC[34] is i_up in component sarcoplasmic_reticulum_calcium_pump (

millimolar_per_second).

76 * CONSTANTS[51] is K_1 in component sarcoplasmic_reticulum_calcium_pump (

dimensionless).

77 * ALGEBRAIC[32] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar).

78 * CONSTANTS[28] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (

millimolar).

79 * CONSTANTS[29] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (

dimensionless).

80 * CONSTANTS[30] is K_srca in component sarcoplasmic_reticulum_calcium_pump (

millimolar).

81 * CONSTANTS[31] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (

millimolar_per_second).

82 * CONSTANTS[32] is beta_up in component sarcoplasmic_reticulum_calcium_pump (

millimolar_per_second).

83 * STATES[9] is Ca_up in component intracellular_calcium_concentration (millimolar).

84 * ALGEBRAIC[36] is i_rel in component calcium_release (millimolar_per_second).

85 * ALGEBRAIC[9] is VoltDep in component calcium_release (dimensionless).

86 * ALGEBRAIC[13] is RegBindSite in component calcium_release (dimensionless).

87 * ALGEBRAIC[15] is ActRate in component calcium_release (per_second).

88 * ALGEBRAIC[17] is InactRate in component calcium_release (per_second).

89 * CONSTANTS[33] is K_leak_rate in component calcium_release (per_second).

90 * CONSTANTS[34] is K_m_rel in component calcium_release (per_second).

91 * ALGEBRAIC[4] is PrecFrac in component calcium_release (dimensionless).

92 * STATES[10] is ActFrac in component calcium_release (dimensionless).

93 * STATES[11] is ProdFrac in component calcium_release (dimensionless).

94 * STATES[12] is Ca_rel in component intracellular_calcium_concentration (millimolar).

95 * ALGEBRAIC[37] is i_trans in component calcium_translocation (millimolar_per_second)

.

96 * CONSTANTS[35] is alpha_tr in component calcium_translocation (per_second).

97 * CONSTANTS[54] is V_i in component intracellular_calcium_concentration (micrometre3)

.
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98 * CONSTANTS[36] is Cab in component extracellular_calcium_concentration (millimolar).

99 * CONSTANTS[37] is K_diff in component extracellular_calcium_concentration (

per_second).

100 * CONSTANTS[53] is Ve in component intracellular_calcium_concentration (micrometre3).

101 * STATES[13] is Ca_Calmod in component intracellular_calcium_concentration (

millimolar).

102 * STATES[14] is Ca_Trop in component intracellular_calcium_concentration (millimolar)

.

103 * CONSTANTS[38] is Calmod in component intracellular_calcium_concentration (

millimolar).

104 * CONSTANTS[39] is Trop in component intracellular_calcium_concentration (millimolar)

.

105 * CONSTANTS[40] is alpha_Calmod in component intracellular_calcium_concentration (

per_millimolar_second).

106 * CONSTANTS[41] is beta_Calmod in component intracellular_calcium_concentration (

per_second).

107 * CONSTANTS[42] is alpha_Trop in component intracellular_calcium_concentration (

per_millimolar_second).

108 * CONSTANTS[43] is beta_Trop in component intracellular_calcium_concentration (

per_second).

109 * CONSTANTS[44] is radius in component intracellular_calcium_concentration (

micrometre).

110 * CONSTANTS[45] is length in component intracellular_calcium_concentration (

micrometre).

111 * CONSTANTS[50] is V_Cell in component intracellular_calcium_concentration (

micrometre3).

112 * CONSTANTS[52] is V_i_ratio in component intracellular_calcium_concentration (

dimensionless).

113 * CONSTANTS[46] is V_rel_ratio in component intracellular_calcium_concentration (

dimensionless).

114 * CONSTANTS[47] is V_e_ratio in component intracellular_calcium_concentration (

dimensionless).

115 * CONSTANTS[48] is V_up_ratio in component intracellular_calcium_concentration (

dimensionless).

116 * ALGEBRAIC[38] is dCaCalmoddt in component intracellular_calcium_concentration (

millimolar_per_second).

117 * ALGEBRAIC[39] is dCaTropdt in component intracellular_calcium_concentration (

millimolar_per_second).

118 * RATES[0] is d/dt V in component membrane (millivolt).

119 * RATES[3] is d/dt m in component fast_sodium_current_m_gate (dimensionless).

120 * RATES[4] is d/dt h in component fast_sodium_current_h_gate (dimensionless).

121 * RATES[7] is d/dt d in component second_inward_calcium_current_d_gate (dimensionless

).

122 * RATES[8] is d/dt f_Ca in component second_inward_calcium_current_f_Ca_gate (

dimensionless).

123 * RATES[10] is d/dt ActFrac in component calcium_release (dimensionless).

124 * RATES[11] is d/dt ProdFrac in component calcium_release (dimensionless).

125 * RATES[1] is d/dt Na_i in component intracellular_sodium_concentration (millimolar).
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126 * RATES[5] is d/dt Ca_o in component extracellular_calcium_concentration (millimolar)

.

127 * RATES[2] is d/dt K_i in component intracellular_potassium_concentration (millimolar

).

128 * RATES[6] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar)

.

129 * RATES[9] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar

).

130 * RATES[12] is d/dt Ca_rel in component intracellular_calcium_concentration (

millimolar).

131 * RATES[13] is d/dt Ca_Calmod in component intracellular_calcium_concentration (

millimolar).

132 * RATES[14] is d/dt Ca_Trop in component intracellular_calcium_concentration (

millimolar).

133 */

134 void

135 i n i t C o n s t s ( double * CONSTANTS, double * RATES, double *STATES)

136 {

137 STATES [ 0 ] = −88;

138 CONSTANTS[ 0 ] = 8 3 1 4 . 4 7 2 ;

139 CONSTANTS[ 1 ] = 3 1 0 ;

140 CONSTANTS[ 2 ] = 9 6 4 8 5 . 3 4 1 5 ;

141 CONSTANTS[ 3 ] = 0 . 0 0 6 ;

142 CONSTANTS[ 4 ] = 0 . 1 ;

143 CONSTANTS[ 5 ] = 10000 ;

144 CONSTANTS[ 6 ] = 1 ;

145 CONSTANTS[ 7 ] = 0 . 0 0 2 ;

146 CONSTANTS[ 8 ] = −200;

147 CONSTANTS[ 9 ] = 5 0 ;

148 CONSTANTS[ 1 0 ] = 1 4 0 ;

149 STATES [ 1 ] = 6 . 5 ;

150 CONSTANTS[ 1 1 ] = 4 ;

151 STATES [ 2 ] = 1 4 0 ;

152 STATES [ 3 ] = 0 . 0 7 6 ;

153 STATES [ 4 ] = 0 . 0 1 5 ;

154 CONSTANTS[ 1 2 ] = 1e−5;

155 CONSTANTS[ 1 3 ] = 1 4 ;

156 CONSTANTS[ 1 4 ] = 1 ;

157 CONSTANTS[ 1 5 ] = 4 0 ;

158 CONSTANTS[ 1 6 ] = 0 . 0 1 2 ;

159 CONSTANTS[ 1 7 ] = 0 . 0 0 5 ;

160 STATES [ 5 ] = 2 ;

161 STATES [ 6 ] = 1e−5;

162 CONSTANTS[ 1 8 ] = 0 . 0 1 ;

163 CONSTANTS[ 1 9 ] = 3 ;

164 CONSTANTS[ 2 0 ] = 0 . 0 0 0 1 ;

165 CONSTANTS[ 2 1 ] = 0 . 5 ;

166 CONSTANTS[ 2 2 ] = 0 . 1 7 ;

167 CONSTANTS[ 2 3 ] = 1 . 7 ;
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168 CONSTANTS[ 2 4 ] = 1 0 ;

169 CONSTANTS[ 2 5 ] = 5 ;

170 STATES [ 7 ] = 0 . 0 0 1 1 ;

171 STATES [ 8 ] = 0 . 7 8 5 ;

172 CONSTANTS[ 2 6 ] = 0 . 0 0 0 1 ;

173 CONSTANTS[ 2 7 ] = 0 . 0 0 0 1 ;

174 CONSTANTS[ 2 8 ] = 0 . 0 0 0 3 ;

175 CONSTANTS[ 2 9 ] = 0 . 4 ;

176 CONSTANTS[ 3 0 ] = 0 . 5 ;

177 CONSTANTS[ 3 1 ] = 3 ;

178 CONSTANTS[ 3 2 ] = 0 . 2 3 ;

179 STATES [ 9 ] = 0 . 3 ;

180 CONSTANTS[ 3 3 ] = 0 ;

181 CONSTANTS[ 3 4 ] = 2 5 0 ;

182 STATES [ 1 0 ] = 0 ;

183 STATES [ 1 1 ] = 0 ;

184 STATES [ 1 2 ] = 0 . 3 ;

185 CONSTANTS[ 3 5 ] = 5 0 ;

186 CONSTANTS[ 3 6 ] = 2 ;

187 CONSTANTS[ 3 7 ] = 0 . 0 0 0 5 ;

188 STATES [ 1 3 ] = 0 . 0 0 0 5 ;

189 STATES [ 1 4 ] = 0 . 0 0 1 5 ;

190 CONSTANTS[ 3 8 ] = 0 . 0 2 ;

191 CONSTANTS[ 3 9 ] = 0 . 1 5 ;

192 CONSTANTS[ 4 0 ] = 100000 ;

193 CONSTANTS[ 4 1 ] = 5 0 ;

194 CONSTANTS[ 4 2 ] = 100000 ;

195 CONSTANTS[ 4 3 ] = 2 0 0 ;

196 CONSTANTS[ 4 4 ] = 0 . 0 8 ;

197 CONSTANTS[ 4 5 ] = 0 . 0 8 ;

198 CONSTANTS[ 4 6 ] = 0 . 1 ;

199 CONSTANTS[ 4 7 ] = 0 . 4 ;

200 CONSTANTS[ 4 8 ] = 0 . 0 1 ;

201 CONSTANTS[ 4 9 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] ;

202 CONSTANTS[ 5 0 ] = 3 . 1 4 1 5 9 *pow(CONSTANTS[ 4 4 ] , 2 . 0 0 0 0 0 ) *CONSTANTS[ 4 5 ] ;

203 CONSTANTS[ 5 1 ] = CONSTANTS[ 2 8 ] *CONSTANTS[29 ]/CONSTANTS[ 3 0 ] ;

204 CONSTANTS[ 5 2 ] = 1 .00000 − CONSTANTS[ 4 7 ] − CONSTANTS[ 4 8 ] − CONSTANTS[ 4 6 ] ;

205 CONSTANTS[ 5 3 ] = CONSTANTS[ 5 0 ] *CONSTANTS[ 4 7 ] ;

206 CONSTANTS[ 5 4 ] = CONSTANTS[ 5 0 ] *CONSTANTS[ 5 2 ] ;

207 }

208 void

209 computeRates ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

210 {

211 RATES[ 1 3 ] = CONSTANTS[ 4 0 ] * STATES [ 6 ] * (CONSTANTS[ 3 8 ] − STATES [ 1 3 ] ) − CONSTANTS[ 4 1 ] *
STATES [ 1 3 ] ;

212 RATES[ 1 4 ] = CONSTANTS[ 4 2 ] * STATES [ 6 ] * (CONSTANTS[ 3 9 ] − STATES [ 1 4 ] ) − CONSTANTS[ 4 3 ] *
STATES [ 1 4 ] ;

213 ALGEBRAIC[ 1 ] = 2 0 . 0 0 0 0 * exp ( − 0 . 1 2 5 0 0 0 * ( STATES [ 0 ] + 7 5 . 0 0 0 0 ) ) ;
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214 ALGEBRAIC[ 6 ] = 2000 .00/(1 .00000+ 3 2 0 . 0 0 0 * exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 7 5 . 0 0 0 0 ) ) ) ;

215 RATES [ 4 ] = ALGEBRAIC[ 1 ] * ( 1 . 0 0 0 0 0 − STATES [ 4 ] ) − ALGEBRAIC[ 6 ] * STATES [ 4 ] ;

216 ALGEBRAIC[ 0 ] = STATES [ 0 ] + 4 1 . 0 0 0 0 ;

217 ALGEBRAIC[ 5 ] = ( fabs (ALGEBRAIC [ 0 ] ) <CONSTANTS[ 1 2 ] ? 2000 .00 : 2 0 0 . 0 0 0 *ALGEBRAIC

[ 0 ] / ( 1 . 0 0 0 0 0 − exp ( − 0 . 1 0 0 0 0 0 *ALGEBRAIC [ 0 ] ) ) ) ;

218 ALGEBRAIC[ 1 0 ] = 8 0 0 0 . 0 0 * exp ( − 0 . 0 5 6 0 0 0 0 * ( STATES [ 0 ] + 6 6 . 0 0 0 0 ) ) ;

219 RATES [ 3 ] = ALGEBRAIC[ 5 ] * ( 1 . 0 0 0 0 0 − STATES [ 3 ] ) − ALGEBRAIC[ 1 0 ] * STATES [ 3 ] ;

220 ALGEBRAIC[ 2 ] = STATES[ 0 ] + 2 4 . 0 0 0 0 − 5 . 0 0 0 0 0 ;

221 ALGEBRAIC[ 7 ] = ( fabs (ALGEBRAIC [ 2 ] ) <CONSTANTS[ 2 6 ] ? 120 .000 : 3 0 . 0 0 0 0 *ALGEBRAIC

[ 2 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 *ALGEBRAIC[ 2 ] / 4 . 0 0 0 0 0 ) ) ) ;

222 ALGEBRAIC[ 1 1 ] = ( fabs (ALGEBRAIC [ 2 ] ) <CONSTANTS[ 2 6 ] ? 120 .000 : 1 2 . 0 0 0 0 *ALGEBRAIC[ 2 ] / (

exp (ALGEBRAIC[ 2 ] / 1 0 . 0 0 0 0 ) − 1 . 0 0 0 0 0 ) ) ;

223 RATES [ 7 ] = ALGEBRAIC[ 7 ] * ( 1 . 0 0 0 0 0 − STATES [ 7 ] ) − ALGEBRAIC[ 1 1 ] * STATES [ 7 ] ;

224 ALGEBRAIC[ 9 ] = exp ( 0 . 0 8 0 0 0 0 0 * ( STATES [ 0 ] − 4 0 . 0 0 0 0 ) ) ;

225 ALGEBRAIC[ 1 3 ] = pow(STATES [ 6 ] / ( STATES[ 6 ] + 0 . 0 0 0 5 0 0 0 0 0 ) , 2 . 0 0 0 0 0 ) ;

226 ALGEBRAIC[ 1 5 ] = 6 0 0 . 0 0 0 *ALGEBRAIC[ 9 ] + 5 0 0 . 0 0 0 *ALGEBRAIC [ 1 3 ] ;

227 ALGEBRAIC[ 1 7 ] = 60 .0000+ 5 0 0 . 0 0 0 *ALGEBRAIC [ 1 3 ] ;

228 ALGEBRAIC[ 4 ] = 1 .00000 − STATES [ 1 0 ] − STATES [ 1 1 ] ;

229 RATES[ 1 0 ] = ALGEBRAIC[ 4 ] *ALGEBRAIC[ 1 5 ] − STATES [ 1 0 ] *ALGEBRAIC [ 1 7 ] ;

230 RATES[ 1 1 ] = STATES [ 1 0 ] *ALGEBRAIC[ 1 7 ] − 0 . 6 0 0 0 0 0 *STATES [ 1 1 ] ;

231 ALGEBRAIC[ 2 5 ] = STATES [ 0 ] + 3 4 . 0 0 0 0 ;

232 ALGEBRAIC[ 2 6 ] = ( fabs (ALGEBRAIC[ 2 5 ] ) <CONSTANTS[ 2 7 ] ? 25 .0000 : 6 . 2 5 0 0 0 *ALGEBRAIC

[ 2 5 ] / ( exp (ALGEBRAIC[ 2 5 ] / 4 . 0 0 0 0 0 ) − 1 . 0 0 0 0 0 ) ) ;

233 ALGEBRAIC[ 2 7 ] = 12 .0000/(1 .00000+ exp(− ALGEBRAIC[ 2 5 ] / 4 . 0 0 0 0 0 ) ) ;

234 ALGEBRAIC[ 2 8 ] = STATES[ 6 ] / ( 0 . 0 0 1 00 0 0 0 +STATES [ 6 ] ) ;

235 RATES [ 8 ] = ( 1 2 0 . 0 0 0 * ( 1 . 0 0 0 0 0 − STATES [ 8 ] ) *ALGEBRAIC[28 ]+ ( 1 . 0 0 0 0 0 − STATES [ 8 ] )

* ( 1 . 0 0 0 0 0 − ALGEBRAIC[ 2 8 ] ) ) *ALGEBRAIC[ 2 7 ] − ALGEBRAIC[ 2 6 ] * STATES [ 8 ] ;

236 ALGEBRAIC[ 1 9 ] = 0 . 5 0 0 0 0 0 *CONSTANTS[ 4 9 ] * log (STATES[ 5 ] /STATES [ 6 ] ) ;

237 ALGEBRAIC[ 2 0 ] = CONSTANTS[ 1 7 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 9 ] ) ;

238 ALGEBRAIC[ 2 1 ] = CONSTANTS[ 1 8 ] * ( exp ( CONSTANTS[ 2 1 ] * (CONSTANTS[ 1 9 ] − 2 . 0 0 0 0 0 ) *STATES

[ 0 ] /CONSTANTS[ 4 9 ] ) *pow(STATES [ 1 ] , CONSTANTS[ 1 9 ] ) *STATES [ 5 ] − exp ( (CONSTANTS[ 2 1 ]

− 1 . 0 0 0 0 0 ) * (CONSTANTS[ 1 9 ] − 2 . 0 0 0 0 0 ) *STATES[ 0 ] /CONSTANTS[ 4 9 ] ) *pow(CONSTANTS[ 1 0 ] ,

CONSTANTS[ 1 9 ] ) *STATES [ 6 ] ) /( (1 .00000+ CONSTANTS[ 2 0 ] * ( STATES [ 6 ] *pow(CONSTANTS[ 1 0 ] ,

CONSTANTS[ 1 9 ] ) + STATES [ 5 ] *pow(STATES [ 1 ] , CONSTANTS[ 1 9 ] ) ) ) * ( 1 . 0 0 0 0 0 +STATES

[ 6 ] / 0 . 0 0 6 9 0 0 0 0 ) ) ;

239 ALGEBRAIC[ 2 9 ] = ( 1 . 0 0 0 0 0 − STATES [ 8 ] ) * ( 1 . 0 0 0 0 0 − ALGEBRAIC[ 2 8 ] ) ;

240 ALGEBRAIC[ 3 0 ] = 4 . 0 0 0 0 0 *CONSTANTS[ 2 5 ] * STATES [ 7 ] *ALGEBRAIC [ 2 9 ] * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /

CONSTANTS[ 4 9 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) *2 .00000/CONSTANTS

[ 4 9 ] ) ) * ( STATES [ 6 ] * exp (100 .000/CONSTANTS[ 4 9 ] ) − STATES [ 5 ] * exp ( − 2 . 0 0 0 0 0 * ( STATES

[ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] ) ) ;

241 RATES [ 5 ] = (CONSTANTS[ 3 6 ] − STATES [ 5 ] ) *CONSTANTS[ 3 7 ] − 1 . 0 0 0 0 0 * (ALGEBRAIC[30 ]+

ALGEBRAIC[21 ]+ALGEBRAIC[ 2 0 ] ) /( 2 . 0 0 0 0 0 * 1 . 0 0 0 0 0 *CONSTANTS[ 5 3 ] *CONSTANTS[ 2 ] ) ;

242 ALGEBRAIC[ 2 2 ] = CONSTANTS[ 4 9 ] * log (CONSTANTS[11 ]/STATES [ 2 ] ) ;

243 ALGEBRAIC[ 2 4 ] = CONSTANTS[ 2 3 ] *CONSTANTS[ 1 1 ] / (CONSTANTS[11 ]+CONSTANTS[ 2 4 ] ) * ( STATES [ 0 ]

− ALGEBRAIC[ 2 2 ] ) /(1 .00000+ exp ( (STATES [ 0 ] − ALGEBRAIC[ 2 2 ] − 1 0 . 0 0 0 0 ) *2 .00000/

CONSTANTS[ 4 9 ] ) ) ;

244 ALGEBRAIC[ 2 3 ] = CONSTANTS[ 2 2 ] * ( STATES [ 0 ] − ALGEBRAIC[ 2 2 ] ) ;

245 ALGEBRAIC[ 1 4 ] = CONSTANTS[ 1 3 ] *CONSTANTS[ 1 1 ] / (CONSTANTS[14 ]+CONSTANTS[ 1 1 ] ) *STATES

[ 1 ] / (CONSTANTS[15 ]+STATES [ 1 ] ) ;
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246 ALGEBRAIC[ 3 1 ] = 0 .00200000 *CONSTANTS[ 2 5 ] * STATES [ 7 ] *ALGEBRAIC [ 2 9 ] * ( STATES [ 0 ] −

5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS

[ 4 9 ] ) ) * ( STATES [ 2 ] * exp (50 .0000/CONSTANTS[ 4 9 ] ) − CONSTANTS[ 1 1 ] * exp ( − 1 . 0 0 0 0 0 * (

STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] ) ) ;

247 RATES [ 2 ] = − 1 .00000/( 1 . 0 0 0 0 0 *CONSTANTS[ 5 4 ] *CONSTANTS[ 2 ] ) * (ALGEBRAIC[24 ]+ALGEBRAIC

[31 ]+ALGEBRAIC[ 2 3 ] − 2 . 0 0 0 0 0 *ALGEBRAIC[ 1 4 ] ) ;

248 ALGEBRAIC[ 1 6 ] = CONSTANTS[ 4 9 ] * log (CONSTANTS[10 ]/STATES [ 1 ] ) ;

249 ALGEBRAIC[ 1 8 ] = CONSTANTS[ 1 6 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 6 ] ) ;

250 ALGEBRAIC[ 8 ] = CONSTANTS[ 4 9 ] * log ( (CONSTANTS[10 ]+ 0 . 1 2 0 0 0 0 *CONSTANTS[ 1 1 ] ) /(STATES[ 1 ] +

0 . 1 2 0 0 0 0 *STATES [ 2 ] ) ) ;

251 ALGEBRAIC[ 1 2 ] = CONSTANTS[ 9 ] *pow(STATES [ 3 ] , 3 . 0 0 0 0 0 ) *STATES [ 4 ] * ( STATES [ 0 ] − ALGEBRAIC

[ 8 ] ) ;

252 ALGEBRAIC[ 3 3 ] = 0 .0100000 *CONSTANTS[ 2 5 ] * STATES [ 7 ] *ALGEBRAIC [ 2 9 ] * ( STATES [ 0 ] −

5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS

[ 4 9 ] ) ) * ( STATES [ 1 ] * exp (50 .0000/CONSTANTS[ 4 9 ] ) − CONSTANTS[ 1 0 ] * exp ( − 1 . 0 0 0 0 0 * (

STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] ) ) ;

253 RATES [ 1 ] = − 1 .00000/( 1 . 0 0 0 0 0 *CONSTANTS[ 5 4 ] *CONSTANTS[ 2 ] ) * (ALGEBRAIC[12 ]+ALGEBRAIC

[18 ]+ ALGEBRAIC[ 1 4 ] * 3 . 0 0 0 0 0 + ALGEBRAIC[ 2 1 ] * 3 . 0 0 0 0 0 +ALGEBRAIC[ 3 3 ] ) ;

254 ALGEBRAIC[ 3 5 ] = ALGEBRAIC[30 ]+ALGEBRAIC[31 ]+ALGEBRAIC [ 3 3 ] ;

255 ALGEBRAIC[ 3 ] = (VOI>=CONSTANTS[4]&&VOI<=CONSTANTS[5]&&VOI − CONSTANTS[ 4 ] − f l o o r ( ( VOI

− CONSTANTS[ 4 ] ) /CONSTANTS[ 6 ] ) *CONSTANTS[6] <=CONSTANTS[ 7 ] ? CONSTANTS[ 8 ] :

0 . 0 0 0 0 0 ) ;

256 RATES [ 0 ] = − (ALGEBRAIC[ 3 ] +ALGEBRAIC[24 ]+ALGEBRAIC[18 ]+ALGEBRAIC[20 ]+ALGEBRAIC[23 ]+

ALGEBRAIC[14 ]+ALGEBRAIC[21 ]+ALGEBRAIC[12 ]+ALGEBRAIC[ 3 5 ] ) /CONSTANTS[ 3 ] ;

257 ALGEBRAIC[ 3 2 ] = STATES[ 6 ] + STATES [ 9 ] *CONSTANTS[51 ]+ CONSTANTS[ 2 8 ] *CONSTANTS[29 ]+

CONSTANTS[ 2 8 ] ;

258 ALGEBRAIC[ 3 4 ] = STATES[ 6 ] /ALGEBRAIC[ 3 2 ] *CONSTANTS[ 3 1 ] − STATES [ 9 ] *CONSTANTS[51 ]/

ALGEBRAIC[ 3 2 ] *CONSTANTS[ 3 2 ] ;

259 ALGEBRAIC[ 3 7 ] = (STATES [ 9 ] − STATES [ 1 2 ] ) *CONSTANTS[ 3 5 ] ;

260 RATES [ 9 ] = CONSTANTS[52 ]/CONSTANTS[ 4 8 ] *ALGEBRAIC[ 3 4 ] − ALGEBRAIC [ 3 7 ] ;

261 ALGEBRAIC[ 3 6 ] = ( pow(STATES [ 1 0 ] / ( STATES [ 1 0 ] + 0 . 2 5 0 0 0 0 ) , 2 . 0 0 0 0 0 ) *CONSTANTS[34 ]+

CONSTANTS[ 3 3 ] ) *STATES [ 1 2 ] ;

262 RATES[ 1 2 ] = CONSTANTS[48 ]/CONSTANTS[ 4 6 ] *ALGEBRAIC[ 3 7 ] − ALGEBRAIC [ 3 6 ] ;

263 ALGEBRAIC[ 3 8 ] = CONSTANTS[ 4 0 ] * STATES [ 6 ] * (CONSTANTS[ 3 8 ] − STATES [ 1 3 ] ) − CONSTANTS

[ 4 1 ] * STATES [ 1 3 ] ;

264 ALGEBRAIC[ 3 9 ] = CONSTANTS[ 4 2 ] * STATES [ 6 ] * (CONSTANTS[ 3 9 ] − STATES [ 1 4 ] ) − CONSTANTS

[ 4 3 ] * STATES [ 1 4 ] ;

265 RATES [ 6 ] = − 1 .00000/( 2 . 0 0 0 0 0 * 1 . 0 0 0 0 0 *CONSTANTS[ 5 4 ] *CONSTANTS[ 2 ] ) * (ALGEBRAIC[30 ]+

ALGEBRAIC[ 2 0 ] − 2 . 0 0 0 0 0 *ALGEBRAIC[ 2 1 ] ) + ALGEBRAIC[ 3 6 ] *CONSTANTS[46 ]/CONSTANTS[ 5 2 ]

− ALGEBRAIC[ 3 8 ] − ALGEBRAIC[ 3 9 ] − ALGEBRAIC [ 3 4 ] ;

266 }

267 void

268 computeVariables ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

269 {

270 ALGEBRAIC[ 1 ] = 2 0 . 0 0 0 0 * exp ( − 0 . 1 2 5 0 0 0 * ( STATES [ 0 ] + 7 5 . 0 0 0 0 ) ) ;

271 ALGEBRAIC[ 6 ] = 2000 .00/(1 .00000+ 3 2 0 . 0 0 0 * exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 7 5 . 0 0 0 0 ) ) ) ;

272 ALGEBRAIC[ 0 ] = STATES [ 0 ] + 4 1 . 0 0 0 0 ;
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273 ALGEBRAIC[ 5 ] = ( fabs (ALGEBRAIC [ 0 ] ) <CONSTANTS[ 1 2 ] ? 2000 .00 : 2 0 0 . 0 0 0 *ALGEBRAIC

[ 0 ] / ( 1 . 0 0 0 0 0 − exp ( − 0 . 1 0 0 0 0 0 *ALGEBRAIC [ 0 ] ) ) ) ;

274 ALGEBRAIC[ 1 0 ] = 8 0 0 0 . 0 0 * exp ( − 0 . 0 5 6 0 0 0 0 * ( STATES [ 0 ] + 6 6 . 0 0 0 0 ) ) ;

275 ALGEBRAIC[ 2 ] = STATES[ 0 ] + 2 4 . 0 0 0 0 − 5 . 0 0 0 0 0 ;

276 ALGEBRAIC[ 7 ] = ( fabs (ALGEBRAIC [ 2 ] ) <CONSTANTS[ 2 6 ] ? 120 .000 : 3 0 . 0 0 0 0 *ALGEBRAIC

[ 2 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 *ALGEBRAIC[ 2 ] / 4 . 0 0 0 0 0 ) ) ) ;

277 ALGEBRAIC[ 1 1 ] = ( fabs (ALGEBRAIC [ 2 ] ) <CONSTANTS[ 2 6 ] ? 120 .000 : 1 2 . 0 0 0 0 *ALGEBRAIC[ 2 ] / (

exp (ALGEBRAIC[ 2 ] / 1 0 . 0 0 0 0 ) − 1 . 0 0 0 0 0 ) ) ;

278 ALGEBRAIC[ 9 ] = exp ( 0 . 0 8 0 0 0 0 0 * ( STATES [ 0 ] − 4 0 . 0 0 0 0 ) ) ;

279 ALGEBRAIC[ 1 3 ] = pow(STATES [ 6 ] / ( STATES[ 6 ] + 0 . 0 0 0 5 0 0 0 0 0 ) , 2 . 0 0 0 0 0 ) ;

280 ALGEBRAIC[ 1 5 ] = 6 0 0 . 0 0 0 *ALGEBRAIC[ 9 ] + 5 0 0 . 0 0 0 *ALGEBRAIC [ 1 3 ] ;

281 ALGEBRAIC[ 1 7 ] = 60 .0000+ 5 0 0 . 0 0 0 *ALGEBRAIC [ 1 3 ] ;

282 ALGEBRAIC[ 4 ] = 1 .00000 − STATES [ 1 0 ] − STATES [ 1 1 ] ;

283 ALGEBRAIC[ 2 5 ] = STATES [ 0 ] + 3 4 . 0 0 0 0 ;

284 ALGEBRAIC[ 2 6 ] = ( fabs (ALGEBRAIC[ 2 5 ] ) <CONSTANTS[ 2 7 ] ? 25 .0000 : 6 . 2 5 0 0 0 *ALGEBRAIC

[ 2 5 ] / ( exp (ALGEBRAIC[ 2 5 ] / 4 . 0 0 0 0 0 ) − 1 . 0 0 0 0 0 ) ) ;

285 ALGEBRAIC[ 2 7 ] = 12 .0000/(1 .00000+ exp(− ALGEBRAIC[ 2 5 ] / 4 . 0 0 0 0 0 ) ) ;

286 ALGEBRAIC[ 2 8 ] = STATES[ 6 ] / ( 0 . 0 0 1 00 0 0 0 +STATES [ 6 ] ) ;

287 ALGEBRAIC[ 1 9 ] = 0 . 5 0 0 0 0 0 *CONSTANTS[ 4 9 ] * log (STATES[ 5 ] /STATES [ 6 ] ) ;

288 ALGEBRAIC[ 2 0 ] = CONSTANTS[ 1 7 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 9 ] ) ;

289 ALGEBRAIC[ 2 1 ] = CONSTANTS[ 1 8 ] * ( exp ( CONSTANTS[ 2 1 ] * (CONSTANTS[ 1 9 ] − 2 . 0 0 0 0 0 ) *STATES

[ 0 ] /CONSTANTS[ 4 9 ] ) *pow(STATES [ 1 ] , CONSTANTS[ 1 9 ] ) *STATES [ 5 ] − exp ( (CONSTANTS[ 2 1 ]

− 1 . 0 0 0 0 0 ) * (CONSTANTS[ 1 9 ] − 2 . 0 0 0 0 0 ) *STATES[ 0 ] /CONSTANTS[ 4 9 ] ) *pow(CONSTANTS[ 1 0 ] ,

CONSTANTS[ 1 9 ] ) *STATES [ 6 ] ) /( (1 .00000+ CONSTANTS[ 2 0 ] * ( STATES [ 6 ] *pow(CONSTANTS[ 1 0 ] ,

CONSTANTS[ 1 9 ] ) + STATES [ 5 ] *pow(STATES [ 1 ] , CONSTANTS[ 1 9 ] ) ) ) * ( 1 . 0 0 0 0 0 +STATES

[ 6 ] / 0 . 0 0 6 9 0 0 0 0 ) ) ;

290 ALGEBRAIC[ 2 9 ] = ( 1 . 0 0 0 0 0 − STATES [ 8 ] ) * ( 1 . 0 0 0 0 0 − ALGEBRAIC[ 2 8 ] ) ;

291 ALGEBRAIC[ 3 0 ] = 4 . 0 0 0 0 0 *CONSTANTS[ 2 5 ] * STATES [ 7 ] *ALGEBRAIC [ 2 9 ] * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /

CONSTANTS[ 4 9 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) *2 .00000/CONSTANTS

[ 4 9 ] ) ) * ( STATES [ 6 ] * exp (100 .000/CONSTANTS[ 4 9 ] ) − STATES [ 5 ] * exp ( − 2 . 0 0 0 0 0 * ( STATES

[ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] ) ) ;

292 ALGEBRAIC[ 2 2 ] = CONSTANTS[ 4 9 ] * log (CONSTANTS[11 ]/STATES [ 2 ] ) ;

293 ALGEBRAIC[ 2 4 ] = CONSTANTS[ 2 3 ] *CONSTANTS[ 1 1 ] / (CONSTANTS[11 ]+CONSTANTS[ 2 4 ] ) * ( STATES [ 0 ]

− ALGEBRAIC[ 2 2 ] ) /(1 .00000+ exp ( (STATES [ 0 ] − ALGEBRAIC[ 2 2 ] − 1 0 . 0 0 0 0 ) *2 .00000/

CONSTANTS[ 4 9 ] ) ) ;

294 ALGEBRAIC[ 2 3 ] = CONSTANTS[ 2 2 ] * ( STATES [ 0 ] − ALGEBRAIC[ 2 2 ] ) ;

295 ALGEBRAIC[ 1 4 ] = CONSTANTS[ 1 3 ] *CONSTANTS[ 1 1 ] / (CONSTANTS[14 ]+CONSTANTS[ 1 1 ] ) *STATES

[ 1 ] / (CONSTANTS[15 ]+STATES [ 1 ] ) ;

296 ALGEBRAIC[ 3 1 ] = 0 .00200000 *CONSTANTS[ 2 5 ] * STATES [ 7 ] *ALGEBRAIC [ 2 9 ] * ( STATES [ 0 ] −

5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS

[ 4 9 ] ) ) * ( STATES [ 2 ] * exp (50 .0000/CONSTANTS[ 4 9 ] ) − CONSTANTS[ 1 1 ] * exp ( − 1 . 0 0 0 0 0 * (

STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] ) ) ;

297 ALGEBRAIC[ 1 6 ] = CONSTANTS[ 4 9 ] * log (CONSTANTS[10 ]/STATES [ 1 ] ) ;

298 ALGEBRAIC[ 1 8 ] = CONSTANTS[ 1 6 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 6 ] ) ;

299 ALGEBRAIC[ 8 ] = CONSTANTS[ 4 9 ] * log ( (CONSTANTS[10 ]+ 0 . 1 2 0 0 0 0 *CONSTANTS[ 1 1 ] ) /(STATES[ 1 ] +

0 . 1 2 0 0 0 0 *STATES [ 2 ] ) ) ;

300 ALGEBRAIC[ 1 2 ] = CONSTANTS[ 9 ] *pow(STATES [ 3 ] , 3 . 0 0 0 0 0 ) *STATES [ 4 ] * ( STATES [ 0 ] − ALGEBRAIC

[ 8 ] ) ;
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301 ALGEBRAIC[ 3 3 ] = 0 .0100000 *CONSTANTS[ 2 5 ] * STATES [ 7 ] *ALGEBRAIC [ 2 9 ] * ( STATES [ 0 ] −

5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] / ( 1 . 0 0 0 0 0 − exp ( − 1 . 0 0 0 0 0 * ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS

[ 4 9 ] ) ) * ( STATES [ 1 ] * exp (50 .0000/CONSTANTS[ 4 9 ] ) − CONSTANTS[ 1 0 ] * exp ( − 1 . 0 0 0 0 0 * (

STATES [ 0 ] − 5 0 . 0 0 0 0 ) /CONSTANTS[ 4 9 ] ) ) ;

302 ALGEBRAIC[ 3 5 ] = ALGEBRAIC[30 ]+ALGEBRAIC[31 ]+ALGEBRAIC [ 3 3 ] ;

303 ALGEBRAIC[ 3 ] = (VOI>=CONSTANTS[4]&&VOI<=CONSTANTS[5]&&VOI − CONSTANTS[ 4 ] − f l o o r ( ( VOI

− CONSTANTS[ 4 ] ) /CONSTANTS[ 6 ] ) *CONSTANTS[6] <=CONSTANTS[ 7 ] ? CONSTANTS[ 8 ] :

0 . 0 0 0 0 0 ) ;

304 ALGEBRAIC[ 3 2 ] = STATES[ 6 ] + STATES [ 9 ] *CONSTANTS[51 ]+ CONSTANTS[ 2 8 ] *CONSTANTS[29 ]+

CONSTANTS[ 2 8 ] ;

305 ALGEBRAIC[ 3 4 ] = STATES[ 6 ] /ALGEBRAIC[ 3 2 ] *CONSTANTS[ 3 1 ] − STATES [ 9 ] *CONSTANTS[51 ]/

ALGEBRAIC[ 3 2 ] *CONSTANTS[ 3 2 ] ;

306 ALGEBRAIC[ 3 7 ] = (STATES [ 9 ] − STATES [ 1 2 ] ) *CONSTANTS[ 3 5 ] ;

307 ALGEBRAIC[ 3 6 ] = ( pow(STATES [ 1 0 ] / ( STATES [ 1 0 ] + 0 . 2 5 0 0 0 0 ) , 2 . 0 0 0 0 0 ) *CONSTANTS[34 ]+

CONSTANTS[ 3 3 ] ) *STATES [ 1 2 ] ;

308 ALGEBRAIC[ 3 8 ] = CONSTANTS[ 4 0 ] * STATES [ 6 ] * (CONSTANTS[ 3 8 ] − STATES [ 1 3 ] ) − CONSTANTS

[ 4 1 ] * STATES [ 1 3 ] ;

309 ALGEBRAIC[ 3 9 ] = CONSTANTS[ 4 2 ] * STATES [ 6 ] * (CONSTANTS[ 3 9 ] − STATES [ 1 4 ] ) − CONSTANTS

[ 4 3 ] * STATES [ 1 4 ] ;

310 } �

A.4 T N N P M O D E L

a.4.1 Mathematics

“environment” component

This component has no equations.

“membrane” component

d(V)

d(time)
=
−(1)

1
∗ (i_K1 + i_to + i_Kr + i_Ks + i_CaL + i_NaK + i_Na

+i_b_Na + i_NaCa + i_b_Ca + i_p_K + i_p_Ca + i_stim)

“reversal_potentials” component

E_Na =
R ∗ T

F
∗ ln

(
Na_o
Na_i

)

E_K =
R ∗ T

F
∗ ln

(
K_o
K_i

)
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E_Ks =
R ∗ T

F
∗ ln

(
K_o + P_kna ∗ Na_o
K_i + P_kna ∗ Na_i

)

E_Ca =
0.5 ∗ R ∗ T

F
∗ ln

(
Ca_o
Ca_i

)

“inward_rectifier_potassium_current” component

alpha_K1 =
0.1(

1 + e0.06∗((V−E_K)−200)
)

beta_K1 =

(
3 ∗ e0.0002∗((V−E_K)+100) + e0.1∗((V−E_K)−10)

)
(
1 + e−(0.5)∗(V−E_K)

)
xK1_in f =

alpha_K1
(alpha_K1 + beta_K1)

i_K1 = g_K1 ∗ xK1_in f ∗
√

K_o
5.4
∗ (V − E_K)

“rapid_time_dependent_potassium_current” component

i_Kr = g_Kr ∗
√

K_o
5.4
∗ Xr1 ∗ Xr2 ∗ (V − E_K)

“rapid_time_dependent_potassium_current_Xr1_gate” component

xr1_in f =
1(

1 + e
(−(26)−V)

7

)
alpha_xr1 =

450(
1 + e

(−(45)−V)
10

)
beta_xr1 =

6(
1 + e

(V+30)
11.5

)
tau_xr1 = 1 ∗ alpha_xr1 ∗ beta_xr1

d(Xr1)
d(time)

=
(xr1_in f − Xr1)

tau_xr1

“rapid_time_dependent_potassium_current_Xr2_gate” component

xr2_in f =
1(

1 + e
(V+88)

24

)
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alpha_xr2 =
3(

1 + e
(−(60)−V)

20

)
beta_xr2 =

1.12(
1 + e

(V−60)
20

)
tau_xr2 = 1 ∗ alpha_xr2 ∗ beta_xr2

d(Xr2)
d(time)

=
(xr2_in f − Xr2)

tau_xr2

“slow_time_dependent_potassium_current” component

i_Ks = g_Ks ∗ (Xs)2 ∗ (V − E_Ks)

“slow_time_dependent_potassium_current_Xs_gate” component

xs_in f =
1(

1 + e
(−(5)−V)

14

)
alpha_xs =

1100√(
1 + e

(−(10)−V)
6

)
beta_xs =

1(
1 + e

(V−60)
20

)
tau_xs = 1 ∗ alpha_xs ∗ beta_xs

d(Xs)
d(time)

=
(xs_in f − Xs)

tau_xs

“fast_sodium_current” component

i_Na = g_Na ∗ (m)3 ∗ h ∗ j ∗ (V − E_Na)

“fast_sodium_current_m_gate” component

m_in f =
1((

1 + e
(−(56.86)−V)

9.03

))2

alpha_m =
1(

1 + e
(−(60)−V)

5

)
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beta_m =

 0.1(
1 + e

(V+35)
5

) +
0.1(

1 + e
(V−50)

200

)


tau_m = 1 ∗ alpha_m ∗ beta_m

d(m)

d(time)
=

(m_in f −m)

tau_m

“fast_sodium_current_h_gate” component

h_in f =
1((

1 + e
(V+71.55)

7.43

))2

alpha_h =


0.057 ∗ e

−((V+80))
6.8 if V < −(40)

0 otherwise.

beta_h =


(
2.7 ∗ e0.079∗V + 310000 ∗ e0.3485∗V) if V < −(40)

0.77

0.13∗
(

1+e
(V+10.66)
−(11.1)

) otherwise.

tau_h =
1

(alpha_h + beta_h)

d(h)
d(time)

=
(h_in f − h)

tau_h

“fast_sodium_current_j_gate” component

j_in f =
1((

1 + e
(V+71.55)

7.43

))2

alpha_j =


(−(25428)∗e0.2444∗V−6.948−6∗e−(0.04391)∗V)∗(V+37.78)

1

(1+e0.311∗(V+79.23))
if V < −(40)

0 otherwise.

beta_j =


0.02424∗e−(0.01052)∗V

(1+e−(0.1378)∗(V+40.14))
if V < −(40)

0.6∗e0.057∗V

(1+e−(0.1)∗(V+32))
otherwise.
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tau_j =
1

(alpha_j + beta_j)

d(j)
d(time)

=
(j_in f − j)

tau_j

“sodium_background_current” component

i_b_Na = g_bna ∗ (V − E_Na)

“L_type_Ca_current” component

i_CaL =

g_CaL∗d∗ f ∗ f Ca∗4∗V∗(F)2

R∗T ∗
(

Ca_i ∗ e
2∗V∗F

R∗T − 0.341 ∗ Ca_o
)

(
e

2∗V∗F
R∗T − 1

)
“L_type_Ca_current_d_gate” component

d_in f =
1(

1 + e
(−(5)−V)

7.5

)

alpha_d =

 1.4(
1 + e

(−(35)−V)
13

) + 0.25


beta_d =

1.4(
1 + e

(V+5)
5

)
gamma_d =

1(
1 + e

(50−V)
20

)
tau_d = (1 ∗ alpha_d ∗ beta_d + gamma_d)

d(d)
d(time)

=
(d_in f − d)

tau_d

“L_type_Ca_current_f_gate” component

f _in f =
1(

1 + e
(V+20)

7

)

tau_ f =

1125 ∗ e
−(((V+27))2)

240 + 80 +
165(

1 + e
(25−V)

10

)
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d( f )
d(time)

=
( f _in f − f )

tau_ f

“L_type_Ca_current_fCa_gate” component

alpha_ f Ca =
1(

1 +
(

Ca_i
0.000325

)8
)

beta_ f Ca =
0.1(

1 + e
(Ca_i−0.0005)

0.0001

)
gama_ f Ca =

0.2(
1 + e

(Ca_i−0.00075)
0.0008

)
f Ca_in f =

(alpha_ f Ca + beta_ f Ca + gama_ f Ca + 0.23)
1.46

tau_ f Ca = 2

d_ f Ca =
( f Ca_in f − f Ca)

tau_ f Ca

d( f Ca)
d(time)

=


0 if (0.01 ∗ d_ f Ca > 0) ∧ (V > −(60))

d_ f Ca otherwise.

“calcium_background_current” component

i_b_Ca = g_bca ∗ (V − E_Ca)

“transient_outward_current” component

i_to = g_to ∗ r ∗ s ∗ (V − E_K)

“transient_outward_current_s_gate” component

s_in f =
1(

1 + e
(V+28)

5

)
tau_s =

(
1000 ∗ e

−(((V+67))2)
1000 + 8

)
d(s)

d(time)
=

(s_in f − s)
tau_s
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“transient_outward_current_r_gate” component

r_in f =
1(

1 + e
(20−V)

6

)
tau_r =

(
9.5 ∗ e

−(((V+40))2)
1800 + 0.8

)
d(r)

d(time)
=

(r_in f − r)
tau_r

“sodium_potassium_pump_current” component

i_NaK =

P_NaK∗K_o
(K_o+K_mk)∗Na_i

(Na_i+K_mNa)(
1 + 0.1245 ∗ e

−(0.1)∗V∗F
R∗T + 0.0353 ∗ e

−(V)∗F
R∗T

)
“sodium_calcium_exchanger_current” component

i_NaCa =
K_NaCa ∗

(
e

gamma∗V∗F
R∗T ∗ (Na_i)3 ∗ Ca_o− e

(gamma−1)∗V∗F
R∗T ∗ (Na_o)3 ∗ Ca_i ∗ alpha

)
(
(Km_Nai)3 + (Na_o)3

)
∗ (Km_Ca + Ca_o) ∗

(
1 + K_sat ∗ e

(gamma−1)∗V∗F
R∗T

)

“calcium_pump_current” component

i_p_Ca =
g_pCa ∗ Ca_i

(Ca_i + K_pCa)

“potassium_pump_current” component

i_p_K =
g_pK ∗ (V − E_K)(

1 + e
(25−V)

5.98

)
“calcium_dynamics” component

i_rel =

 a_rel ∗ (Ca_SR)2(
(b_rel)2 + (Ca_SR)2

) + c_rel

 ∗ d ∗ g

i_up =
Vmax_up(
1 + (K_up)2

(Ca_i)2

)
i_leak = V_leak ∗ (Ca_SR− Ca_i)
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g_in f =


1(

1+( Ca_i
0.00035)

6) if Ca_i < 0.00035

1(
1+( Ca_i

0.00035)
16) otherwise.

d_g =
(g_in f − g)

tau_g

d(g)
d(time)

=


0 if (0.01 ∗ d_g > 0) ∧ (V > −(60))

d_g otherwise.

Ca_i_bu f c =
1(

1 + Bu f _c∗K_bu f _c
((Ca_i+K_bu f _c))2

)
Ca_sr_bu f sr =

1(
1 + Bu f _sr∗K_bu f _sr

((Ca_SR+K_bu f _sr))2

)

d(Ca_i)
d(time)

= Ca_i_bu f c ∗ (((i_leak− i_up) + i_rel)

−1 ∗ ((i_CaL + i_b_Ca + i_p_Ca)− 2 ∗ i_NaCa)
2 ∗ 1 ∗V_c ∗ F

∗ Cm)

d(Ca_SR)
d(time)

=
Ca_sr_bu f sr ∗V_c

V_sr
∗ (i_up− (i_rel + i_leak))

“sodium_dynamics” component

d(Na_i)
d(time)

=
−(1) ∗ (i_Na + i_b_Na + 3 ∗ i_NaK + 3 ∗ i_NaCa)

1 ∗V_c ∗ F
∗ Cm

“potassium_dynamics” component

d(K_i)
d(time)

=
−(1) ∗ ((i_K1 + i_to + i_Kr + i_Ks + i_p_K + i_stim)− 2 ∗ i_NaK)

1 ∗V_c ∗ F
∗Cm



example cellml models 183

“stimulus_protocol” component

i_stim =



i_stimAmplitude if (time ≥ i_stimStart) ∧ (time ≤ i_stimEnd) ∧ time

−i_stimStart−
(⌊

time−i_stimStart
i_stimPeriod

⌋
i_stimPeriod

)
5 i_stimPulseDuration

0 otherwise.

a.4.2 C-code Representation

1 /*

2 There are a total of 67 entries in the algebraic variable array.

3 There are a total of 17 entries in each of the rate and state variable arrays.

4 There are a total of 47 entries in the constant variable array.

5 */

6 /*

7 * VOI is time in component environment (millisecond).

8 * STATES[0] is V in component membrane (millivolt).

9 * CONSTANTS[0] is R in component membrane (joule_per_mole_kelvin).

10 * CONSTANTS[1] is T in component membrane (kelvin).

11 * CONSTANTS[2] is F in component membrane (coulomb_per_millimole).

12 * CONSTANTS[3] is Cm in component membrane (microF).

13 * CONSTANTS[4] is V_c in component membrane (micrometre3).

14 * ALGEBRAIC[49] is i_K1 in component inward_rectifier_potassium_current (

picoA_per_picoF).

15 * ALGEBRAIC[56] is i_to in component transient_outward_current (picoA_per_picoF).

16 * ALGEBRAIC[50] is i_Kr in component rapid_time_dependent_potassium_current (

picoA_per_picoF).

17 * ALGEBRAIC[51] is i_Ks in component slow_time_dependent_potassium_current (

picoA_per_picoF).

18 * ALGEBRAIC[54] is i_CaL in component L_type_Ca_current (picoA_per_picoF).

19 * ALGEBRAIC[57] is i_NaK in component sodium_potassium_pump_current (picoA_per_picoF)

.

20 * ALGEBRAIC[52] is i_Na in component fast_sodium_current (picoA_per_picoF).

21 * ALGEBRAIC[53] is i_b_Na in component sodium_background_current (picoA_per_picoF).

22 * ALGEBRAIC[58] is i_NaCa in component sodium_calcium_exchanger_current (

picoA_per_picoF).

23 * ALGEBRAIC[55] is i_b_Ca in component calcium_background_current (picoA_per_picoF).

24 * ALGEBRAIC[60] is i_p_K in component potassium_pump_current (picoA_per_picoF).

25 * ALGEBRAIC[59] is i_p_Ca in component calcium_pump_current (picoA_per_picoF).

26 * ALGEBRAIC[62] is i_stim in component stimulus_protocol (picoA_per_picoF).

27 * ALGEBRAIC[0] is E_Na in component reversal_potentials (millivolt).

28 * ALGEBRAIC[13] is E_K in component reversal_potentials (millivolt).
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29 * ALGEBRAIC[26] is E_Ks in component reversal_potentials (millivolt).

30 * ALGEBRAIC[35] is E_Ca in component reversal_potentials (millivolt).

31 * CONSTANTS[5] is P_kna in component reversal_potentials (dimensionless).

32 * CONSTANTS[6] is K_o in component potassium_dynamics (millimolar).

33 * CONSTANTS[7] is Na_o in component sodium_dynamics (millimolar).

34 * STATES[1] is K_i in component potassium_dynamics (millimolar).

35 * STATES[2] is Na_i in component sodium_dynamics (millimolar).

36 * CONSTANTS[8] is Ca_o in component calcium_dynamics (millimolar).

37 * STATES[3] is Ca_i in component calcium_dynamics (millimolar).

38 * CONSTANTS[9] is g_K1 in component inward_rectifier_potassium_current (

nanoS_per_picoF).

39 * ALGEBRAIC[48] is xK1_inf in component inward_rectifier_potassium_current (

dimensionless).

40 * ALGEBRAIC[44] is alpha_K1 in component inward_rectifier_potassium_current (

dimensionless).

41 * ALGEBRAIC[47] is beta_K1 in component inward_rectifier_potassium_current (

dimensionless).

42 * CONSTANTS[10] is g_Kr in component rapid_time_dependent_potassium_current (

nanoS_per_picoF).

43 * STATES[4] is Xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (

dimensionless).

44 * STATES[5] is Xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (

dimensionless).

45 * ALGEBRAIC[1] is xr1_inf in component

rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).

46 * ALGEBRAIC[14] is alpha_xr1 in component

rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).

47 * ALGEBRAIC[27] is beta_xr1 in component

rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).

48 * ALGEBRAIC[36] is tau_xr1 in component

rapid_time_dependent_potassium_current_Xr1_gate (millisecond).

49 * ALGEBRAIC[2] is xr2_inf in component

rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).

50 * ALGEBRAIC[15] is alpha_xr2 in component

rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).

51 * ALGEBRAIC[28] is beta_xr2 in component

rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).

52 * ALGEBRAIC[37] is tau_xr2 in component

rapid_time_dependent_potassium_current_Xr2_gate (millisecond).

53 * CONSTANTS[11] is g_Ks in component slow_time_dependent_potassium_current (

nanoS_per_picoF).

54 * STATES[6] is Xs in component slow_time_dependent_potassium_current_Xs_gate (

dimensionless).

55 * ALGEBRAIC[3] is xs_inf in component slow_time_dependent_potassium_current_Xs_gate (

dimensionless).

56 * ALGEBRAIC[16] is alpha_xs in component

slow_time_dependent_potassium_current_Xs_gate (dimensionless).

57 * ALGEBRAIC[29] is beta_xs in component slow_time_dependent_potassium_current_Xs_gate

(dimensionless).
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58 * ALGEBRAIC[38] is tau_xs in component slow_time_dependent_potassium_current_Xs_gate

(millisecond).

59 * CONSTANTS[12] is g_Na in component fast_sodium_current (nanoS_per_picoF).

60 * STATES[7] is m in component fast_sodium_current_m_gate (dimensionless).

61 * STATES[8] is h in component fast_sodium_current_h_gate (dimensionless).

62 * STATES[9] is j in component fast_sodium_current_j_gate (dimensionless).

63 * ALGEBRAIC[4] is m_inf in component fast_sodium_current_m_gate (dimensionless).

64 * ALGEBRAIC[17] is alpha_m in component fast_sodium_current_m_gate (dimensionless).

65 * ALGEBRAIC[30] is beta_m in component fast_sodium_current_m_gate (dimensionless).

66 * ALGEBRAIC[39] is tau_m in component fast_sodium_current_m_gate (millisecond).

67 * ALGEBRAIC[5] is h_inf in component fast_sodium_current_h_gate (dimensionless).

68 * ALGEBRAIC[18] is alpha_h in component fast_sodium_current_h_gate (per_millisecond).

69 * ALGEBRAIC[31] is beta_h in component fast_sodium_current_h_gate (per_millisecond).

70 * ALGEBRAIC[40] is tau_h in component fast_sodium_current_h_gate (millisecond).

71 * ALGEBRAIC[6] is j_inf in component fast_sodium_current_j_gate (dimensionless).

72 * ALGEBRAIC[19] is alpha_j in component fast_sodium_current_j_gate (per_millisecond).

73 * ALGEBRAIC[32] is beta_j in component fast_sodium_current_j_gate (per_millisecond).

74 * ALGEBRAIC[41] is tau_j in component fast_sodium_current_j_gate (millisecond).

75 * CONSTANTS[13] is g_bna in component sodium_background_current (nanoS_per_picoF).

76 * CONSTANTS[14] is g_CaL in component L_type_Ca_current (litre_per_farad_second).

77 * STATES[10] is d in component L_type_Ca_current_d_gate (dimensionless).

78 * STATES[11] is f in component L_type_Ca_current_f_gate (dimensionless).

79 * STATES[12] is fCa in component L_type_Ca_current_fCa_gate (dimensionless).

80 * ALGEBRAIC[7] is d_inf in component L_type_Ca_current_d_gate (dimensionless).

81 * ALGEBRAIC[20] is alpha_d in component L_type_Ca_current_d_gate (dimensionless).

82 * ALGEBRAIC[33] is beta_d in component L_type_Ca_current_d_gate (dimensionless).

83 * ALGEBRAIC[42] is gamma_d in component L_type_Ca_current_d_gate (millisecond).

84 * ALGEBRAIC[45] is tau_d in component L_type_Ca_current_d_gate (millisecond).

85 * ALGEBRAIC[8] is f_inf in component L_type_Ca_current_f_gate (dimensionless).

86 * ALGEBRAIC[21] is tau_f in component L_type_Ca_current_f_gate (millisecond).

87 * ALGEBRAIC[9] is alpha_fCa in component L_type_Ca_current_fCa_gate (dimensionless).

88 * ALGEBRAIC[22] is beta_fCa in component L_type_Ca_current_fCa_gate (dimensionless).

89 * ALGEBRAIC[34] is gama_fCa in component L_type_Ca_current_fCa_gate (dimensionless).

90 * ALGEBRAIC[43] is fCa_inf in component L_type_Ca_current_fCa_gate (dimensionless).

91 * CONSTANTS[46] is tau_fCa in component L_type_Ca_current_fCa_gate (millisecond).

92 * ALGEBRAIC[46] is d_fCa in component L_type_Ca_current_fCa_gate (per_millisecond).

93 * CONSTANTS[15] is g_bca in component calcium_background_current (nanoS_per_picoF).

94 * CONSTANTS[16] is g_to in component transient_outward_current (nanoS_per_picoF).

95 * STATES[13] is s in component transient_outward_current_s_gate (dimensionless).

96 * STATES[14] is r in component transient_outward_current_r_gate (dimensionless).

97 * ALGEBRAIC[10] is s_inf in component transient_outward_current_s_gate (dimensionless

).

98 * ALGEBRAIC[23] is tau_s in component transient_outward_current_s_gate (millisecond).

99 * ALGEBRAIC[11] is r_inf in component transient_outward_current_r_gate (dimensionless

).

100 * ALGEBRAIC[24] is tau_r in component transient_outward_current_r_gate (millisecond).

101 * CONSTANTS[17] is P_NaK in component sodium_potassium_pump_current (picoA_per_picoF)

.

102 * CONSTANTS[18] is K_mk in component sodium_potassium_pump_current (millimolar).
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103 * CONSTANTS[19] is K_mNa in component sodium_potassium_pump_current (millimolar).

104 * CONSTANTS[20] is K_NaCa in component sodium_calcium_exchanger_current (

picoA_per_picoF).

105 * CONSTANTS[21] is K_sat in component sodium_calcium_exchanger_current (dimensionless

).

106 * CONSTANTS[22] is alpha in component sodium_calcium_exchanger_current (dimensionless

).

107 * CONSTANTS[23] is gamma in component sodium_calcium_exchanger_current (dimensionless

).

108 * CONSTANTS[24] is Km_Ca in component sodium_calcium_exchanger_current (millimolar).

109 * CONSTANTS[25] is Km_Nai in component sodium_calcium_exchanger_current (millimolar).

110 * CONSTANTS[26] is g_pCa in component calcium_pump_current (picoA_per_picoF).

111 * CONSTANTS[27] is K_pCa in component calcium_pump_current (millimolar).

112 * CONSTANTS[28] is g_pK in component potassium_pump_current (nanoS_per_picoF).

113 * STATES[15] is Ca_SR in component calcium_dynamics (millimolar).

114 * ALGEBRAIC[61] is i_rel in component calcium_dynamics (millimolar_per_millisecond).

115 * ALGEBRAIC[63] is i_up in component calcium_dynamics (millimolar_per_millisecond).

116 * ALGEBRAIC[64] is i_leak in component calcium_dynamics (millimolar_per_millisecond).

117 * STATES[16] is g in component calcium_dynamics (dimensionless).

118 * CONSTANTS[29] is tau_g in component calcium_dynamics (millisecond).

119 * ALGEBRAIC[12] is g_inf in component calcium_dynamics (dimensionless).

120 * CONSTANTS[30] is a_rel in component calcium_dynamics (millimolar_per_millisecond).

121 * CONSTANTS[31] is b_rel in component calcium_dynamics (millimolar).

122 * CONSTANTS[32] is c_rel in component calcium_dynamics (millimolar_per_millisecond).

123 * CONSTANTS[33] is K_up in component calcium_dynamics (millimolar).

124 * CONSTANTS[34] is V_leak in component calcium_dynamics (per_millisecond).

125 * CONSTANTS[35] is Vmax_up in component calcium_dynamics (millimolar_per_millisecond)

.

126 * ALGEBRAIC[65] is Ca_i_bufc in component calcium_dynamics (dimensionless).

127 * ALGEBRAIC[66] is Ca_sr_bufsr in component calcium_dynamics (dimensionless).

128 * CONSTANTS[36] is Buf_c in component calcium_dynamics (millimolar).

129 * CONSTANTS[37] is K_buf_c in component calcium_dynamics (millimolar).

130 * CONSTANTS[38] is Buf_sr in component calcium_dynamics (millimolar).

131 * CONSTANTS[39] is K_buf_sr in component calcium_dynamics (millimolar).

132 * CONSTANTS[40] is V_sr in component calcium_dynamics (micrometre3).

133 * ALGEBRAIC[25] is d_g in component calcium_dynamics (per_millisecond).

134 * CONSTANTS[41] is i_stimStart in component stimulus_protocol (millisecond).

135 * CONSTANTS[42] is i_stimEnd in component stimulus_protocol (millisecond).

136 * CONSTANTS[43] is i_stimAmplitude in component stimulus_protocol (picoA_per_picoF).

137 * CONSTANTS[44] is i_stimPeriod in component stimulus_protocol (millisecond).

138 * CONSTANTS[45] is i_stimPulseDuration in component stimulus_protocol (millisecond).

139 * RATES[0] is d/dt V in component membrane (millivolt).

140 * RATES[4] is d/dt Xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (

dimensionless).

141 * RATES[5] is d/dt Xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (

dimensionless).

142 * RATES[6] is d/dt Xs in component slow_time_dependent_potassium_current_Xs_gate (

dimensionless).

143 * RATES[7] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
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144 * RATES[8] is d/dt h in component fast_sodium_current_h_gate (dimensionless).

145 * RATES[9] is d/dt j in component fast_sodium_current_j_gate (dimensionless).

146 * RATES[10] is d/dt d in component L_type_Ca_current_d_gate (dimensionless).

147 * RATES[11] is d/dt f in component L_type_Ca_current_f_gate (dimensionless).

148 * RATES[12] is d/dt fCa in component L_type_Ca_current_fCa_gate (dimensionless).

149 * RATES[13] is d/dt s in component transient_outward_current_s_gate (dimensionless).

150 * RATES[14] is d/dt r in component transient_outward_current_r_gate (dimensionless).

151 * RATES[16] is d/dt g in component calcium_dynamics (dimensionless).

152 * RATES[3] is d/dt Ca_i in component calcium_dynamics (millimolar).

153 * RATES[15] is d/dt Ca_SR in component calcium_dynamics (millimolar).

154 * RATES[2] is d/dt Na_i in component sodium_dynamics (millimolar).

155 * RATES[1] is d/dt K_i in component potassium_dynamics (millimolar).

156 */

157 void

158 i n i t C o n s t s ( double * CONSTANTS, double * RATES, double *STATES)

159 {

160 STATES [ 0 ] = −86 .2 ;

161 CONSTANTS[ 0 ] = 8 3 1 4 . 4 7 2 ;

162 CONSTANTS[ 1 ] = 3 1 0 ;

163 CONSTANTS[ 2 ] = 9 6 4 8 5 . 3 4 1 5 ;

164 CONSTANTS[ 3 ] = 0 . 1 8 5 ;

165 CONSTANTS[ 4 ] = 0 . 0 1 6 4 0 4 ;

166 CONSTANTS[ 5 ] = 0 . 0 3 ;

167 CONSTANTS[ 6 ] = 5 . 4 ;

168 CONSTANTS[ 7 ] = 1 4 0 ;

169 STATES [ 1 ] = 1 3 8 . 3 ;

170 STATES [ 2 ] = 1 1 . 6 ;

171 CONSTANTS[ 8 ] = 2 ;

172 STATES [ 3 ] = 0 . 0 0 0 2 ;

173 CONSTANTS[ 9 ] = 5 . 4 0 5 ;

174 CONSTANTS[ 1 0 ] = 0 . 0 9 6 ;

175 STATES [ 4 ] = 0 ;

176 STATES [ 5 ] = 1 ;

177 CONSTANTS[ 1 1 ] = 0 . 2 4 5 ;

178 STATES [ 6 ] = 0 ;

179 CONSTANTS[ 1 2 ] = 1 4 . 8 3 8 ;

180 STATES [ 7 ] = 0 ;

181 STATES [ 8 ] = 0 . 7 5 ;

182 STATES [ 9 ] = 0 . 7 5 ;

183 CONSTANTS[ 1 3 ] = 0 . 0 0 0 2 9 ;

184 CONSTANTS[ 1 4 ] = 0 . 0 0 0 1 7 5 ;

185 STATES [ 1 0 ] = 0 ;

186 STATES [ 1 1 ] = 1 ;

187 STATES [ 1 2 ] = 1 ;

188 CONSTANTS[ 1 5 ] = 0 . 0 0 0 5 9 2 ;

189 CONSTANTS[ 1 6 ] = 0 . 0 7 3 ;

190 STATES [ 1 3 ] = 1 ;

191 STATES [ 1 4 ] = 0 ;

192 CONSTANTS[ 1 7 ] = 1 . 3 6 2 ;
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193 CONSTANTS[ 1 8 ] = 1 ;

194 CONSTANTS[ 1 9 ] = 4 0 ;

195 CONSTANTS[ 2 0 ] = 1000 ;

196 CONSTANTS[ 2 1 ] = 0 . 1 ;

197 CONSTANTS[ 2 2 ] = 2 . 5 ;

198 CONSTANTS[ 2 3 ] = 0 . 3 5 ;

199 CONSTANTS[ 2 4 ] = 1 . 3 8 ;

200 CONSTANTS[ 2 5 ] = 8 7 . 5 ;

201 CONSTANTS[ 2 6 ] = 0 . 8 2 5 ;

202 CONSTANTS[ 2 7 ] = 0 . 0 0 0 5 ;

203 CONSTANTS[ 2 8 ] = 0 . 0 1 4 6 ;

204 STATES [ 1 5 ] = 0 . 2 ;

205 STATES [ 1 6 ] = 1 ;

206 CONSTANTS[ 2 9 ] = 2 ;

207 CONSTANTS[ 3 0 ] = 0 . 0 1 6 4 6 4 ;

208 CONSTANTS[ 3 1 ] = 0 . 2 5 ;

209 CONSTANTS[ 3 2 ] = 0 . 0 0 8 2 3 2 ;

210 CONSTANTS[ 3 3 ] = 0 . 0 0 0 2 5 ;

211 CONSTANTS[ 3 4 ] = 8e−5;

212 CONSTANTS[ 3 5 ] = 0 . 0 0 0 4 2 5 ;

213 CONSTANTS[ 3 6 ] = 0 . 1 5 ;

214 CONSTANTS[ 3 7 ] = 0 . 0 0 1 ;

215 CONSTANTS[ 3 8 ] = 1 0 ;

216 CONSTANTS[ 3 9 ] = 0 . 3 ;

217 CONSTANTS[ 4 0 ] = 0 . 0 0 1 0 9 4 ;

218 CONSTANTS[ 4 1 ] = 1 0 0 ;

219 CONSTANTS[ 4 2 ] = 50000 ;

220 CONSTANTS[ 4 3 ] = −52;

221 CONSTANTS[ 4 4 ] = 1000 ;

222 CONSTANTS[ 4 5 ] = 1 ;

223 CONSTANTS[ 4 6 ] = 2 . 0 0 0 0 0 ;

224 }

225 void

226 computeRates ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

227 {

228 ALGEBRAIC[ 8 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 2 0 . 0 0 0 0 ) /7 .00000 ) ) ;

229 ALGEBRAIC[ 2 1 ] = 1 1 2 5 . 0 0 * exp(− pow(STATES [ 0 ] + 2 7 . 0 0 0 0 , 2 . 0 0 0 0 0 ) /240 .000 )

+80 .0000+165 .000/(1 .00000+ exp ( ( 2 5 . 0 0 0 0 − STATES [ 0 ] ) /10 .0000 ) ) ;

230 RATES[ 1 1 ] = (ALGEBRAIC[ 8 ] − STATES [ 1 1 ] ) /ALGEBRAIC [ 2 1 ] ;

231 ALGEBRAIC[ 1 0 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 2 8 . 0 0 0 0 ) /5 .00000 ) ) ;

232 ALGEBRAIC[ 2 3 ] = 1 0 0 0 . 0 0 * exp(− pow(STATES [ 0 ] + 6 7 . 0 0 0 0 , 2 . 0 0 0 0 0 ) /1000 .00 ) + 8 . 0 0 0 0 0 ;

233 RATES[ 1 3 ] = (ALGEBRAIC[ 1 0 ] − STATES [ 1 3 ] ) /ALGEBRAIC [ 2 3 ] ;

234 ALGEBRAIC[ 1 1 ] = 1 .00000/(1 .00000+ exp ( ( 2 0 . 0 0 0 0 − STATES [ 0 ] ) /6 .00000 ) ) ;

235 ALGEBRAIC[ 2 4 ] = 9 . 5 0 0 0 0 * exp(− pow(STATES [ 0 ] + 4 0 . 0 0 0 0 , 2 . 0 0 0 0 0 ) /1800 .00 ) + 0 . 8 0 0 0 0 0 ;

236 RATES[ 1 4 ] = (ALGEBRAIC[ 1 1 ] − STATES [ 1 4 ] ) /ALGEBRAIC [ 2 4 ] ;

237 ALGEBRAIC[ 1 2 ] = (STATES[3 ] <0 .000350000 ? 1 .00000/(1 .00000+pow(STATES[ 3 ] / 0 . 0 0 0 3 5 0 0 0 0 ,

6 . 0 0 0 0 0 ) ) : 1 .00000/(1 .00000+pow(STATES[ 3 ] / 0 . 0 0 0 3 5 0 0 0 0 , 1 6 . 0 0 0 0 ) ) ) ;

238 ALGEBRAIC[ 2 5 ] = (ALGEBRAIC[ 1 2 ] − STATES [ 1 6 ] ) /CONSTANTS[ 2 9 ] ;
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239 RATES[ 1 6 ] = ( 0 .0100000 *ALGEBRAIC[25] >0 .00000&&STATES[0]>− 60 .0000 ? 0 .00000 :

ALGEBRAIC[ 2 5 ] ) ;

240 ALGEBRAIC[ 1 ] = 1 .00000/(1 .00000+ exp((− 26 .0000 − STATES [ 0 ] ) /7 .00000 ) ) ;

241 ALGEBRAIC[ 1 4 ] = 450 .000/(1 .00000+ exp((− 45 .0000 − STATES [ 0 ] ) /10 .0000 ) ) ;

242 ALGEBRAIC[ 2 7 ] = 6 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 3 0 . 0 0 0 0 ) /11 .5000 ) ) ;

243 ALGEBRAIC[ 3 6 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 4 ] *ALGEBRAIC [ 2 7 ] ;

244 RATES [ 4 ] = (ALGEBRAIC[ 1 ] − STATES [ 4 ] ) /ALGEBRAIC [ 3 6 ] ;

245 ALGEBRAIC[ 2 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 8 8 . 0 0 0 0 ) /24 .0000 ) ) ;

246 ALGEBRAIC[ 1 5 ] = 3 .00000/(1 .00000+ exp((− 60 .0000 − STATES [ 0 ] ) /20 .0000 ) ) ;

247 ALGEBRAIC[ 2 8 ] = 1 .12000/(1 .00000+ exp ( ( STATES [ 0 ] − 6 0 . 0 0 0 0 ) /20 .0000 ) ) ;

248 ALGEBRAIC[ 3 7 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 5 ] *ALGEBRAIC [ 2 8 ] ;

249 RATES [ 5 ] = (ALGEBRAIC[ 2 ] − STATES [ 5 ] ) /ALGEBRAIC [ 3 7 ] ;

250 ALGEBRAIC[ 3 ] = 1 .00000/(1 .00000+ exp((− 5 .00000 − STATES [ 0 ] ) /14 .0000 ) ) ;

251 ALGEBRAIC[ 1 6 ] = 1100 .00/ pow( ( 1 . 0 0 0 0 0 + exp((− 10 .0000 − STATES [ 0 ] ) /6 .00000 ) ) , 1 . 0 / 2 ) ;

252 ALGEBRAIC[ 2 9 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] − 6 0 . 0 0 0 0 ) /20 .0000 ) ) ;

253 ALGEBRAIC[ 3 8 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 6 ] *ALGEBRAIC [ 2 9 ] ;

254 RATES [ 6 ] = (ALGEBRAIC[ 3 ] − STATES [ 6 ] ) /ALGEBRAIC [ 3 8 ] ;

255 ALGEBRAIC[ 4 ] = 1 .00000/pow(1 .00000+ exp((− 56 .8600 − STATES [ 0 ] ) /9 .03000 ) , 2 . 0 0 0 0 0 ) ;

256 ALGEBRAIC[ 1 7 ] = 1 .00000/(1 .00000+ exp((− 60 .0000 − STATES [ 0 ] ) /5 .00000 ) ) ;

257 ALGEBRAIC[ 3 0 ] = 0 .100000/(1 .00000+ exp ( ( STATES [ 0 ] + 3 5 . 0 0 0 0 ) /5 .00000 ) ) +0 .100000/(1 .00000+

exp ( ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /200 .000 ) ) ;

258 ALGEBRAIC[ 3 9 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 7 ] *ALGEBRAIC [ 3 0 ] ;

259 RATES [ 7 ] = (ALGEBRAIC[ 4 ] − STATES [ 7 ] ) /ALGEBRAIC [ 3 9 ] ;

260 ALGEBRAIC[ 5 ] = 1 .00000/pow(1 .00000+ exp ( ( STATES [ 0 ] + 7 1 . 5 5 0 0 ) /7 .43000 ) , 2 . 0 0 0 0 0 ) ;

261 ALGEBRAIC[ 1 8 ] = (STATES[0]<− 40 .0000 ? 0 .0570000 * exp(− (STATES [ 0 ] + 8 0 . 0 0 0 0 ) /6 .80000 ) :

0 . 0 0 0 0 0 ) ;

262 ALGEBRAIC[ 3 1 ] = (STATES[0]<− 40 .0000 ? 2 . 7 0 0 0 0 * exp ( 0 .0790000 *STATES [ 0 ] ) + 3 1 0 0 0 0 . * exp

( 0 . 3 4 8 5 0 0 *STATES [ 0 ] ) : 0 .770000/ 0 . 1 3 0 0 0 0 * ( 1 . 0 0 0 0 0 + exp ( ( STATES [ 0 ] + 1 0 . 6 6 0 0 )/−

1 1 . 1 0 0 0 ) ) ) ;

263 ALGEBRAIC[ 4 0 ] = 1 .00000/(ALGEBRAIC[18 ]+ALGEBRAIC[ 3 1 ] ) ;

264 RATES [ 8 ] = (ALGEBRAIC[ 5 ] − STATES [ 8 ] ) /ALGEBRAIC [ 4 0 ] ;

265 ALGEBRAIC[ 6 ] = 1 .00000/pow(1 .00000+ exp ( ( STATES [ 0 ] + 7 1 . 5 5 0 0 ) /7 .43000 ) , 2 . 0 0 0 0 0 ) ;

266 ALGEBRAIC[ 1 9 ] = (STATES[0]<− 40 .0000 ? ( − 2 5 4 2 8 . 0 * exp ( 0 . 2 4 4 4 0 0 *STATES [ 0 ] ) −

6 .94800 e−06*exp ( − 0 .0439100 *STATES [ 0 ] ) ) * ( STATES [ 0 ] + 3 7 . 7 8 0 0 ) /1 .00000/(1 .00000+ exp (

0 . 3 1 1 0 0 0 * ( STATES [ 0 ] + 7 9 . 2 3 0 0 ) ) ) : 0 . 0 0 0 0 0 ) ;

267 ALGEBRAIC[ 3 2 ] = (STATES[0]<− 40 .0000 ? 0 .0242400 * exp ( − 0 .0105200 *STATES [ 0 ] )

/(1 .00000+ exp ( − 0 . 1 3 7 8 0 0 * ( STATES [ 0 ] + 4 0 . 1 4 0 0 ) ) ) : 0 . 6 0 0 0 0 0 * exp ( 0 .0570000 *STATES

[ 0 ] ) /(1 .00000+ exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 3 2 . 0 0 0 0 ) ) ) ) ;

268 ALGEBRAIC[ 4 1 ] = 1 .00000/(ALGEBRAIC[19 ]+ALGEBRAIC[ 3 2 ] ) ;

269 RATES [ 9 ] = (ALGEBRAIC[ 6 ] − STATES [ 9 ] ) /ALGEBRAIC [ 4 1 ] ;

270 ALGEBRAIC[ 7 ] = 1 .00000/(1 .00000+ exp((− 5 .00000 − STATES [ 0 ] ) /7 .50000 ) ) ;

271 ALGEBRAIC[ 2 0 ] = 1 .40000/(1 .00000+ exp((− 35 .0000 − STATES [ 0 ] ) /13 .0000 ) ) + 0 . 2 5 0 0 0 0 ;

272 ALGEBRAIC[ 3 3 ] = 1 .40000/(1 .00000+ exp ( ( STATES [ 0 ] + 5 . 0 0 0 0 0 ) /5 .00000 ) ) ;

273 ALGEBRAIC[ 4 2 ] = 1 .00000/(1 .00000+ exp ( ( 5 0 . 0 0 0 0 − STATES [ 0 ] ) /20 .0000 ) ) ;

274 ALGEBRAIC[ 4 5 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 2 0 ] *ALGEBRAIC[33 ]+ALGEBRAIC [ 4 2 ] ;

275 RATES[ 1 0 ] = (ALGEBRAIC[ 7 ] − STATES [ 1 0 ] ) /ALGEBRAIC [ 4 5 ] ;

276 ALGEBRAIC[ 9 ] = 1 .00000/(1 .00000+pow(STATES[ 3 ] / 0 . 0 0 0 3 2 5 0 0 0 , 8 . 0 0 0 0 0 ) ) ;

277 ALGEBRAIC[ 2 2 ] = 0 .100000/(1 .00000+ exp ( ( STATES [ 3 ] − 0 .000500000 ) /0 .000100000 ) ) ;

278 ALGEBRAIC[ 3 4 ] = 0 .200000/(1 .00000+ exp ( ( STATES [ 3 ] − 0 .000750000 ) /0 .000800000 ) ) ;
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279 ALGEBRAIC[ 4 3 ] = (ALGEBRAIC[ 9 ] +ALGEBRAIC[22 ]+ALGEBRAIC[ 3 4 ] + 0 . 2 3 0 0 0 0 ) / 1 . 4 6 0 0 0 ;

280 ALGEBRAIC[ 4 6 ] = (ALGEBRAIC[ 4 3 ] − STATES [ 1 2 ] ) /CONSTANTS[ 4 6 ] ;

281 RATES[ 1 2 ] = ( 0 .0100000 *ALGEBRAIC[46] >0 .00000&&STATES[0]>− 60 .0000 ? 0 .00000 :

ALGEBRAIC[ 4 6 ] ) ;

282 ALGEBRAIC[ 5 7 ] = CONSTANTS[ 1 7 ] *CONSTANTS[ 6 ] / (CONSTANTS[ 6 ] +CONSTANTS[ 1 8 ] ) *STATES [ 2 ] / (

STATES[ 2 ] +CONSTANTS[ 1 9 ] ) /(1 .00000+ 0 . 1 2 4 5 0 0 * exp ( − 0 . 1 0 0 0 0 0 *STATES [ 0 ] *CONSTANTS

[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) + 0 .0353000 * exp ( − STATES [ 0 ] *CONSTANTS[ 2 ] / (

CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) ) ;

283 ALGEBRAIC[ 0 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log (CONSTANTS[ 7 ] /STATES [ 2 ] ) ;

284 ALGEBRAIC[ 5 2 ] = CONSTANTS[ 1 2 ] *pow(STATES [ 7 ] , 3 . 0 0 0 0 0 ) *STATES [ 8 ] * STATES [ 9 ] * ( STATES [ 0 ]

− ALGEBRAIC [ 0 ] ) ;

285 ALGEBRAIC[ 5 3 ] = CONSTANTS[ 1 3 ] * ( STATES [ 0 ] − ALGEBRAIC [ 0 ] ) ;

286 ALGEBRAIC[ 5 8 ] = CONSTANTS[ 2 0 ] * ( exp ( CONSTANTS[ 2 3 ] * STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS

[ 0 ] *CONSTANTS[ 1 ] ) ) *pow(STATES [ 2 ] , 3 . 0 0 0 0 0 ) *CONSTANTS[ 8 ] − exp ( (CONSTANTS[ 2 3 ] −

1 . 0 0 0 0 0 ) *STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) *pow(CONSTANTS[ 7 ] ,

3 . 0 0 0 0 0 ) *STATES [ 3 ] *CONSTANTS[ 2 2 ] ) /( (pow(CONSTANTS[ 2 5 ] , 3 . 0 0 0 0 0 ) +pow(CONSTANTS[ 7 ] ,

3 . 0 0 0 0 0 ) ) * (CONSTANTS[24 ]+CONSTANTS[ 8 ] ) * ( 1 . 0 0 0 0 0 + CONSTANTS[ 2 1 ] * exp ( (CONSTANTS

[ 2 3 ] − 1 . 0 0 0 0 0 ) *STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) ) ) ;

287 RATES [ 2 ] = − 1 . 0 0 0 0 0 * (ALGEBRAIC[52 ]+ALGEBRAIC[53 ]+ 3 . 0 0 0 0 0 *ALGEBRAIC[57 ]+ 3 . 0 0 0 0 0 *
ALGEBRAIC[ 5 8 ] ) /( 1 . 0 0 0 0 0 *CONSTANTS[ 4 ] *CONSTANTS[ 2 ] ) *CONSTANTS[ 3 ] ;

288 ALGEBRAIC[ 1 3 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log (CONSTANTS[ 6 ] /STATES [ 1 ] ) ;

289 ALGEBRAIC[ 4 4 ] = 0 .100000/(1 .00000+ exp ( 0 . 0 6 0 0 0 0 0 * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] − 2 0 0 . 0 0 0 )

) ) ;

290 ALGEBRAIC[ 4 7 ] = ( 3 . 0 0 0 0 0 * exp ( 0 . 0 0 0 2 0 0 0 0 0 * (STATES [ 0 ] − ALGEBRAIC[ 1 3 ] + 1 0 0 . 0 0 0 ) ) +exp (

0 . 1 0 0 0 0 0 * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] − 1 0 . 0 0 0 0 ) ) ) /(1 .00000+ exp ( − 0 . 5 0 0 0 0 0 * ( STATES

[ 0 ] − ALGEBRAIC[ 1 3 ] ) ) ) ;

291 ALGEBRAIC[ 4 8 ] = ALGEBRAIC[ 4 4 ] / (ALGEBRAIC[44 ]+ALGEBRAIC[ 4 7 ] ) ;

292 ALGEBRAIC[ 4 9 ] = CONSTANTS[ 9 ] *ALGEBRAIC[ 4 8 ] * pow(CONSTANTS[ 6 ] / 5 . 4 0 0 0 0 , 1 . 0 / 2 ) * (

STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) ;

293 ALGEBRAIC[ 5 6 ] = CONSTANTS[ 1 6 ] * STATES [ 1 4 ] * STATES [ 1 3 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) ;

294 ALGEBRAIC[ 5 0 ] = CONSTANTS[ 1 0 ] * pow(CONSTANTS[ 6 ] / 5 . 4 0 0 0 0 , 1 . 0 / 2 ) *STATES [ 4 ] * STATES

[ 5 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) ;

295 ALGEBRAIC[ 2 6 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log ( (CONSTANTS[ 6 ] + CONSTANTS

[ 5 ] *CONSTANTS[ 7 ] ) /(STATES[ 1 ] + CONSTANTS[ 5 ] * STATES [ 2 ] ) ) ;

296 ALGEBRAIC[ 5 1 ] = CONSTANTS[ 1 1 ] *pow(STATES [ 6 ] , 2 . 0 0 0 0 0 ) * ( STATES [ 0 ] − ALGEBRAIC[ 2 6 ] ) ;

297 ALGEBRAIC[ 5 4 ] = CONSTANTS[ 1 4 ] * STATES [ 1 0 ] * STATES [ 1 1 ] * STATES [ 1 2 ] * 4 . 0 0 0 0 0 * STATES [ 0 ] *pow

(CONSTANTS[ 2 ] , 2 . 0 0 0 0 0 ) /( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) * ( STATES [ 3 ] * exp ( 2 . 0 0 0 0 0 *
STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) − 0 . 3 4 1 0 0 0 *CONSTANTS[ 8 ] ) /(

exp ( 2 . 0 0 0 0 0 *STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) − 1 . 0 0 0 0 0 ) ;

298 ALGEBRAIC[ 3 5 ] = 0 . 5 0 0 0 0 0 *CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log (CONSTANTS[ 8 ] /

STATES [ 3 ] ) ;

299 ALGEBRAIC[ 5 5 ] = CONSTANTS[ 1 5 ] * ( STATES [ 0 ] − ALGEBRAIC[ 3 5 ] ) ;

300 ALGEBRAIC[ 6 0 ] = CONSTANTS[ 2 8 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) /(1 .00000+ exp ( ( 2 5 . 0 0 0 0 −

STATES [ 0 ] ) /5 .98000 ) ) ;

301 ALGEBRAIC[ 5 9 ] = CONSTANTS[ 2 6 ] * STATES [ 3 ] / ( STATES[ 3 ] +CONSTANTS[ 2 7 ] ) ;

302 ALGEBRAIC[ 6 2 ] = (VOI>=CONSTANTS[41]&&VOI<=CONSTANTS[42]&&VOI − CONSTANTS[ 4 1 ] − f l o o r

( ( VOI − CONSTANTS[ 4 1 ] ) /CONSTANTS[ 4 4 ] ) *CONSTANTS[44] <=CONSTANTS[ 4 5 ] ? CONSTANTS[ 4 3 ]

: 0 . 0 0 0 0 0 ) ;
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303 RATES [ 0 ] = − 1 . 0 0 0 0 0 / 1 . 0 0 0 0 0 * (ALGEBRAIC[49 ]+ALGEBRAIC[56 ]+ALGEBRAIC[50 ]+ALGEBRAIC

[51 ]+ALGEBRAIC[54 ]+ALGEBRAIC[57 ]+ALGEBRAIC[52 ]+ALGEBRAIC[53 ]+ALGEBRAIC[58 ]+

ALGEBRAIC[55 ]+ALGEBRAIC[60 ]+ALGEBRAIC[59 ]+ALGEBRAIC[ 6 2 ] ) ;

304 RATES [ 1 ] = − 1 . 0 0 0 0 0 * (ALGEBRAIC[49 ]+ALGEBRAIC[56 ]+ALGEBRAIC[50 ]+ALGEBRAIC[51 ]+

ALGEBRAIC[60 ]+ALGEBRAIC[ 6 2 ] − 2 . 0 0 0 0 0 *ALGEBRAIC[ 5 7 ] ) /( 1 . 0 0 0 0 0 *CONSTANTS[ 4 ] *
CONSTANTS[ 2 ] ) *CONSTANTS[ 3 ] ;

305 ALGEBRAIC[ 6 1 ] = ( CONSTANTS[ 3 0 ] *pow(STATES [ 1 5 ] , 2 . 0 0 0 0 0 ) /(pow(CONSTANTS[ 3 1 ] , 2 . 0 0 0 0 0 )

+pow(STATES [ 1 5 ] , 2 . 0 0 0 0 0 ) ) +CONSTANTS[ 3 2 ] ) *STATES [ 1 0 ] * STATES [ 1 6 ] ;

306 ALGEBRAIC[ 6 3 ] = CONSTANTS[ 3 5 ] / ( 1 . 0 0 0 0 0 +pow(CONSTANTS[ 3 3 ] , 2 . 0 0 0 0 0 ) /pow(STATES [ 3 ] ,

2 . 0 0 0 0 0 ) ) ;

307 ALGEBRAIC[ 6 4 ] = CONSTANTS[ 3 4 ] * ( STATES [ 1 5 ] − STATES [ 3 ] ) ;

308 ALGEBRAIC[ 6 5 ] = 1 .00000/(1 .00000+ CONSTANTS[ 3 6 ] *CONSTANTS[37 ]/pow(STATES[ 3 ] +CONSTANTS

[ 3 7 ] , 2 . 0 0 0 0 0 ) ) ;

309 RATES [ 3 ] = ALGEBRAIC [ 6 5 ] * ( ALGEBRAIC[ 6 4 ] − ALGEBRAIC[63 ]+ALGEBRAIC[ 6 1 ] − 1 . 0 0 0 0 0 * (

ALGEBRAIC[54 ]+ALGEBRAIC[55 ]+ALGEBRAIC[ 5 9 ] − 2 . 0 0 0 0 0 *ALGEBRAIC[ 5 8 ] ) /(

2 . 0 0 0 0 0 * 1 . 0 0 0 0 0 *CONSTANTS[ 4 ] *CONSTANTS[ 2 ] ) *CONSTANTS[ 3 ] ) ;

310 ALGEBRAIC[ 6 6 ] = 1 .00000/(1 .00000+ CONSTANTS[ 3 8 ] *CONSTANTS[39 ]/pow(STATES[15 ]+CONSTANTS

[ 3 9 ] , 2 . 0 0 0 0 0 ) ) ;

311 RATES[ 1 5 ] = ALGEBRAIC[ 6 6 ] *CONSTANTS[ 4 ] /CONSTANTS[ 4 0 ] * ( ALGEBRAIC[ 6 3 ] − ALGEBRAIC[61 ]+

ALGEBRAIC[ 6 4 ] ) ;

312 }

313 void

314 computeVariables ( double VOI , double * CONSTANTS, double * RATES, double * STATES , double *
ALGEBRAIC)

315 {

316 ALGEBRAIC[ 8 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 2 0 . 0 0 0 0 ) /7 .00000 ) ) ;

317 ALGEBRAIC[ 2 1 ] = 1 1 2 5 . 0 0 * exp(− pow(STATES [ 0 ] + 2 7 . 0 0 0 0 , 2 . 0 0 0 0 0 ) /240 .000 )

+80 .0000+165 .000/(1 .00000+ exp ( ( 2 5 . 0 0 0 0 − STATES [ 0 ] ) /10 .0000 ) ) ;

318 ALGEBRAIC[ 1 0 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 2 8 . 0 0 0 0 ) /5 .00000 ) ) ;

319 ALGEBRAIC[ 2 3 ] = 1 0 0 0 . 0 0 * exp(− pow(STATES [ 0 ] + 6 7 . 0 0 0 0 , 2 . 0 0 0 0 0 ) /1000 .00 ) + 8 . 0 0 0 0 0 ;

320 ALGEBRAIC[ 1 1 ] = 1 .00000/(1 .00000+ exp ( ( 2 0 . 0 0 0 0 − STATES [ 0 ] ) /6 .00000 ) ) ;

321 ALGEBRAIC[ 2 4 ] = 9 . 5 0 0 0 0 * exp(− pow(STATES [ 0 ] + 4 0 . 0 0 0 0 , 2 . 0 0 0 0 0 ) /1800 .00 ) + 0 . 8 0 0 0 0 0 ;

322 ALGEBRAIC[ 1 2 ] = (STATES[3 ] <0 .000350000 ? 1 .00000/(1 .00000+pow(STATES[ 3 ] / 0 . 0 0 0 3 5 0 0 0 0 ,

6 . 0 0 0 0 0 ) ) : 1 .00000/(1 .00000+pow(STATES[ 3 ] / 0 . 0 0 0 3 5 0 0 0 0 , 1 6 . 0 0 0 0 ) ) ) ;

323 ALGEBRAIC[ 2 5 ] = (ALGEBRAIC[ 1 2 ] − STATES [ 1 6 ] ) /CONSTANTS[ 2 9 ] ;

324 ALGEBRAIC[ 1 ] = 1 .00000/(1 .00000+ exp((− 26 .0000 − STATES [ 0 ] ) /7 .00000 ) ) ;

325 ALGEBRAIC[ 1 4 ] = 450 .000/(1 .00000+ exp((− 45 .0000 − STATES [ 0 ] ) /10 .0000 ) ) ;

326 ALGEBRAIC[ 2 7 ] = 6 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 3 0 . 0 0 0 0 ) /11 .5000 ) ) ;

327 ALGEBRAIC[ 3 6 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 4 ] *ALGEBRAIC [ 2 7 ] ;

328 ALGEBRAIC[ 2 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] + 8 8 . 0 0 0 0 ) /24 .0000 ) ) ;

329 ALGEBRAIC[ 1 5 ] = 3 .00000/(1 .00000+ exp((− 60 .0000 − STATES [ 0 ] ) /20 .0000 ) ) ;

330 ALGEBRAIC[ 2 8 ] = 1 .12000/(1 .00000+ exp ( ( STATES [ 0 ] − 6 0 . 0 0 0 0 ) /20 .0000 ) ) ;

331 ALGEBRAIC[ 3 7 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 5 ] *ALGEBRAIC [ 2 8 ] ;

332 ALGEBRAIC[ 3 ] = 1 .00000/(1 .00000+ exp((− 5 .00000 − STATES [ 0 ] ) /14 .0000 ) ) ;

333 ALGEBRAIC[ 1 6 ] = 1100 .00/ pow( ( 1 . 0 0 0 0 0 + exp((− 10 .0000 − STATES [ 0 ] ) /6 .00000 ) ) , 1 . 0 / 2 ) ;

334 ALGEBRAIC[ 2 9 ] = 1 .00000/(1 .00000+ exp ( ( STATES [ 0 ] − 6 0 . 0 0 0 0 ) /20 .0000 ) ) ;

335 ALGEBRAIC[ 3 8 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 6 ] *ALGEBRAIC [ 2 9 ] ;

336 ALGEBRAIC[ 4 ] = 1 .00000/pow(1 .00000+ exp((− 56 .8600 − STATES [ 0 ] ) /9 .03000 ) , 2 . 0 0 0 0 0 ) ;

337 ALGEBRAIC[ 1 7 ] = 1 .00000/(1 .00000+ exp((− 60 .0000 − STATES [ 0 ] ) /5 .00000 ) ) ;
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338 ALGEBRAIC[ 3 0 ] = 0 .100000/(1 .00000+ exp ( ( STATES [ 0 ] + 3 5 . 0 0 0 0 ) /5 .00000 ) ) +0 .100000/(1 .00000+

exp ( ( STATES [ 0 ] − 5 0 . 0 0 0 0 ) /200 .000 ) ) ;

339 ALGEBRAIC[ 3 9 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 1 7 ] *ALGEBRAIC [ 3 0 ] ;

340 ALGEBRAIC[ 5 ] = 1 .00000/pow(1 .00000+ exp ( ( STATES [ 0 ] + 7 1 . 5 5 0 0 ) /7 .43000 ) , 2 . 0 0 0 0 0 ) ;

341 ALGEBRAIC[ 1 8 ] = (STATES[0]<− 40 .0000 ? 0 .0570000 * exp(− (STATES [ 0 ] + 8 0 . 0 0 0 0 ) /6 .80000 ) :

0 . 0 0 0 0 0 ) ;

342 ALGEBRAIC[ 3 1 ] = (STATES[0]<− 40 .0000 ? 2 . 7 0 0 0 0 * exp ( 0 .0790000 *STATES [ 0 ] ) + 3 1 0 0 0 0 . * exp

( 0 . 3 4 8 5 0 0 *STATES [ 0 ] ) : 0 .770000/ 0 . 1 3 0 0 0 0 * ( 1 . 0 0 0 0 0 + exp ( ( STATES [ 0 ] + 1 0 . 6 6 0 0 )/−

1 1 . 1 0 0 0 ) ) ) ;

343 ALGEBRAIC[ 4 0 ] = 1 .00000/(ALGEBRAIC[18 ]+ALGEBRAIC[ 3 1 ] ) ;

344 ALGEBRAIC[ 6 ] = 1 .00000/pow(1 .00000+ exp ( ( STATES [ 0 ] + 7 1 . 5 5 0 0 ) /7 .43000 ) , 2 . 0 0 0 0 0 ) ;

345 ALGEBRAIC[ 1 9 ] = (STATES[0]<− 40 .0000 ? ( − 2 5 4 2 8 . 0 * exp ( 0 . 2 4 4 4 0 0 *STATES [ 0 ] ) −

6 .94800 e−06*exp ( − 0 .0439100 *STATES [ 0 ] ) ) * ( STATES [ 0 ] + 3 7 . 7 8 0 0 ) /1 .00000/(1 .00000+ exp (

0 . 3 1 1 0 0 0 * ( STATES [ 0 ] + 7 9 . 2 3 0 0 ) ) ) : 0 . 0 0 0 0 0 ) ;

346 ALGEBRAIC[ 3 2 ] = (STATES[0]<− 40 .0000 ? 0 .0242400 * exp ( − 0 .0105200 *STATES [ 0 ] )

/(1 .00000+ exp ( − 0 . 1 3 7 8 0 0 * ( STATES [ 0 ] + 4 0 . 1 4 0 0 ) ) ) : 0 . 6 0 0 0 0 0 * exp ( 0 .0570000 *STATES

[ 0 ] ) /(1 .00000+ exp ( − 0 . 1 0 0 0 0 0 * ( STATES [ 0 ] + 3 2 . 0 0 0 0 ) ) ) ) ;

347 ALGEBRAIC[ 4 1 ] = 1 .00000/(ALGEBRAIC[19 ]+ALGEBRAIC[ 3 2 ] ) ;

348 ALGEBRAIC[ 7 ] = 1 .00000/(1 .00000+ exp((− 5 .00000 − STATES [ 0 ] ) /7 .50000 ) ) ;

349 ALGEBRAIC[ 2 0 ] = 1 .40000/(1 .00000+ exp((− 35 .0000 − STATES [ 0 ] ) /13 .0000 ) ) + 0 . 2 5 0 0 0 0 ;

350 ALGEBRAIC[ 3 3 ] = 1 .40000/(1 .00000+ exp ( ( STATES [ 0 ] + 5 . 0 0 0 0 0 ) /5 .00000 ) ) ;

351 ALGEBRAIC[ 4 2 ] = 1 .00000/(1 .00000+ exp ( ( 5 0 . 0 0 0 0 − STATES [ 0 ] ) /20 .0000 ) ) ;

352 ALGEBRAIC[ 4 5 ] = 1 . 0 0 0 0 0 *ALGEBRAIC[ 2 0 ] *ALGEBRAIC[33 ]+ALGEBRAIC [ 4 2 ] ;

353 ALGEBRAIC[ 9 ] = 1 .00000/(1 .00000+pow(STATES[ 3 ] / 0 . 0 0 0 3 2 5 0 0 0 , 8 . 0 0 0 0 0 ) ) ;

354 ALGEBRAIC[ 2 2 ] = 0 .100000/(1 .00000+ exp ( ( STATES [ 3 ] − 0 .000500000 ) /0 .000100000 ) ) ;

355 ALGEBRAIC[ 3 4 ] = 0 .200000/(1 .00000+ exp ( ( STATES [ 3 ] − 0 .000750000 ) /0 .000800000 ) ) ;

356 ALGEBRAIC[ 4 3 ] = (ALGEBRAIC[ 9 ] +ALGEBRAIC[22 ]+ALGEBRAIC[ 3 4 ] + 0 . 2 3 0 0 0 0 ) / 1 . 4 6 0 0 0 ;

357 ALGEBRAIC[ 4 6 ] = (ALGEBRAIC[ 4 3 ] − STATES [ 1 2 ] ) /CONSTANTS[ 4 6 ] ;

358 ALGEBRAIC[ 5 7 ] = CONSTANTS[ 1 7 ] *CONSTANTS[ 6 ] / (CONSTANTS[ 6 ] +CONSTANTS[ 1 8 ] ) *STATES [ 2 ] / (

STATES[ 2 ] +CONSTANTS[ 1 9 ] ) /(1 .00000+ 0 . 1 2 4 5 0 0 * exp ( − 0 . 1 0 0 0 0 0 *STATES [ 0 ] *CONSTANTS

[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) + 0 .0353000 * exp ( − STATES [ 0 ] *CONSTANTS[ 2 ] / (

CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) ) ;

359 ALGEBRAIC[ 0 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log (CONSTANTS[ 7 ] /STATES [ 2 ] ) ;

360 ALGEBRAIC[ 5 2 ] = CONSTANTS[ 1 2 ] *pow(STATES [ 7 ] , 3 . 0 0 0 0 0 ) *STATES [ 8 ] * STATES [ 9 ] * ( STATES [ 0 ]

− ALGEBRAIC [ 0 ] ) ;

361 ALGEBRAIC[ 5 3 ] = CONSTANTS[ 1 3 ] * ( STATES [ 0 ] − ALGEBRAIC [ 0 ] ) ;

362 ALGEBRAIC[ 5 8 ] = CONSTANTS[ 2 0 ] * ( exp ( CONSTANTS[ 2 3 ] * STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS

[ 0 ] *CONSTANTS[ 1 ] ) ) *pow(STATES [ 2 ] , 3 . 0 0 0 0 0 ) *CONSTANTS[ 8 ] − exp ( (CONSTANTS[ 2 3 ] −

1 . 0 0 0 0 0 ) *STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) *pow(CONSTANTS[ 7 ] ,

3 . 0 0 0 0 0 ) *STATES [ 3 ] *CONSTANTS[ 2 2 ] ) /( (pow(CONSTANTS[ 2 5 ] , 3 . 0 0 0 0 0 ) +pow(CONSTANTS[ 7 ] ,

3 . 0 0 0 0 0 ) ) * (CONSTANTS[24 ]+CONSTANTS[ 8 ] ) * ( 1 . 0 0 0 0 0 + CONSTANTS[ 2 1 ] * exp ( (CONSTANTS

[ 2 3 ] − 1 . 0 0 0 0 0 ) *STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) ) ) ;

363 ALGEBRAIC[ 1 3 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log (CONSTANTS[ 6 ] /STATES [ 1 ] ) ;

364 ALGEBRAIC[ 4 4 ] = 0 .100000/(1 .00000+ exp ( 0 . 0 6 0 0 0 0 0 * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] − 2 0 0 . 0 0 0 )

) ) ;

365 ALGEBRAIC[ 4 7 ] = ( 3 . 0 0 0 0 0 * exp ( 0 . 0 0 0 2 0 0 0 0 0 * (STATES [ 0 ] − ALGEBRAIC[ 1 3 ] + 1 0 0 . 0 0 0 ) ) +exp (

0 . 1 0 0 0 0 0 * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] − 1 0 . 0 0 0 0 ) ) ) /(1 .00000+ exp ( − 0 . 5 0 0 0 0 0 * ( STATES

[ 0 ] − ALGEBRAIC[ 1 3 ] ) ) ) ;

366 ALGEBRAIC[ 4 8 ] = ALGEBRAIC[ 4 4 ] / (ALGEBRAIC[44 ]+ALGEBRAIC[ 4 7 ] ) ;
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367 ALGEBRAIC[ 4 9 ] = CONSTANTS[ 9 ] *ALGEBRAIC[ 4 8 ] * pow(CONSTANTS[ 6 ] / 5 . 4 0 0 0 0 , 1 . 0 / 2 ) * (

STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) ;

368 ALGEBRAIC[ 5 6 ] = CONSTANTS[ 1 6 ] * STATES [ 1 4 ] * STATES [ 1 3 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) ;

369 ALGEBRAIC[ 5 0 ] = CONSTANTS[ 1 0 ] * pow(CONSTANTS[ 6 ] / 5 . 4 0 0 0 0 , 1 . 0 / 2 ) *STATES [ 4 ] * STATES

[ 5 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) ;

370 ALGEBRAIC[ 2 6 ] = CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log ( (CONSTANTS[ 6 ] + CONSTANTS

[ 5 ] *CONSTANTS[ 7 ] ) /(STATES[ 1 ] + CONSTANTS[ 5 ] * STATES [ 2 ] ) ) ;

371 ALGEBRAIC[ 5 1 ] = CONSTANTS[ 1 1 ] *pow(STATES [ 6 ] , 2 . 0 0 0 0 0 ) * ( STATES [ 0 ] − ALGEBRAIC[ 2 6 ] ) ;

372 ALGEBRAIC[ 5 4 ] = CONSTANTS[ 1 4 ] * STATES [ 1 0 ] * STATES [ 1 1 ] * STATES [ 1 2 ] * 4 . 0 0 0 0 0 * STATES [ 0 ] *pow

(CONSTANTS[ 2 ] , 2 . 0 0 0 0 0 ) /( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) * ( STATES [ 3 ] * exp ( 2 . 0 0 0 0 0 *
STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) − 0 . 3 4 1 0 0 0 *CONSTANTS[ 8 ] ) /(

exp ( 2 . 0 0 0 0 0 *STATES [ 0 ] *CONSTANTS[ 2 ] / ( CONSTANTS[ 0 ] *CONSTANTS[ 1 ] ) ) − 1 . 0 0 0 0 0 ) ;

373 ALGEBRAIC[ 3 5 ] = 0 . 5 0 0 0 0 0 *CONSTANTS[ 0 ] *CONSTANTS[ 1 ] /CONSTANTS[ 2 ] * log (CONSTANTS[ 8 ] /

STATES [ 3 ] ) ;

374 ALGEBRAIC[ 5 5 ] = CONSTANTS[ 1 5 ] * ( STATES [ 0 ] − ALGEBRAIC[ 3 5 ] ) ;

375 ALGEBRAIC[ 6 0 ] = CONSTANTS[ 2 8 ] * ( STATES [ 0 ] − ALGEBRAIC[ 1 3 ] ) /(1 .00000+ exp ( ( 2 5 . 0 0 0 0 −

STATES [ 0 ] ) /5 .98000 ) ) ;

376 ALGEBRAIC[ 5 9 ] = CONSTANTS[ 2 6 ] * STATES [ 3 ] / ( STATES[ 3 ] +CONSTANTS[ 2 7 ] ) ;

377 ALGEBRAIC[ 6 2 ] = (VOI>=CONSTANTS[41]&&VOI<=CONSTANTS[42]&&VOI − CONSTANTS[ 4 1 ] − f l o o r

( ( VOI − CONSTANTS[ 4 1 ] ) /CONSTANTS[ 4 4 ] ) *CONSTANTS[44] <=CONSTANTS[ 4 5 ] ? CONSTANTS[ 4 3 ]

: 0 . 0 0 0 0 0 ) ;

378 ALGEBRAIC[ 6 1 ] = ( CONSTANTS[ 3 0 ] *pow(STATES [ 1 5 ] , 2 . 0 0 0 0 0 ) /(pow(CONSTANTS[ 3 1 ] , 2 . 0 0 0 0 0 )

+pow(STATES [ 1 5 ] , 2 . 0 0 0 0 0 ) ) +CONSTANTS[ 3 2 ] ) *STATES [ 1 0 ] * STATES [ 1 6 ] ;

379 ALGEBRAIC[ 6 3 ] = CONSTANTS[ 3 5 ] / ( 1 . 0 0 0 0 0 +pow(CONSTANTS[ 3 3 ] , 2 . 0 0 0 0 0 ) /pow(STATES [ 3 ] ,

2 . 0 0 0 0 0 ) ) ;

380 ALGEBRAIC[ 6 4 ] = CONSTANTS[ 3 4 ] * ( STATES [ 1 5 ] − STATES [ 3 ] ) ;

381 ALGEBRAIC[ 6 5 ] = 1 .00000/(1 .00000+ CONSTANTS[ 3 6 ] *CONSTANTS[37 ]/pow(STATES[ 3 ] +CONSTANTS

[ 3 7 ] , 2 . 0 0 0 0 0 ) ) ;

382 ALGEBRAIC[ 6 6 ] = 1 .00000/(1 .00000+ CONSTANTS[ 3 8 ] *CONSTANTS[39 ]/pow(STATES[15 ]+CONSTANTS

[ 3 9 ] , 2 . 0 0 0 0 0 ) ) ;

383 } �
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