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1. Introduction

The computer representation of lines and curves has been an active subject of
research for nearly half a century (Loeb 1953; Freeman 1961; Bresenham 1963;
Rosenfeld 1974). Related work even earlier on the theory of words, specifically,
on mechanical or Sturmian words (Morse and Hedlund 1940), remained un-
noticed in the pattern recognition community. This paper reviews the subject
of digital straightness with respect to its interactions with other disciplines
(many of which are listed in (Bruckstein 1991)), as well as its role within the
pattern recognition literature itself.

We consider the digitization of rays
Yap ={(x, 024+ 0):0 <z < 400}

in the set N* = {(¢,7) : 1,7 € N} of all grid points with non-negative integer
coordinates in the plane. As a simplification we assume that 0 < o < 1; this

* Corresponding author.
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is possible due to the symmetry of the grid. Such a ray generates a sequence
of intersection points pg, p1, p2, . .. of 74 3 with the vertical grid lines at n > 0.
Let (n,1,) € Z* be the grid point nearest to p,. (If there are two nearest
grid points, we take the upper one.) The floor function |.| specifies the largest
integer not exceeding a given real. Formally,

Lg={(n,1,):n>0 A I,=|an+ 3+0.5]},

and i,5 = 10,5(0)ia5(1)iap(2) ... is a digital ray with slope o and intercept
(3, where differences between successive I,,’s define chain codes:

0, ifl, =1l

Zoz,ﬁ(n) n+1 [n {17 if [n _ [n-l—l -1 for n - 0.

Code 0 is interpreted as a horizontal grid increment and 1 specifies a diagonal
increment in the grid N?; see Fig. 1.

3 2 1
4 0 /
5 6 7

Fig. 1. Segment of a digital ray, defined by grid-intersection digitization (as calcu-
lated by the Bresenham algorithm (Bresenham 1965)).

We present three basic theorems in this introductory section: Theorem 1 is
about connectivity, which will be a subject in Section 2; Theorem 2 is about
self-similarity, which is the subject of Section 3; and Theorem 3 is about
periodicity, the subject of Section 4.

A finite or infinite 8-arc' is irreducible iff (read: ‘if and only if”) its set of grid
points does not remain 8-connected after removing a point which is not an
end point.

Theorem 1. (Rosenfeld 1974) A digital ray is an irreducible 8-arc.

Proof: A ray v, 3, with 0 < « <1, intersects grid lines @ = n, once each. Its
intercepts with any two successive lines @ = n and @ = n+1 differ vertically by
«; hence the digitizations of these successive intercepts also differ vertically
by < 1. Thus the successive grid points of the digital ray are 8-neighbors.
Removing the grid point at any * = n would leave grid points at © = n — 1
and x = n + 1 disconnected with respect to the 8-neighborhood. O

LIf p = (2,y) is a grid point, an 8-neighbor of p is any grid point ¢ = (4, j) with
doo(p, q) = max{|z —i|,|y — j|} = 1. An 8-arc is a finite or infinite sequence of grid
points such that any point is an 8-neighbor of its predecessor in the sequence.



The digital ray i, is generated by ray v,s. If 5 — ' is an integer then
lo,g = la,p. Thus we may assume that intercepts are limited to 0 < 8 <1
without loss of generality. Evidently i3 = 000... and 73 3 = 111....

Theorem 2. (Bruckstein 1991) For irrational o, I, uniquely determines
both « and (. For rational «, I, s uniquely determines «, and (3 is deter-
mined up to an interval.

Proof: For arbitrary a,o’, 3,5, 1,3 = I, 3 implies a = o since otherwise
the vertical distance between ax + 3 and o/x + 3’ would become unbounded as
x goes to infinity, i.e. the [,,-values would differ starting at some large enough
n.

If « is irrational then the set of all vertical intercepts of ax 4+ 3 modulo 1,
x >0, is dense in [0, 1]. Therefore, for every ¢ > 0 there exist ng and mg such
that

ang + 3 — |ang + 3] < e,
amo+ 0 —|lamg+ 5] >1—¢,

and changing # by € would result in a change in [, g. Therefore, for irrational
a, 1, g also uniquely determines 3.

If « is rational then the set of all vertical intercepts of ax + 3 modulo 1,
x > 0, is finite, i.e. (# is determined only up to an interval, and the length of
the interval depends upon a. O

This theorem states that a digital ray 7, s always determines o uniquely. A
digital ray is rational if it has a rational slope, and it is irrational if its
slope is irrational. For a specification of the intercepts [ see the discussion
of (Dorst and Duin 1984) in Section 5.

We use the alphabet A = {0,1,...,7} (or a subset of it) and a geometric
interpretation of its elements as indicated in Fig. 1. Digital rays are (right)
infinite words over 0,1. We recall a few basic definitions from the theory
of words (Lothaire 1987; Lothaire 2002). A (finite) word over A is a finite
sequence of elements of A. The length |u| of the word v = ayay ... a,, a; € A,
is the number n of letters a; in u. The empty word ¢ has length zero. The set
of all words defined on alphabet A is denoted by A*. A word v is a factor of a
word wu iff there exist words vy, vy such that u = vivvy. A word v is a subword
of a word w iff v = ayas...a,, a; € A, and there exist vy, vy,...,v, € A* such
that v = voaivias ... av, .

Let X C A*. The set of all infinite words w = ugujusy ..., with u; € X — {&},
is denoted by X“. If all the u;’s are equal, say u; = v, then we write w = v*.
For v € A* and w € A¥ the concatenation vw is well defined, v is a prefir of
vw and w is a suffiz of vw. A finite word v is a factor of an infinite word w if
W = Uvw.



An integer £ > 1 is a period of a word u = ajas...a,, a; € A, if a; = a;44 for
1 =1,...,n— k. The smallest period of u is called the period of u. An infinite
word w € A¥ is periodic if it is of the form w = v*, for some non-empty word
v € A" A word w € A¥ is eventually periodic if it is of the form w = uv¥, for
u € A* and a non-empty word v € A*. A word w € A¥ is aperiodic if it is not
eventually periodic.

It has been known since (Brons 1974) that grid-intersection digitization of rays
Ya,8 pProduces periodic digital rays if the slope a is rational, and aperiodic finite
sequences if it is irrational:

“When a slope is an irreducible rational fraction, the string is periodic, and
the length of a period is the denominator of the fraction. For example, one
period of the string for the straight line with slope 2/5 can be expressed as
01010, 00101, 10010, 01001, or 10100. Which of these periods is chosen is

not important, because the bounds of the period can be placed anywhere.”

Theorem 3. (Brons 1974) Rational digital rays are periodic and irrational
digital rays are aperiodic.

If v is the shortest word such that w = v* then v is called the basic segment of
w and |v] is the period of w. (Brons 1974) specifies an algorithm for calculating
the basic segment of any rational digital ray, for 3 = 0. For example, the slope
2/5 does not specify a basic segment uniquely, but a rational slope o together
with an intercept 8 do. (Wu 1982) specifies an algorithm for calculating the
basic segment of an arbitrary rational digital ray, using o and [ as inputs.

This paper is structured as follows: Section 2 reviews alternative definitions of
digital rays or digital straight lines, and specifies digitized lines by distances
between tangential lines. Self-similarity studies in the context of pattern recog-
nition are reviewed in Section 3, and in the context of the theory of words in
Section 4. Number-theoretical results are briefly listed in Section 5. A review of
recognition algorithms for digital straight segments is presented in Section 6.
Section 7 concludes the paper.

2. Tangential Lines and Connectivity

An alternative way of defining a digital ray is as the border of either the upper
or lower dichotomy of N? defined by a ray separation. Formally, let

Usp={(n,U,):n>0 AN U, =[an+ ]} and
Log={(n,L,):n>0 AN L,=|an+ 3]}

and u, g(n) = Upy1 —U, and l, 3(n) = Ly41— L, for n > 0. The chain code
sequence u, g is the upper digital ray, and the chain code sequence [, g is the



lower digital ray generated by v, g. The slope specifies rational and irrational
lower or upper digital straight lines, which are always irreducible 8-arcs in N2,

Log = 1,p-05, 1.e. any lower digital ray is also a digital ray, and vice versa.
If an 4+ 3 is not an integer then U, = L, 4+ 1. Otherwise, U,, = L,,; the digital
rays U, g and [, g will also differ in this case, but v, g has an integral point at
n. If 7, g has no integral points, then u, g = 14 305 = lo 5. If 74 5 has integral
points and « is rational then there exists 5’ such that U, 3 = [, g. Finally,
if 7,5 has integral points and « is irrational, then U, g and L, g differ by
subsequences of length two only. For practical purposes, the classes of digital
rays, upper digital rays, and lower digital rays coincide.

The grid points of a rational ray are the integer solutions of a finite set of
linear equations with rational coefficients (Bongiovanni et al. 1975). Arith-
metic geometry, as established in (Reveilles 1991), specifies digital hyperplanes
by double Diophantine inequalities, allowing a uniform approach to study-
ing n-dimensional digital hyperplanes (see (Andres et al. 1997)). In the two-
dimensional case, let a, b be relatively prime integers, i.e. gcd(a,b) = 1, let ¢, d
be integers, and let

Da7b7c7d:{(i,j)EZz:cgai—bj<c—|—d},

The set Dy pcq is called a digital bar with slope a/b, lower bound ¢ and arith-
metical width d.

Theorem 4. (Reveilles 1991) Any set of grid points D, p . max{|a|,p|} COIncides
with a set of grid points assigned to a digital straight line, and conversely, for
any rational digital straight line there are parameters a, b, ¢ such that the set of
grid points assigned to this digital straight line coincides with D,y ¢ max{|al,[s|}-

This theorem also means that d = max{|a|, |b|} specifies an irreducible 8-arc. ?

Due to our general assumption of considering only lines with slope 0 < a/b <
1, we have 0 < a < band d = b. All grid points in D, ; . are between two lines
ar —by=cand av —by =c+b—1,ie.y=ar+fandy =az+—(1—- 1),
for @« = a/b and § = —¢/b. These two lines define a pair of tangential lines

with respect to the given set D, .5 of grid points (this proves Corollary 2.3).

I,p5, Uyp and L, g can also be used to introduce digital 4-rays, which are
4-arcs (see, e.g., (Fam and Sklansky 1977; Kovalevsky 1990; Bruckstein 1991)
for the preferred use of 4-rays instead of 8-rays):

- . 07 if [n = [n—l—l
iGp(n) = {02, if 1, = Ly — 1

where a horizontal increment in N? is encoded by 0, and 2 specifies a vertical

2 Digital straight lines are called naive lines in arithmetic geometry.



Fig. 2. Segments of lower and upper digital 4-rays, which follow borders of the upper
and lower dichotomies, which are linearly separated by a ray.

increment. Analogously we define upper digital 4-rays u?, 5(n) and lower digital
4-rays 13, 5(n), all for n > 0. See Fig. 2 for an illustration of upper and lower
digital 4-rays. We still have 15 ; = 000..., but 17 ; = 020202.... Again, the
classes of digital 4-rays, upper digital 4-rays, and lower digital 4-rays coincide
for practical purposes.

Digital 4-rays are actually just images under a morphism defined on digital
rays. A morphism or substitution ¢ : A* — B* is a function with p(zy) =
o(x)p(y), for all z,y € A*. A morphism is uniquely determined by its values
for all letters in the alphabet. A morphism is nonerasing if a letter is always
mapped into a nonempty word. A nonerasing morphism ¢ : A* — B* defines a
function, also called a morphism, from A“ to B“ by ¢(a(0)a(1)...a(n)...) =
w(a(0))p(a(l))...¢(a(n)).... Digital 4-rays can also be defined by specifying
a morphism on A*

00
P e 02

mapping digital rays into digital 4-rays.® The theory of words studies mor-
phisms on infinite words.

Definition 5. A digital straight segment (DSS for short) is a geometrically
interpreted non-empty factor of a digital ray, and a digital 4-straight segment
(4-DSS for short) is a non-empty factor of a digital 4-ray, using the appropriate
geometric interpretation of its chain code.

A digital straight segment u connects two grid points p = (my,n,),q¢ =
(myg,ng) € N2 m, < m,, iff the geometric interpretation of v = w(1)...u(m,—
m, + 1) specifies a sequence of horizontal and diagonal steps which leads
from p to ¢. For an 8-arc u = u(l)u(2)...u(n) of length n let G(u) =
{po,p1,-..,pn-1} be the assigned set of grid points such that po = (0,0)
and u connects py with p,_; via a sequence of horizontal and diagonal steps
which passes through py, ..., p,—2. An early algorithm for generating a digital

3 As another example, rule X studied in (Bruckstein 1991) for digital 4-rays is

actually a morphism
0+ 2

99X:2|—>0



Y2/~

possible diagonals

Fig. 3. Two parallel lines 71 and v, contain a 4-arc between them; a < /2 is the
main diagonal distance between the lines. Vector n is the normal to vy, and v is the
unit vector along the main diagonal.

straight segment connecting two arbitrary grid points p and ¢ was published
in (Reggiori 1972). Theorem 4 implies

Corollary 6. A word u € {0,1}* is a DSS iff the set G/(u) of assigned grid
points lies on or between two parallel lines having a distance less than 1,
measured in the y-axis direction.*

The geometric characterization of digital 4-straight segments has been dis-
cussed in (Kovalevsky 1990), based on results on the ‘nearest support below
or above’ of a digital straight segment in (Anderson and Kim 1985). There are
two possible diagonals in grid squares; see Fig. 3. The main diagonal for a pair
of parallel lines is the one which maximizes the dot product with the normal
to the lines. The main diagonal distance between two parallel lines is mea-
sured in the direction of the main diagonal. The following theorem specifies
an unproven statement in (Kovalevsky 1990):

Theorem 7. A finite 4-arc u € {0,2}* is a digital 4-straight segment ifl its
assigned set of grid points G(u) is between or on a pair of parallel lines having
a main diagonal distance of less than /2.

Proof: Let p be a mapping from {0, 1,2}* into {0, 1,2}* defined by replac-
ing any factor 02 by 1. Following the definition of digital 4-rays, a word
u € {0,1,2}7 is a 4-DSS iff p(u) is a DSS. We also use Corollary 2.3 which
characterizes DSSs by distance 1 (in the y-direction) between a pair of tan-
gential lines. The main diagonal for 4-arcs u € {0,2}* makes angle 135° with
the z-axis.

Assume a pair 71,72 of parallel lines having main diagonal distance less than
V2. Consider a finite 4-arc v € {0,2}* with an assigned set of grid points
G/(u) between or on this pair of parallel lines. If the slope « of these lines is
either 0 or 1, then the 4-arc is either u = 0" or u = (02)", i.e. a 4-straight
segment. Now assume 0 < o < 1. The word p(u) allows the lower line (say

4 This is already shown in (Arcelli and Massarotti 1975) using the chord prop-
erty of Theorem 11; see also (Anderson and Kim 1984; Anderson and Kim 1985;
Creutzburg et al. 1988).



Fig. 4. A cellular straight segment.

v2) to move into line (, closer to v, by a parallel shift, such that 41, ( are a
pair of tangential lines for G(u(u)), and the distance between these two lines
in the y-direction is less than 1, i.e. p(u) is a DSS and w is a 4-DSS.

Now assume a 4-arc u € {0,2}* such that the minimum diagonal distance in
direction 135° between a pair of parallel lines is greater than or equal to v/2,
i.e. u contains at least one subword 22. Then p(u) is not a DSS, and « not a

4-DSS. O

The two parallel lines at minimum diagonal distance specify a pair of tangen-
tial lines with respect to a given digital 4-straight segment. Note that a finite
4-arc is also a finite 8-arc, but being between a pair of parallel lines having
a main diagonal distance of less than /2 does not mean that this 4-arc is
also a digital straight segment because it is not an irreducible 8-arc. A pair
of tangential lines with respect to a set D, ., of grid points has intercepts
which differ by 0 < 1 — % < 1, i.e. this pair of parallel lines also has a main

diagonal distance of less than v/2.

Finally we briefly review another option for specifying digital straightness.
Besides sequences of grid points we may also consider sequences of grid squares
for defining digitized rays or straight lines (Fam and Sklansky 1977). Assume
a uniform mosaic in the Euclidean plane defined by square isothetic closed
cells C' having grid points p € Z? as their center points and edges of length 1.
A family of cells is edge connected iff the set of center points of these cells is
4-connected. ®

Definition 8. A cellular straight line is a family F' of cells C' defined by a
straight line ~: every cell in F' has a non-empty intersection with ~, and ~
is contained in the union |J F' of all cells contained in F. A cellular straight
segment is defined by a straight line segment + in the same way.

See Fig. 4 for an illustration of cellular straightness. The distance between a
pair of parallel lines is measured in the direction of the normal to the lines.
Let S be a bounded set in the plane and 8 a direction with 0 < 8 < 27. The

5 To be precise, these cells should be called 2-cells, because their vertices are called
0-cells and their edges are I-cells in the theory of cellular complexes (Klette 2000).



width wg(S) is defined to be the minimum distance between a pair of parallel
lines such that S is completely between them, and 8 is the direction of the
normal to them. Let Ryy9 be a square formed by four cells.

Theorem 9. (Fam and Sklansky 1977) An edge-connected family F' of cells
is cellularly straight iff there exists a direction 6 with wg(U F') < wg(Rax2).

The width wg( F') as specified in this theorem is related to a pair of tangential
lines with respect to the given family of cells. Altogether we have stated
three theorems specifying pairs of tangential lines for digital straight segments,
digital 4-segments, and cellular straight segments.

3. Self-Similarity Studies in Pattern Recognition

Self-similarity properties of digital rays or digital straight segments have been
studied in pattern recognition with a major focus on geometric characteri-
zations and efficient algorithms. Chain code sequences are finite or (right or
two-sided) infinite words over A = {0,1,...,7}, and the interpretations of the
elements in A are the directions to the eight neighbors of a grid point (in a sys-
tematic, e.g. counterclockwise, order). An initial formulation of necessary con-
ditions for self-similarity of digital straight lines (defined by generalizing the
concept of digital rays to two-sided infinite words) is given in (Freeman 1970):

“To summarize, we thus have the following three specific properties which
all chains of straight lines must possess (Freeman 1961):
(F1) at most two types of elements can be present, and these can differ only
by unity, modulo eight;
(F2) one of the two element values always occurs singly;
(F3) successive occurrences of the element occurring singly are as uniformly
spaced as possible.”

These properties (actually listed as (1), (2) and (3) in the historic source)
were illustrated by examples and based on heuristic insights. The imprecise
criterion (F3) is not suitable for a formal proof.

(Brons 1974) proposed grammars for chain code generation of rational digital
rays based on criteria (F1), (F2) and (F3). A publication in the same year,
(Rosenfeld 1974), provided a first formal characterization of digital straight
lines which also allowed a further specification of property (F3).

Definition 10. A set GG of grid points satisfies the chord property iff for any
two different points p and ¢ of ¢, and any point r on the (real) line segment
pq between p and ¢, there exists a grid point ¢ € G such that d.(r,t) =
max(|z, — x|, lyr — ye|) < 1.



Theorem 11. (Rosenfeld 1974) A finite irreducible 8-arc v € {0,1}* is a
digital straight segment iff its assigned set of grid points (/(u) satisfies the
chord property.

Proof: First we show that G/(u) satisfies the chord property if w is a digital
straight segment (Theorem 1 in (Rosenfeld 1974)). Let p, ¢ be points of G/(u).
The line segment pq intersects grid lines x = n that lie between p and ¢. Thus
for any point r = (z,y) of pg, we have [n—z| < 1 for some point (n,m) € G(u).
It suffices to show that whenever pq crosses a line & = n, the point ¢t = (n,m)
of G/(u) on that line lies at vertical distance |y — m| < 1 above or below the
crossing point r = (n, y).

Let u be a nonempty factor of a digitization of ray v, g, i.e. neither p or g can be
more than % vertically above or at least % vertically below v, 5. Let r = (n,y)
be a, > 0 vertically above v, 5 (or b, > 0 vertically below ~, 5). It follows that
0<a, < % (or 0 < b, < %) If r is above t, then 7, g intersects + = n at a
vertical distance 0 < a; < % above (or at) ¢, and we have y —m < a, +a; < 1.
If r is below ¢, then v, g intersects + = n at a vertical distance 0 < b, < %
below (or at) ¢, and we have m —y < b, + b, < 1.

Now we show that u is a digital straight segment if G/(u) satisfies the chord
property. The following proof, due to (Ronse 1985; Ronse 1986), uses the
Transversal Theorem (Santalé 1940):

Consider a finite family F of parallel straight segments in the plane RZ2
If every three segments in F have a common transversal, then there is a
transversal common to all the segments in T.

A transversal of a straight segment o in R? is a straight line in R? which
intersects o but is not incident with o.

Assume that the 8-arc u connects grid point (n,yo) to grid point (n + m, yn,),
with m > 0 and y,, — yo < m. In case y,, — yo = m we have a diagonal, and
the chord property implies that G/(u) contains exactly all grid points along
this diagonal, i.e. u is a digital straight segment.

Assume y,, — yo < m — 1 from now on. Let T;, 0 < ¢ < m, be the set of all
grid points in G(u) on grid line @ = n 4 i. The chord property implies that
T; # 0 for 0 <7 < m, and that for any 7, 0 < i < m, there are two integers [;
and wu; such that T} is the set of all grid points (n + ¢, y) with [; <y < u;. We
assign a (real) straight segment L(p) to any grid point p = (x,y):

Lip)={(z,v): y—05<v<y+05}.

Let L; be the union of all straight segments L(p) of all grid points p in T}, for
0 <7< m. We have

Li={(n+i,v): [—05<v<wu+05},



and these straight segments form a family F = {Lo,..., L,,} which satisfies
the precondition of the Transversal Theorem:

Clearly Lo,..., L, are parallel straight segments. Consider three segments
L, L;, Ly with 0 <1 < 7 < k£ < m. Consider two grid points p € L; and
q € Li. The straight segment pq intersects the grid line x = j in a point
r = (J,y-). By the chord property, there is a grid point ¢ = (a4,y:) € G(u)
such that doo(r,t) < 1, i.e. ¢ is also on the grid line @ = j, i.e. @y = j. Let s
be the midpoint of the straight segment r¢, and let ¢ = |y; — y,|/2. Consider
a straight line v parallel to pg and passing through point s. Then ~ intersects
the grid line x = ¢ at ¢, +cor v, —e, and x =k at z,+ ¢ or &, — . Because
e < 0.5 it follows that v intersects L(p), L(t) and L(q), i.e. it intersects L;,
LJ‘, and Lk

By the Transversal Theorem it follows that there is a straight line v intersect-
ing all the segments L;, with 0 < ¢ < m. It remains to show that such a line
generates all the grid points in G'(u) following the grid-intersection digitization
definition.

FEach set T; contains a grid point p; such that v intersects L(p;). We have py =
(n,y0) and p,, = (n4+m, yy). Let go and ¢, be the intersection points of v with
L(po) and L(py,), respectively, i.e. o = (n,y0 + A) and ¢, = (n+ m, y,, + p),
with —0.5 < A, ¢ < 0.5. The horizontal distance between ¢y and ¢,, is m, and
the vertical distance is |[yo+A—ym —pt| < |Yo—ym|H|A—p| < m—1+|A—p| < m.
The straight segment gog,, forms an angle smaller than 45° with the horizontal
line, i.e. its grid-intersection digitization is specified by intersections with the
vertical grid lines z =n +1, 0 <7 < m.

Grid-intersection digitization of goq,, generates a sequence of grid points pg, py,
<oy Pm, and all these grid points lie in the given set GG(u) because 7 is a transver-
sal of all segments L;, 0 <1 < m. Because u is an irreducible 8-arc it follows
that Gi(u) contains only the points po, p1, ..., pm. O

There are infinitely many irreducible two-sided infinite 8-arcs that satisfy the
chord property without being digital straight lines, for example 0¥10¥, or
(in general) ‘sparse’ occurrences of 1’s in 0. The above theorem was used
in (Rosenfeld 1974) to derive the following necessary conditions for (the chain
code sequences of ) digital straight segments [A run is a maximum-length factor
a”, for a € Al]

(R1) “The runs have at most two directions, differing by 45°, and for one of
these directions, the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.

(R3) One of the runs can occur only once at a time.

(R4) ..., for the run length that occurs in runs, these runs can themselves
have only two lengths, which are consecutive integers; and so on.”



These properties (actually listed as 1), 2), 3) and 4) in the historic source)
still do not allow a formulation of sufficient conditions for the characterization
of a digital straight segment, but they specify (F3) by a recursive argument
on run lengths.®

The chord property is equivalent to a compact chord property which uses the
real polygonal arc joining the points of the digital straight segment rather
than the real line segment joining the endpoints, and the dj-metric (corre-
sponding to 4-adjacency) rather than d., (corresponding to 8-adjacency); see

(Sharaiha and Garat 1993).

The property of evenness (i.e. ‘on a digital straight segment the digital slope
must be the same everywhere’), as discussed in (Hung 1985), is equivalent
to the chord property (see Section 4 regarding balanced words which specify
evenness). In (Hung and Kasvand 1984) it is shown that the absence of runs
that differ by more than 1 is equivalent to the chord property.

It was later proved (Arcelli and Massarotti 1975; Arcelli and Massarotti 1978)
that point sequences generated by (a version of) Brons’ parallel algorithm pos-
sess the chord property. The formal language L of digital straight segments is
context-sensitive; see (Feder 1968; Rothstein and Weiman 1976; Pavlidis 1977;
Wu and Weng 1986). This implies that linear-bounded or cellular automata
can be specified for the recognition of digital straight segments using ‘string
rewriting rules’. A result in the theory of words says that the complement
{0,1}7\ L of the set of all digital straight segments is a context-free language
(Dulucq and Gouyou-Beauchamps 1991).

Criteria (F1-F3) are defined in a precise way in (Hiibler et al. 1981) following
the recursion idea in (R1-R4). To prepare for this definition, we first introduce
the following concepts:

Let s = (s(4))ier be a finite or infinite word over N, for an index interval I C Z.
A letter (number) k is singular in s iff

e it appears in s, and
o forallie [, if s(i)=kthens(i—1)#kand s(t4+1)#k,ift—1andi+1

are in /.

A letter k is nonsingular in s iff it appears in s and is not singular in s. A word
s is reducible iff it contains no singular letter, or any factor of s containing
only nonsingular letters is of finite length. Assume s to be reducible, and let

R(s) be
(1) the length of s, if s is finite and contains no singular letter, or
6 Alternative proofs of some of the results in (Rosenfeld 1974) (at most two run

lengths, which are successive integers, and one of which occurs only as singletons)
are given in (Gaafar 1976; Gaafar 1977).



(2) the word that results from s by replacing all factors of nonsingular letters
in s, which are between two singular letters in s, by their run lengths,
and by deleting all other letters in s, or

(3) the letter a if s = a*.

A recursive application of this reduction operation R produces a sequence of
words: sg = s, and s,41 = R(s,), for all or just a finite sequence of n € N.

[An example is given in Fig. 7, for sg = CCy, 51 = CCy, and s; = CCy.]

The definition as used in (Hiibler et al. 1981) is as follows (formulation fol-
lowing (Hiibler 1989)):

Definition 12. A chain code sequence ¢ of a two-sided infinite 8-arc satisfies
the DSL property iff ¢co = ¢ and ¢,41 = R(¢,) are reducible words, for n € N;
and any sequence ¢,, n > 0, satisfies the following two conditions:

(L1) There are at most two different letters ¢ and b in ¢,, and if there are two,
then |a — b = 1 (counting modulo 8 in the case of ¢p).

(L2) If there are two different letters in ¢, then at least one of them is singular
n ¢,.

Following this definition for the case of digital straight lines, it was possible
(Hiibler et al. 1981) to derive a definition of a digital straight segment that
allowed the formulation of a necessary and sufficient condition for such chain
code sequences. Possible finite words of nonsingular letters at both ends of a
finite word require special attention. Let [(s) and r(s) denote the run lengths
of nonsingular letters to the left of the first singular letter, or to the right of the
last singular letter, respectively, for a finite word s. The following definition is
a citation from (Hiibler 1989):

Definition 13. A finite chain code sequence ¢ satisfies the DSS property iff
co = c satisfies conditions (L1) and (L2), and any nonempty sequence ¢, =
R(cp-1), for n > 1, satisfies (L1) and (L2) and the following two conditions:

(S1) If ¢, contains only one letter a, or two different letters ¢ and a + 1, then
l(cho1) <a+1and r(emr) <a+ 1.

(S2) If ¢, contains two different letters a and @+ 1, and « is nonsingular in ¢,,
then if {(¢,—1) = a + 1 then ¢, starts with a, and if r(¢,—1) = @ + 1 then
¢, ends with «a.

(Wu 1982) proves that an algorithm which accepts exactly those 8-arcs satis-
fying the DSS property recognizes just the chain code sequences of all finite,
irreducible 8-arcs that have the chord property (an earlier paper, not yet
containing this result, is (Wu 1980)). This concluded in 1982 the process of
specifying Freeman’s informal constraints (F1-F3), providing an important set
of constraints for the design of efficient DSS recognition procedures. We cite
(without proof at this stage, but see the continued-fraction discussion later



on):

Theorem 14. (Wu 1982) A finite 8-arc is a digital straight segment iff its
chain code sequence satisfies the DSS property.

Note that (Wu 1982) does not contain a theorem but statements about an
algorithm specified by a flow-chart. However, it is easily seen that this algo-
rithm is actually an implementation of the DSS property as cited above, i.e.
(Wu 1982) actually contains a proof of Theorem 14, covering the generation
of straight lines having rational or irrational slopes.

(Wu 1982) also considers the case of infinite code sequences and shows that
any finite factor of a two-sided infinite chain code sequence ¢ satisfies the
DSS property iff there is exactly one straight line with slope o and intercept 3
defining ¢ by grid-intersection digitization. Based on this result, (Htibler 1989)
concluded:

Theorem 15. (Hiibler 1989) A two-sided infinite S-arc is a digital straight
line iff its chain code sequence satisfies the DSL property.

Wu’s proof of Theorem 14 shows the equivalence of the chord property and
the DSS property for irreducible finite 8-arcs; this proof is based on number
theory and consists of many case discussions. Researchers therefore tried to
find shorter, ‘more elegant’ proofs of Wu’s theorem.

Material for a concise proof of Wu’s theorem based on properties of Farey series
was published in (Dorst and Duin 1984), again in the form of an algorithm .
Proofs of Wu’s theorem based on continued fractions were published in 1991 in
two independent papers (Bruckstein 1991; Voss 1991)%; see also (Voss 1993).
The use of continued fractions for modelling digital rays was already discussed

in (Brons 1974).

Assume a rational digital straight line with slope ay/ag, with integers aq >
a; > 0. The rational number ay/aq can be represented as a finite continued

fraction,

aq 1

a_o_[q17q27"'7qn]_q1_|_q2+ 1 )

1

Qn—1+an
" The DSL property is called ‘linearity conditions’ in this article. See also our
discussion of (Dorst and Duin 1984) in Section 5.
8 The paper (Bruckstein 1991) not only provides a continued fractions proof of Wu’s
theorem, but the entire class of selfsimilarity properties of digital straight lines is

characterized via the special linear group of actions mapping the 2D orthogonal grid
into itself.



with integer coefficients ¢; > 0, for 1 < ¢ < n. The Euclidean algorithm can
be used to derive such continued fractions:

a a ) a
—0:q1+—2 with 0<—2<1,
a1 a1 a1
a a . a
—1:(]2—|-—3 with 0<—3<1,
a2 a2 a2
.................. ,
Gy .
"2 = Gt with 0 < —"- <1,
ap—1 ap—1 ap—1
ap—1 .
=gq, with a,11 =0
Gn,

Irrational numbers can be represented by infinite continued fractions.

The numerical value of a continued fraction can be expressed in the form of
multiples of ¢,,
G | = Gndn + B
ao = 915925 --54n] = 7nQn+5n ’
where «,,, 8., 7,0, are defined by the coefficients ¢, q2,...,¢,—1. [For n >

1 we have «a,0, — 8,7, = (—1)".] For n > 1 we derive

Opt1Gn+1 ‘I’ ﬁn-l—l
Yn4+14n+1 ‘I’ 5n+1

[q17q27 .- -anan-I—l] =

1 o (qn + qn1+1) +
= q17q27"'7qn—17qn+ = 1
nt1 T (Qn + qn+1) + 5”
_ Oy, (QnQn—I—l —I' 1) ‘I’ ﬁnQn—I—l
’Yn (QnQn—I—l —I' 1) ‘I’ 5nQn—|—1 ’
and thus
an+1Qn+1 —I' ﬁn—l—l . (anQn —I' ﬁn) Qn—l—l —I' Oy, (1)

7n+1Qn—|—1 —I' 5n—l—1 B (’YnQn —I' 571) Qn—l—l —I' ’)/n ‘

Continued fractions are used in (Bruckstein 1991; Voss 1991) to characterize
digital straight lines. Related results in number theory (Irwin 1989) have been
of use in these studies. We review the related definitions and results as given

in (Voss 1993).

Consider a straight line [passing through (0,3), where (3 is irrelevant for
periodicity properties] having rational slope a/b, with ged(a,b) = 1. The
translation-invariant characteristic triangle of the class of straight lines hav-
ing the same slope, defined by integers «a, b, is given by any triple of vertices
(x,y), (x+a,y), (x,y+b), for arbitrary « € R. Let T}, ¢ = 1,2, be two such char-
acteristic triangles specified by integers a;, b;, with ged(a;, b;) =1, for ¢ = 1, 2.
We define the concatenation (a1/b1)® (az/bs) to be a/b, where a = % (a1 + as)
and b = 1(by +by), for an integer ¢ such that ged(a,b) = 1. In geometric



interpretation, the concatenation of triangles Ty and T) is that characteristic
triangle which is defined by the slope a/b.

For example, let ay = 3, by = 7, and ay = 5, by = 9. It follows that (3/7)@(5/9)
is defined by ¢-a = a; + a3 = 8 and ¢- b = by + by = 16, with ¢ = 8. The

defined concatenation is commutative. We define 0 - (a/b) = (a/b).

Using Equ. 1 we express the slope a1/ag = [¢1, ¢z, .., ¢.] of a characteristic
triangle as

(an—IQn—l —I' ﬁn—l) dn —I' ap_q

(’Yn—l%—l + 5n—1) Gn, + V-1
_ (an—IQn—l + ﬁn—l) (qn B 1) + Q1 (Qn—l + 1) + ﬁn_1

B (Vn-1Gn-1+ 0n-1) (G — 1) + Y1 (gu—1 + 1) + 01 '

Therefore, the characteristic triangle defined by slope aq/aq is equal to the
result of repeated concatenations @ of one (isolated) characteristic triangle
with slope [¢1, g2, ..., qn—1 + 1] and ¢, — 1 (non-isolated) triangles with slope
(1,92, - - -, Ga—1]. Depending on an odd or even value of n we choose

SRR + 1@ (gn — 1 5425 -5 4n-1], if n even
[%7927- . 7Qn] = { [Q1 e dn-1 ] (q )[ql 92 q 1]

B (qn - 1) [q17q27 . '7qn—1] ® [q17q27 <oy Gn—1 + 1]7 if n odd

which is called the splitting formula in (Voss 1993). A splitting process can
continue until only atomic slopes [q] = 1/q are obtained, for positive integers
g. An atomic slope [¢] can be encoded by ¢ — 1 0’s and one 1. Alternating
splitting formulas for odd and even values of n (note: the same value, due to
the commutativity of @) guarantee a balanced code sequence.

For example, consider a rational digital straight line with slope 46/87 =
[1,1,8,5]. We obtain
[1,1,8,5] =[1,1,9] @4 -[1,1,8] (note: n =4 is even)
=@-2le(2el)) o4 (7-2e (2 0]),

which corresponds to the following finite word on alphabet {0,1} of length 87
encoding the sequence of all atomic slopes (brackets inserted for clarity):

(0101010101010101)(011)

((01010101010101)(011))
((01010101010101)(011))
((01010101010101)(011))
((01010101010101)(011)) ,

containing 46 1’s.

The splitting formula allows us to prove Freeman’s conjecture and Rosenfeld’s
refined hypothesis in a very ‘compact’ form. Assume that n is even, and we



apply the splitting formula twice, first for n and then for n — 1,

(a1, G2s ooy @n) = (=1 - [q1, G2, -y 2] @ [@1, G2y ooy Gz + 1])
®(qn — 1) . ((qn—l — 1) . [q17q27 "'7qn—2] @ [q17q27 coey @n—2 + 1]) 9

which represents at level n the isolated slope (or in geometric interpreta-
tion: the isolated characteristic triangle) [¢1,q2,. .., ¢u—2 + 1], and the non-
isolated slope (the non-isolated characteristic triangle) [¢1, ¢z, ..., ¢u—2]. The
run lengths ¢,_; and ¢,_1 — 1 of these non-isolated slopes or triangles differ by
1. If n is odd, the given expression is ‘reversed’, following the splitting formula.

Note that this proof handles only digital straight segments that are factors of
rational rays, and that this is actually the class of all DSSs; see Corollary 19.

4. Periodicity Studies in the Theory of Words

Self-similarity studies have a long history in number theory and astronomy.
The theory of words (Lothaire 1987; Lothaire 2002) is a more recent discipline
which also contains many interesting results on self-similarity, often with a spe-
cial focus on irrational straight rays. Rational digital rays are specific periodic
infinite words, and irrational digital rays are aperiodic infinite words which
are studied under the name of Sturmian words.® This section gives basic def-
initions and results as presented in (Lothaire 2002). We also give a few proofs
for purposes of illustration.

Let w be a finite or infinite word over A = {0,1}. Let F(w) be the set of
all factors of w, and let F},(w) be the set of all factors of w of length n. The
complexity function of w is defined by

P(w,n) = card(F,(w)), forn >0 .

P(w,0) =1 (the empty word is always a factor), and P(w, 1) is the number
of letters appearing in w. For an infinite word w, P(w,n) < P(w,n + 1) since
every factor of length n can be extended to the right by at least one letter. Fur-
thermore, F,4,(w) C F,(w)F,(w) implies P(w,m +n) < P(w,m)P(w,n).

Consider an infinite periodic word w with period k. Then P(w,n) < k, for
all n > 0, 1.e. the complexity of a periodic word is limited by its period.
The following theorem from (Coven and Hedlund 1973) shows that the in-
verse conclusion is true as well, and generalizes these statements to eventually
periodic words. Rational digital rays are periodic infinite words as stated in

? Named after the mathematician C.F. Sturm (1803-1855). We follow
(Lothaire 2002) with respect to the definition of Sturmian words. Some authors
also used the name ‘Sturmian words’ for lower digital straight lines; see, for exam-
ple, (Berstel and Pocchiola 1993).



Theorem 3. For example, 10* is not periodic but is eventually periodic, and it
is not a rational straight ray either.

Theorem 16. (Coven and Hedlund 1973) The following conditions on an
infinite word w are equivalent:

(i) w is eventually periodic,
(ii) P(w,n) = P(w,n + 1) for somen >0,
(iii) P(w,n) < n + k — 1 for some n > 1, where k is the number of letters
appearing in w,

(iv) P(w,n) is bounded.

Proof: ' (i) = (iv): Let w = wv¥. Then P(w,n) < |uv|, for all n > 0.

(iv) = (iii): Let P(w,n) < p for all n > 0. If k£ is the number of letters
appearing in w then P(w,1) =k < p,i.e.p>k+1. Then P(w,p—k+1) < p.

(iii) = (ii): Assume (ii) is not true, i.e. P(w,m —1) < P(w, m), for all m > 0;
then we would have n + k — 1 > P(w,n) > P(w,1)+n—1=%k+n—1, for

some n > 1, which is impossible.

(ii) = (i): Consider the factor graph G,(w) which is a labelled graph with
node set F,(w) and edge set £ = {(bu,a,ua) : a,b € AANbua € F,11(w)}.
The edges in £ are composed of two nodes and one label. There is at least
one edge starting at each node in G,,(w) because every factor of length n is a
prefix of a factor of length n+ 1. Since P(w,n) = P(w,n+ 1) there is actually
exactly one edge leaving each node, i.e. any strongly connected component of
G (w) is a simple circuit. The word w is the label of an infinite path passing
through G, (w), i.e. it will loop through a fixed circuit after some prefix, i.e.
its labels are eventually periodic. O

A sequence (v, ),>0 of finite words over an alphabet A converges to an infinite
word w if every prefix of w is a prefix of all but a finite number of words v,,.
For example, the sequence 0”1" converges to 0“.

Let fo =0, fi =01 and f,41 = f.foo1, for n > 2. The sequence of lengths
| f.] is the Fibonacci sequence Fy = 1, Fy = 2, F5 =3, F; = 5,... The sequence
(fa)n>o converges to the Fibonacci word

f =0100101001001010010100100101001001...

and, for example, 01001 is a prefix of f, for n > 4. The Fibonacci word can
also be defined by a morphism: for

001
70

10 Citation of proof of Theorem 1.3.13 in (Lothaire 2002) as given by J. Berstel and
P. Séébold.




we have f = ¢“(0).

Definition 17. A Sturmian word is an infinite word w = ajasas... over a
binary alphabet A that has exactly n 4 1 factors of length n, for every n > 0.

Any suffix of a Sturmian word is again a Sturmian word. The Fibonacci word

is Sturmian. The Thue-Morse word t = p*(0) = 0110100110010110. . ., with

001
1510

is another example of a Sturmian word.

A Sturmian word w is defined by P(w,n) = n + 1, for n > 0. According to
Theorem 16, any aperiodic word has complexity P(w,n) > n 4+ 1, for n > 0,
i.e. Sturmian words have minimal complexity P(w,n) among aperiodic infinite

words. The value P(w,1) = 2 shows that w is defined on a binary alphabet,
here A = {0, 1}.

A right special factor of an infinite word w is a finite word u such that «0 and
ul are factors of w. A word w is Sturmian iff it has exactly one right special
factor of each length n > 0. The empty word is always the right special factor
of length zero. For the Fibonacci word f we have: 11 is not a factor, so 0 is
the only right special factor of length 1; 000 and 011 are not factors, so 10 is
the only factor of length 2: etc.

The height h(w) of a word w € A* is the number of letters equal to 1 in w.
Given two words v and w of the same length, §(v,w) = |h(v) — h(w)] is their
balance. A set X C A* of words is balanced iff |v| = |w]| implies é(v,w) < 1
for all pairs of words v,w € X." An infinite word w is balanced if its set of
factors is balanced.

The slope of a nonempty word w is the number 7(w) = h(w)/|w|. We have

_ |yl 0]
m(uv) = |uv|7r(u) + |uv|7r(v) )
It is possible to show (Lothaire 2002) that an infinite word w is balanced iff,
for all non-empty factors u, v of w, we have

1 1
m() = m(o)] < =+
ul o]
This shows that the sequence of slopes is a Cauchy sequence, i.e. a balanced
infinite word possesses a uniquely defined slope based on the slopes of its finite
prefixes. Let w be an infinite balanced word, and let w,, be the prefix of length

' (Hung 1985) calls non-balanced words uneven and shows that an infinite 8-arc
has the chord property iff it has no uneven finite factors.



n of w, for n > 1. Then the sequence (w(w,)),>1 converges for n — oo . For
example, for the Fibonacci word f we have h(f,) = F,—2 and |f,| = F,, and
F,._2/ F,, converges to m(f) = 1/7% with 7 = (1 + \/5)/2

Digital rays, i.e. infinite words, are defined for rational or irrational slope by
using the slope of the generating ray. The following theorem was actually
formulated for mechanical words (Morse and Hedlund 1940), which is what

digital rays are called in the theory of words.

Theorem 18. (Morse and Hedlund 1940) Let w be a digital ray with slope
«. Then w is balanced of slope «.

Proof:'? Let w be a lower digital ray. The height of a factor u = w(n)...
w(n + p — 1) is the number h(u) = |a(n + p) + 3] — [an + 3]; thus

a-Jul—1<h(u)<a-|ul+1, ie |a-|ul] <h(u) <1+ |a-|ul] .

This shows that h(u) takes only two consecutive values when u ranges over w
factors of fixed length, i.e. w is balanced. Moreover, it follows that

o) = ) el < 1.

— o
|ul

and thus m(u) — « for |u| — oo, and « is the slope of w as defined for balanced
words. O

Note that the inequality |7(u) — | < 1/|u| also provides a criterion for evalu-
ating the accuracy of an estimated slope based on a finite digital straight seg-
ment. An alternative method of evaluating the accuracy of an estimated slope
will be discussed at the end of Section 5. This inequality |m(u) — af < 1/]u|
also allows us to state that ‘rational digital rays are sufficient for studies in
pattern recognition’:

Corollary 19. Any digital straight segment is a factor of a rational digital
ray.

Proof: An interval in [0, 1) of width 1/|ul|, containing an irrational number «,
also contains rational numbers o' satisfying |7 (u) — o/| < 1/Jul. O

We conclude this section by citing the main theorem on irrational digital rays:

Theorem 20. (Morse and Hedlund 1940) The following conditions are equiv-
alent for an infinite word w:

(i) w is Sturmian,

12 Citation of proof of Lemma 2.1.14 in (Lothaire 2002) as given by J. Berstel and
P. Séébold.



(ii) w is balanced and aperiodic,
(iii) w is an irrational digital ray.

Note that a balanced infinite word is not always a digital ray when the slope
is rational. For example, 01* is not a digital ray. It has slope 1, but [; 3 = 1.
Only (purely) periodic infinite balanced words are rational digital rays. Peri-
odicity studies for digital rays may also be based on signal-theoretic (Fourier
transform) methods; see (Lee and Fu 1982), allowing characterizations of ap-
proximate periodicity.

5. Number-Theoretical Studies

We have already cited several studies in which number theory has contributed
to studies on digital straightness. The following theorem from (Mignosi 1991)
is from the theory of words:

Theorem 21. (Mignosi 1991) The number of balanced words of length n is

n

1+> (n+1-1)0i),

=1

where ¢ is Fuler’s totient function.

A finite word u is balanced iff it is a factor of some irrational digital ray
(Lothaire 2002). By Corollary 19 it follows that any finite balanced word u is
also a factor of some rational digital ray, i.e. Theorem 21 actually specifies the
number of digital straight segments of length n starting at the origin (0,0).
Asymptotic estimates for the number of DSSs of length n are also given in
(Berenstein and Lavine 1988). An alternative proof of Theorem 21 and also an
algorithm for random generation of lower digital straight segments of length
n is contained in the technical report (Berstel and Pocchiola 1993).

(Koplowitz et al. 1990) considers the same set of segments u of lower digital
rays, defined by 0 <2 <n,0<a <1,and 0 < 3 < 1, i.e. the first grid point
in the set G(u) of assigned grid points is (0,0), and G(u) contains exactly
n + 1 grid points. See (Lindenbaum et al. 1988) for earlier, related studies;
(Lindenbaum 1988) uses the author’s results on the number of DSSs on an n-
by-n grid to show that piecewise DSS coding of digital curves requires O(n?)
table entries.

In (Koplowitz et al. 1990) it is shown that the number of such digital straight
segments passing through the origin is

L-n3—|—<O)(nz-logn). (2)

T2



The Euler function ¢(¢) satisfies the formulas

. 3 Uy , 2
qu(z)% —2-n2 and ;z-qb(z)zp-n?’,
i.e. the formula in Theorem 21 can be transformed into the formula pub-
lished in (Koplowitz et al. 1990). Suggestions about using Farey series for
modelling digitized lines were already made in (Montanari 1968; Brons 1974;
Rothstein and Weiman 1976; Dohler and Zamperoni 1985).

A Farey series F(n) of order n > 1 is defined as the ascending series of
irreducible fractions between (0 and 1 whose denominators do not exceed n,
i.e. all rational numbers ag/ay, with 0 < ag < a; < n and a¢ and a; relatively
prime, sorted in increasing order. For example, for n = 5 we have the sequence

01112132341

IR i
In (Rothstein and Weiman 1976) it is shown that digital straight segments of
length n, passing through the origin, are in one-one correspondence with the
nth Farey series. This is actually already a proof of the formula (2).

There is an obvious one-one correspondence between the set of digital line
segments starting at (0,0) and the set of linear partitions of an n xn orthogonal
grid, where a linear partition of a set S is defined to be any partition of S
into sets X and S\ X by a line 4 such that the sets X and S\ X belong to
different halfplanes defined by line . Of course, any digital straight segment
consisting of n 4+ 1 points and beginning at (0,0) defines exactly one linear
partition, but there are also further linear partitions of the n x n grid which
do not correspond to digital rays starting at (0,0).

The number of linear partitions of an m x n orthogonal grid is considered in
(Acketa and Zuni¢ 1991). There it is shown that the number of such partitions
is equal to

%-mQ-n2 + O(m?-n-logn + m-n*-loglogn) (3)

where it is assumed that m < n. This result can be understood as the ‘capacity’
of a digital picture of size m x n with respect to digital rays, i.e., it shows how
many digital rays can be discriminated by digitization on an m x n orthogonal

grid.

Both asymptotic formulas, for the number of digital straight segments and for
the number of linear partitions, can be derived by using well-known formu-
las for average values of number-theoretical functions and Riemann-Stieltjes
integration.

(Dorst and Duin 1984) developed a theory of spirographs for establishing links
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Fig. 5. Five intersection points (left) for grid lines n = 0,1,...,4, mapped into a
spirograph (right).

between digital rays and number theory (Farey series, continued fractions).
Figure 5 shows on the left a ray y = ax, with 0 < a < 1, passing through grid
point (0,0) and intersecting grid line & = 0 in the interval [0,1), and a few
parallel shifts of this ray. For any grid line x = n there is exactly one grid point
(n,y,) such that ray y = ax + 3, passes through (n,y,) and intersects grid
line = 0 in the interval [0,1). Spirographs'® are diagrams which visualize
and model the distribution of these intersection points in [0,1). See Fig. 5
on the right: Assume a circle with perimeter 1 and mark a first node on this
circle representing the intersection point with grid line z = 0, i.e. §p = 0. In
clockwise orientation, proceed from the first node to a second node on the
circle at radial distance o representing the intersection point with grid line
x =1, etc.

Definition 22. A spirograph S(a,n) is a set of n points on a circle with unit
perimeter, marked 0,1,...,n — 1, and defined by parallel rays with slope «
intersecting grid lines t = 0,z =1,...,2 = n — 1 at grid point positions.

For simplicity we identify these points in S(a,n) with their marks. If o is
rational then there is only a finite number of such rays, creating a finite set
of intersection points in [0, 1), with a periodic repetition of these intersection
points for n to infinity, and thus only a bounded number of marked points on
the spirograph, for any n. The topology of a spirograph S(a,n) is the order
modulo n of the marked points on the circumference of the circle.

The intervals between intersection points in [0, 1), for « rational, specify in-
tervals of intercepts (3 such that y = ax 4+ [ leads to the same lower digital
ray for all values 3 within the same interval (see Theorem 2).

The distance D,(1, ) between two points ¢,7 € S(a,n), 0 < 4,5 < n, is the
length of the arc extending anticlockwise from ¢ to j:

Da(i,g) = (1 =j)o = (1 =J)e] .

13 The name is that of a children’s toy for drawing curves.
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Fig. 6. Right: the maximum error of 3 is 1 or 0.5, respectively for &« = 0 or o = 0.5.
Left: the maximum error of 3 as a function of the estimated a-value, for n = 6
(Dorst and Duin 1984).

The smallest distance Dyigpne to the right (clockwise) of point 0 € S(a,n) is
Diight = min{D,(2,0) : t Z0 A2 € S(a,n)}. Let

iright = mm{k 7£ 0:k € S(Oé, n) A Da(k, 0) = Dright}
be the point determining this minimum distance. Similarly, let
Diege = min{ D, (0,2) : ¢ Z0A 7 € S(a,n) A Dy(0,4) # 0}

and

i]eft = max{k 7£ 0:k - S(oz,n) A Da((),k) = D]eft} .

Now we are prepared to state a few results from (Dorst and Duin 1984) using
their theory of spirographs. We select those related to the possible accuracy
of estimating the slope and the intercept of a generating ray as a function of
the length of the given digital straight segment.

By definition, Dyight = Qtlright — | Qlright] and Diery = @iy — | @tiege | Therefore
the bounds on « that preserve the topology of the spirograph are

Lovdvigne] _ - [oien

lright Ueft

and these bounds for a are the best rational approximations for o with frac-
tions whose denominators do not exceed n — 1. The proof of this fact can be
based on the property that |oviyighe]/trighe and |aiefe | /tiese, With tyigne and g
obtained from spirograph S(a,n), are two successive fractions in the Farey
series F'(n —1).

The intercept estimation problem is illustrated on the left in Fig. 6. Every
pair of values of o, 0 < o < 1, and n, n > 1, allows an interval of -values,
0 < 3 < 1 of possible intercepts such that the given lower straight line segment
of length n is a digitization of ray ax+ . The width of this interval is defined to
be the maximum possible error Fuyax(o, n). The calculation of error diagrams,
see the left of Fig. 6 for an example, is possible based on spirograph studies.



The maximum error Epax(a,n) is defined by the maximum arc length in
spirograph S(e,n):

Theorem 23. (Dorst and Duin 1984) We have Enax(o,n) = Dyight + Diett,
where the distances Diighy and Dy are calculated in spirograph S(o,n + 1).

The formula Dyigh + Diete = [Qliefe]| — | @lright] + 0(tright — tiere), with values
from S(a,n + 1), allows a simple calculation of the errors Epax(a,n). If o is
a fraction a/b in the Farey series F'(n), then Epax(a/b,n) = 1/b.

6. Algorithms for DSS Recognition

By now there have been many publications on (efficient) DSS recognition al-
gorithms. The computational problem is as follows: The input is a sequence
of chain codes i(0),:(1),... with i(k) € {0,1}, & > 0. An off-line DSS recog-
nition algorithm decides for finite words u € {0,1}* whether u is a digital
straight segment or not. An on-line DSS recognition algorithm reads successive
chain codes i(0),i(1),... and specifies the maximum length & > 0 such that
1(0),4(1),...,i(k) is a digital straight segment, and ¢(0),(1),...,i(k),e(k+1)
is not. A recognition algorithm has linear run time behavior (a linear algorithm
for short), i.e. it runs in O(n) time, if it performs at most O(|u|) basic compu-
tation steps for any finite input word u € {0, 1}*. Analogous definitions can be
given for 4-DSS recognition algorithms. An on-line algorithm is linear if it uses
on the average a constant number of operations for any incoming chain code
symbol. Linear off-line algorithms for DSS recognition based on the DSS prop-
erty (as defined in Definition 13) were published in (Hiibler et al. 1981) and
(Wu 1982).'* A linear off-line algorithm for cellular straight segment recogni-
tion, based on convex hull construction, is briefly sketched in (Kim 1982). For
a region R C Z?* consider the union R, of all square isothetic closed cells hav-
ing grid points p € R as their center points and edges of length 1. Following
(Kim and Rosenfeld 1982), a region R is digitally convex iff all closed poly-
gons in the exterior of R., defined by the frontier of R. and straight segments
between grid points in R, do not contain any grid point not in R. It is then
shown in (Kim and Rosenfeld 1982) that a digital region R is digitally convex
iff any two points of R are connected by a DSS in R. A finite set of lattice
points that lie between two lines at unit min(horizontal,vertical) distance is a
DSS. A digital arc is a DSS iff it is convex. Convexity can be recognized in
perimeter time by a cellular array.

The extended abstract (Kim and Rosenfeld 1981) discusses digital arcs and
digital convexity: a digital arc is a DSS iff it has the chord property; a digital
set is digitally convex iff the convex hull of its set of corner points contains

14 (Hung 1985) discusses a flaw in the Wu algorithm.



no corner point of its complement; and a digital arc is a DSS iff it is digitally
convex (this is proved for several definitions of digitization in (Kim 1982a)).
These conditions can be checked in linear off-line time using run length coding.
Algorithms in (Kim 1982a) deal with determining whether a digital region is
a digital convex n-gon.

Two detailed linear on-line algorithms for DSS recognition were published in
(Creutzburg et al. 1982); one of them is an on-line version of the off-line algo-
rithm published in (Hiibler et al. 1981). Algorithms for polygonal approxima-
tions of digitized curves, not directly related to models of digital straightness

(such as (Montanari 1970; Sklansky and Gonzalez 1980; Dettori 1982)) will

not be reviewed here.

The general problem of decomposing a 4- or 8-arc into a sequence of 4-DSSs or
DSSs, which includes 4-DSS or DSS recognition as a subproblem, is discussed
in many publications, such as (Kovalevsky 1990; Smeulders and Dorst 1991;
Debled-Rennesson and Reveilles 1995; Klette and Yip 2000). Obviously, lin-
ear on-line DSS recognition algorithms will support linear decomposition al-
gorithms, but linear off-line algorithms will only allow quadratic run-time
behavior.

The design of a DSS recognition algorithm may be based on a unique charac-
terization of digital straight segments, such as

(C1) the original definition of a DSS based on grid-intersection digitization,

(C2) a characterization by pairs of tangential lines (special cases: (C2.1a)
Theorem 4, (C2.1b) Corollary 2.3, (C2.2) Theorem 7, and (C2.3) Theo-
rem 9,

(C3) the equivalence with the chord property; see Theorem 11, or

(C4) the DSS property; see Theorem 14,

and further characterizations'® have also been used for the design of DSS
recognition algorithms. Approaches following (C4) are normally called lin-
guistic techniques. For an early version of a linguistic DSS recognition algo-
rithm see (Rothstein and Weiman 1976); however, this was not yet based on
the correct DSS property, which became known later.

We review in detail one of the historically first linear on-line algorithms for
DSS recognition as published in (Creutzburg et al. 1982) which utilizes the
DSS property (C4).

15 For example, (Kishimoto 1996) gives three necessary and sufficient conditions
(detailed definitions omitted here) for a digital arc to be a DSS: (i) its total absolute
curvature is zero, (ii) its width in some direction is zero, and (iii) its length in some
direction is less than half the perimeter of its convex hull.



CCy=11011101110111011110111011101111011101110
11110111011101110111101110111011110111

5(0)=0, n(0)=1, [(0)=2, r0)=3

C'Cy = 33343343343334334

s(ly=4, n(l)=3, I(1)=3, r(1)=0

C'Cy = 2232
s(2)=3, n(2)=2 12)=2 r@2)=1
003 =

Fig. 7. Input example for algorithm CHW _1982a (Creutzburg et al. 1982).

Algorithm CHW _1982a

The input sequence is CC = ¢(0)i(1)i(2)...i(n), i(k) € A = {0,1,...,7}
for 0 < k < n. Let CCy = CC, and, if CCy_; # ¢ (the empty word) then
CCr = R(CCk_1) where R denotes the reduction operation used for defining
the DSL and DSS properties in Section 3. Let (k) and r(k) be the run lengths
of nonsingular letters to the left of the first singular letter in C'Cy, or to the
right of the last singular letter; see Definition 13. Let s(k) be the singular
element in C'Cy if there is one, otherwise let s(k) = —1; and let n(k) be the
second element in C'Cy if there is one, otherwise let n(k) = —1. See Fig. 7
for an example. The input chain code C'Cy is now represented by a syntactic
code, which is

r
3
0
1

DO W | =~

s n
0 1
k= 4 3
k=2 3 2
for the example in Fig. 7. A syntactic code consists of integers in four columns
s,m,l,r. The DSS property (see Definition 13) specifies constraints on these
integers such that the given word CC = ¢(0)i(1)i(2)...i(n) can be classified as
being a DSS or not. Before starting to read a word C'C', all values in columns s
and n are initialized to be —1, and all values in columns [ and r are initialized
to be 0. Now assume that the syntactic code has already been calculated for
an input sequence of length greater than or equal to zero, and assume that
letter d is read as the next chain code of the input sequence. Let N(k, a, b) be
true iff |a —b| = 1 for & > 1, and |a — b| (mod8) =1 for £ = 0. The algorithm
uses different tests which follow straightforwardly from the DSS property:

=—1A
>0 = {(k—1)<d+1 A r(k—1) <d+1]
Ty(k,d) (k) # —1 A s(k) = —1 A Toa(k,d) A Taolk,d)



Ts(k,d) :d = A r(k)=0A
[(Ey=1 AN s(k+1)==1 Ank+1)<1 A k>0 —
I(k—1)<s(k) AN {r(k—=1)<s(k) V r(k—1)=n(k)}]
Ty(k,d) :d=n(k) A [s(k+1)=—=1 — r(k) <n(k+1)]A
[s(k+1)# -1 = r(k)+1<n(k+1)V
rtk)+1=s(k+1) A r(k+1)#0}]
Ts(k,d) :d=s(k) N r(k) #0

The algorithm is specified in Fig. 8. The algorithm ‘inserts’ every new element
d into the syntactic code as long as the incoming chain code sequence satisfies
the DSS property.

Algorithm CHW _1982a runs in linear time: |CCyyq| < 1/2-|CCy|, for k>0
and any incoming DSS chain code. There is only one loop in this algorithm, in
the case that a new element needs to be added to one of the C'C}’s. Therefore,
the run time ¢(n), for inputs of length n = |C'Cy|, is on the order

log, n
O(|CCo| + |CCH| + ... + |CCloynl) =©(Z Q”—k) =o(n) .

k=0

k=0

1 if Ti(k,d) then goto 10
if T,(k,d) then goto 20
if 75(k,d) then goto 30
if Ty(k,d) then goto 40
if 7Ts5(k,d) then goto 50
goto 10

10 n(k)=d, I(k)=1, return “yes”

20 if Tyi(k,d) then goto 21
if T,3(k,d) then goto 22
goto 100

21 (k) =1(k)+ 1, return “yes”

22 s(k)=d,, return “yes”

30 s(k)=n(k), nk)y=d, U(k)=0, rk)=2
return “yes”

40 r(k)=r(k)+1, return “yes”

50 d=r(k), rlk)=0, k=k+1, gotol

100 for m =0 until £ —2 do r(m) = s(m + 1)

if k #0thenr(k—1)=d

return “no”

Fig. 8. DSS recognition algorithm CHW _1982a based on syntactic codes.



It also follows that the number of relevant integers in the syntactic code is
limited by © (logn), because the index m of the last non-empty word C'C,,
satisfies m <log,n. A stronger inequality is

nz(%+i\/§)(1+\/§)m—2.

For example, n = 2377...5739 requires only reduced chain code words C'C},
for £ < m = 9. Of course, representing a digital straight segment by the two
end points of one of its possible preimages is an even shorter representation.
A discussion of the time efficiency of DSS recognition algorithms may also be
accompanied by a discussion of their memory requirements.

We conclude this section with brief reviews of some other DSS recognition
algorithms. Many more have been published which will be not reviewed here
due to space limitations, e.g. (Rosenfeld and Kim 1982; Shoucri et al. 1985;
Li and Loew 1988; Kropatsch and Tockner 1989; Chattopadhyay and Das 1991;
Lindenbaum & Koplowitz 1991; Lindenbaum &Bruckstein 1993; Yuan &Suen 1995;
Francon et al. 1996). The intention is polygonalization of 8-arcs (4-arcs) by
segmenting them into maximum-length 8-DSS’s (4-DSS’s).

Algorithm CHW _1982b

The second linear on-line algorithm, published in (Creutzburg et al. 1982),
uses the possible preimages, see approach (C1) above: as long as the union of
all possible preimages is non-empty we continue reading the next chain code
element of the given 8-arc.

As in the proof of Theorem 11 we consider a family of parallel segments
(x,0l;)(x,uy) of grid lines © = 0,2 = 1,...,2 = n for a given digital straight
segment u € {0,1}* of length n connecting grid point po = (0,0) with grid
point p,, passing through grid points py,...,p,_1. However, this time we as-
sume that —0.5 <1, < wu, < n + 0.5 specify segments of grid lines x = 0,z =
1,...,xz = n, being the union of all intercepts of these grid lines with possible
preimages (i.e. straight line segments) of u with respect to grid intersection
digitization, i.e. @ — 0.5 < I, < w, < x4 0.5. A segment (x,[,)(x,u,;) may
degenerate into a single point, i.e. [, = u,, and the segment (x,[,)(x, u,) must
not contain the grid point p,, for x = 0,1,...,n; see Fig. 9 for an example.
The point sequence (0,ug), (1,u1),...,(n,uy), (n,0), (n — 1,0,-1),...,(0,1p)
defines the digitization polygon of straight line segment u. Because a segment
(x,0;)(x, u,) may degenerate into a single point, the digitization polygon need
not be simple. Note that the segments (0, ug)(n,l,) and (0,ly)(n,u,) are con-
tained in this digitization polygon.

Now assume that u is extended by another chain code a € {0,1}. The 8-
arc ua is a DSS iff it possesses a digitization polygon. The linear on-line



Fig. 9. Digitization polygon for v = 0100100.

algorithm CHW _1982b, specified in detail in (Creutzburg et al. 1982), uses
the digitization polygon of u to update this for ua if possible, or returns “no”

if there is no digitization polygon for ua. This algorithm was also published
in (Creutzburg et al. 1988).

The digitization polygon has also been studied in (Dorst and Smeulders 1984).
Any DSS is uniquely characterized by a quadruple of integers, which repre-
sent its length, its shortest periodicity, its lowest-terms slope, and its phase.
From this quadruple we can calculate the digitization polygon, i.e. the union
of all the line segments whose digitization is the DSS. These equivalence
classes of line segments are described in (Mcllroy 1984) in terms of Farey
series (Farey fans), which allows considerable simplification of proofs given in

(Dorst and Smeulders 1984).

Algorithm S_1983

(Shlien 1983) also specifies a linguistic technique (i.e. type (C4)) for segment-
ing an 8-arc into DSSs. As in CHW _1982a, algorithm S_1983 involves only
integer operations following the syntactic rules specified in the DSS property.
A parser checks the rules related to one layer k, and (eventually) activates a
parser for the next layer k4 1. Several parsers at different levels may be active
simultaneously.

This specifies a different point of view on the approach implemented in algo-
rithm CHW_1982a, which may support a more obvious implementation of
the syntactic rules specified in the DSS property.

The maximum number m of layers is bounded by 4.785 - logon + 1.672, and
this maximum is taken on in cases of digital rays having slope a/b where a and
b are consecutive Fibonacci numbers (Knuth 1969), but the average depth is

less than half of this value (Knuth 1969).

(Shlien 1983) reports on experiments comparing polygons, whose vertices are
the break points of segmented 8-arcs, with polygonal preimages used to ob-
tain these 8-arcs by grid-intersection digitization (Bresenham algorithm). It
states an ambiguity in detecting maximum-length DSSs defined by these break



points.

Algorithm AK_1985

(Anderson and Kim 1985) has already been cited with respect to pairs of tan-
gential lines for 8-arcs. It specifies a DSS recognition algorithm which follows
approach (C2.1b). Assume an 8-arc u € {0,1}* of length n connecting grid
point po = (0,0) with grid point p,, passing through grid points p1,...,pu_1.
Critical points form a minimal subset of G(u) = {po,p1,...,pn} defining a
pair of tangential lines having a minimum distance in the y-axis direction
(and G/(u) between or on these lines). An 8-arc w is a DSS iff this distance
between such a pair of tangential lines is < 1; see Corollary 2.3.

Without loss of generality assume that u possesses four critical points ¢y, ¢z, 71,
ry € G(u) where q1qo specifies a nearest support below and riry a nearest
support above u. Then u is uniquely specified either by n and g1, ¢z, or by n
and rq,79. (Anderson and Kim 1985) describes a linear off-line (!) algorithm
for calculating the nearest support below and/or above. A final test (Corollary
2.3) decides whether or not u is a DSS.

This algorithm is also used to specify a linear off-line (!) algorithm for cal-
culating the digitization polygon (see algorithm CHW_1982b). The paper
(Anderson and Kim 1985) also discusses the calculation of digitization poly-
hedra for digital straight segments in three-dimensional space.

Algorithm CHS_1988a

(Creutzburg et al. 1988) specifies three different linear on-line DSS recognition
algorithms. The first is a slightly improved version of algorithm CHW _1982b.
The second also follows approach (C1); however, this time the grid-intersection
digitization definition is used to perform DSS recognition based on solving a
separability problem for a monotone polygon.

Assume an 8-arc u € {0,1}* of length n connecting grid point py = (0,0)
with grid point p,, passing through grid points p1,...,pu—1. Let pr = (k, I}),
for £ = 0,1,...,n. The weak digitization polygon of w is defined by ver-
tices (0,1o + 0.5), (1,11 + 0.5),...,(n, [, + 0.5), (n, [, — 0.5),(n — 1, [,,_1 —
0.5),...,(0,Io—0.5). The weak digitization polygon of an 8-arc u is monotonic
in the z-direction. The separability problem is now as follows: The arc u is a
DSS iff the upper polygonal chain (0, 1o+ 0.5), (1, 1 +0.5),...,(n, [, +0.5) of
its weak digitization polygon can be separated from its lower polygonal chain
(n, I, —05),(n —1,1,1 —0.5),...,(0,lp — 0.5) by a straight line not inter-
secting the upper or lower polygonal chain. (Creutzburg et al. 1988) details



a linear on-line algorithm for solving this separability problem for extended
8-arcs ua, a € {0,1}, based on a solution of the separability problem for w.
Note that this separability problem can also be stated as a visibility problem
(visibility of edge (0, Iy — 0.5)(0, Iy + 0.5) from edge (n, [,, — 0.5)(n, I, + 0.5),

or vice versa).

Algorithm CHS_1988b

The third linear on-line DSS recognition algorithm in (Creutzburg et al. 1988)
follows (C2.1b); it is similar to (and independent of the publication of) the
linear off-line algorithm AK_1985. Algorithm CHS_1988b uses the critical
points calculated for u to calculate updated critical points for the extended
8-arc ua, a € {0,1}, if possible, and returns “no” otherwise. The algorithm
is quite short, allowing a quick implementation. (Creutzburg et al. 1988) also
contains a geometric analysis of possible or impossible locations of critical
points. For example, if a critical point of word w is cancelled later on in an
extended word uwv, it cannot become a critical point again for extensions of
uv.

Algorithm K_1990

(Kovalevsky 1990) discusses the recognition of digital 4-straight segments (the
boundaries of cellular complexes) following approach (C2.3). This algorithm
is one of the simplest and most efficient (see (Coeurjolly and Klette 2002))
linear on-line 4-DSS recognition algorithms, and we will give it in full detail. It
is based on the calculation of a narrowest strip, defined by the nearest support
below and above (see Theorem 7 and Fig. 3). With respect to the narrowest-
strip idea it resembles the linear off-line algorithm AK_1985 and the linear
on-line algorithm CHS_1988b, which are both for 8-arcs. Algorithm K_1990
is given in detail in (Klette and Yip 2000). For the notation, see Fig. 10.

The algorithm follows a digital 4-curve. A new 4-DSS is extended as long as
all grid points on this digital curve are between or on a pair of parallel lines
having a main diagonal distance of less than /2. On the parallel line to the
left of the digital curve we define a negative base between grid points StartN
and EndN; and on the parallel line to the right of the digital curve we define
a positive base, between grid points StartP and EndP.

A subsequence of grid points (z,y) on the digital 4-curve is a 4-DSS iff the
following two inequalities are satisfied:

0<ve—uy+w< |ul+]v|—1,

T

where (u,v)" is a vector Tang parallel to the negative (or positive) base of the
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Fig. 10. (Kovalevsky 1990) Notations for algorithm K_1990.

4-DSS having relatively prime integer coordinates, and w = uy — vz for any
grid point (z,y) on the negative base. Let h(z,y) = va — uy + w, and assume
that both inequalities are true for n — 1 grid points accepted for the recent
4-DSS. For the next grid point Point = (2, y,) let

(i) h(xn,yn) = 0: (2,,y,) is on the negative base, and all n vertices form a
4-DSS;

(i1) h(@n,yn) = |ul + |v| = 1: (2n,ys) is on the positive base, and all n vertices
form a 4-DSS;

(iii) A(xn,yn) = —1 or h(a,, y,) = |u|+ |v|: all n vertices are a 4-DSS, but values
u, v and w need to be updated:

if h(2y,y,) = —1 then
begin
EndN := Point; StartP := EndP; Tang := Point — StartN;
end
if h(xn,yn) = |ul + |v| then
begin
EndP := Point; StartN := EndN; Tang := Point — StartP;

end

(iv) otherwise: the n vertices do not form a DSS; stop at vertex n — 1 and

| R B

end vertex of a 4-DSS

Fig. 11. (Klette and Yip 2000) Applications of algorithm K_1990.



initialize a new DSS.

Figure 11 illustrates a clockwise and an anticlockwise run around a digital
region, producing different segmentations into maximum-length 4-DSSs.

Algorithm SD_1991

(Smeulders and Dorst 1991) discusses a linear off-line DSS recognition algo-
rithm following the linguistic approach (C4). It starts with the linear off-
line Wu algorithm (Wu 1982) and corrects the flaw detected in (Hung 1985).
(Smeulders and Dorst 1991) also contains basic research on digital straight-
ness.

Algorithm DR_1995

(Debled-Rennesson and Reveilles 1995) describe a linear on-line DSS recog-
nition algorithm which follows the (C2.1a) approach (their ‘naive line’ is
identical to a digital straight line), i.e. it is based on an updated test of a
double Diophantine equation which is basically similar to a test of whether
the grid point set G/(u) is in a narrowest strip (see algorithm K_1990) of
arithmetical width max{|al, |b|}.

(Coeurjolly and Klette 2002) evaluates several polygonalization algorithms in-
cluding two DSS methods (K_1990 and DR _1995). Source code for these DSS
recognition algorithms can be downloaded from www. citr.auckland.ac.nz/dgt/.

7. Conclusions

A straight line seems to be a simple object. Our review demonstrates that dig-
ital straight lines are actually a very challenging subject, and many interesting
results are known to date. Still lacking is a comprehensive and comparative
performance evaluation of the DSS recognition algorithms suggested so far. A
statistical analysis of measured time complexities would also be of interest.
The random DSS generation algorithm of (Berstel and Pocchiola 1993) could
be used to create input data.

The segmentation of a (closed) 8-curve into maximum-length DSS’s depends
on the starting point and orientation of the traversal. It would be of inter-
est to analyze the possible variation in these segmentations. For example,
(Creutzburg et al. 1982a) briefly mentions two on-line DSS recognition meth-



ods of decomposing a digital arc into a minimal number of DSSs. However, no
detailed algorithms have yet been published.

Different neighborhood or adjacency definitions may also be worth study-
ing in greater detail. For example, see (Marchand-Maillet and Sharaiha 1997)
for digitizations in a 16-neighborhood space. Furthermore, we have not dis-
cussed straightness in three- or higher-dimensional digital spaces in this re-
view; in fact there are several publications dealing with these spaces (see, e.g.
(Stojmenovic and Tosic 1991): a set of grid points is an n-dimensional DSS
iff n — 1 of its projections onto the coordinate planes are two-dimensional
DSSs). Finally, straightness can also be discussed in non-binary (i.e. multi-
or gray-level) digital images; this began as early as (Klaasman 1975), where
positional errors were estimated for straight edges (between regions having
given constant gray levels) as a function of the size and number of gray levels
in the digital image.

Acknowledgments: The authors thank all four reviewers for their detailed
comments.
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