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Abstract

In the case of isothetic simple polyhedra there are only six different types
of 3D angles. This article states and proofs a formula about counts of
these angles. This complements formulas in combinatorial topology such
as Euler's polyhedron formula, or the previously known formula on angle
counts for isothetic polygons. The latter formula and the shown equality
for angle counts of isothetic simple polyhedra are useful formulas for
analyzing isothetic boundaries in 2D digital images (e.g. classification
into inner (boundary of a hole) or outer boundaries, see [5]) and isothetic
surfaces in 3D digital images (e.g. necessary condition for a complete
surface scan).
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about counts of these angles. This complements formulas in combinato-

rial topology such as Euler's polyhedron formula, or the previously known

formula on angle counts for isothetic polygons. The latter formula and
the shown equality for angle counts of isothetic simple polyhedra are use-

ful formulas for analyzing isothetic boundaries in 2D digital images (e.g.

classi�cation into inner (boundary of a hole) or outer boundaries, see [5])

and isothetic surfaces in 3D digital images (e.g. necessary condition for

a complete surface scan).
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1 Introduction

In many geometric applications the objects under consideration are line seg-

ments, rectangles, polyhedra etc. which are parallel to the axes of the coordinate

system. Exploiting this fact often leads to more eÆcient and simpler algorithms,

see, e.g. [6]. They also allow combinatorial studies, see, e.g. [1] on visibility of iso-

thetic rectangles, and they correspond to boundaries in cell complex approaches

in image analysis [4]. Isothetic polygons and polyhedra also have applications to

problems of VLSI layout synthesis, database design, computational morphology,

and stock cutting. Often they are studied with respect to partitioning problems

[2,3]. An isothetic polygon has all edges aligned to one of the axes of a Cartesian

coordinate system, and an isothetic polyhedron has all faces parallel to one of

the coordinate planes. We recall that a simple polygon is homeomorphic to a

(closed) disk, and a simple polyhedron is homeomorphic to a (closed) sphere.

This paper presents and proves a formula on angles of isothetic simple poly-

hedra. First we recall a basic result on isothetic simple polygons. This result for



Fig. 1. Three examples of isothetic simple polygonal chains.

the two-dimensional (2D) case, see [5], is included here due to the obvious anal-

ogy to our 3D case, and we provide a new proof for the 2D case for illustrating

analogies to our proof of the formula for isothetic simple polyhedra. This result

for isothetic simple polygons allows in image analysis to discriminate inner and

outer boundaries, what identi�es it as a very practical tool for 2D image pattern

analysis, see Theorem 2.3.-1 in [5].

Let P be a simple polygon, de�ned by a closed polygonal chain v1v2; v2v3; :::;

vkvk+1, k � 2, of its vertices. We assume that the chain circumscribes P in

clockwise orientation. This de�nes the outer boundary of P , see Fig. 1 for two

examples of outer boundaries. A closed polygonal chain with counter-clockwise

orientation is an inner boundary of a bounded or unbounded planar region, see

Fig. 1 for one example of an inner boundary.

We exclude that three consecutive vertices of a polygonal chain may be

collinear. A chain v1v2; v2v3; :::; vkvk+1, k � 2 of edges of P is concave if the

inner angles of the vertices v2; v3; :::; vk are of more than � radians. The angle

of a vertex v2 is concave i� the sequence v1v2; v2v3 is concave, otherwise it is

convex. Note that there is a one-to-one correspondence between concave angles

of isothetic simple polygons representing inner boundaries and convex angles of

the inscribed isothetic polygon, and between convex angles of the inner bound-

ary and concave angles of the inscribed polygon. We only discuss the case of

outer boundaries in the following theorem.

Theorem 1. Let P be an isothetic simple polygon. Let PV and PC denote the

numbers of convex and concave angles of P , respectively. We have

PV � PC = 4 :

Proof. Any isothetic simple polygon can be partitioned into a �nite number

of isothetic rectangles. Consequently, it can be constructed by joining, step by

step, an isothetic rectangle at a time with the previous isothetic simple polygon,

starting with a single isothetic rectangle satisfying the formula. There are four

options for these joints, shown in Fig. 2.

In case (1) we have that PV and PC remain unchanged, in case (2) both PV
and PC increase by 1, and in cases (3) and (4) both PV and PC increase by

2. ut



Fig. 2. Four possible joining steps.

In case of an inner boundary we have a change of the sense of orientation,

and the formula goes over into

PV � PC = �4 :

The article generalizes Theorem 1 to the three-dimensional (3D) case of isothetic

polyhedra.

2 Angles in Isothetic Simple Polyhedra

There are six kinds of angles in an isothetic simple polyhedron, see Fig. 3. Fol-

lowing this �gure these angles will be referenced to as of type A, C, D1, D2, E

or G.

Theorem 2. Let H be an isothetic simple polyhedron. Let HA, HC, HD1
, HD2

,

HE and HG denote the numbers of A, C, D1, D2, E and G angles of H, respec-

tively. We have

(HA +HG) � (HC +HE)� 2(HD1
+HD2

) = 8 :

Proof. Consider one coordinate plane and all faces of an isothetic simple poly-

hedron parallel to this coordinate plane. These faces de�ne a �nite number of

cuts which separate the given isothetic polyhedron into layered polyhedra. We

separate these layered polyhedra into simple isothetic layered polyhedra.

Any isothetic simple polyhedron H can be constructed by joining, step by

step, two smaller simple isothetic layered polyhedra at a time, such that only one

face is the merging face. We may continue with splitting these simple isothetic

layered polyhedra into smaller ones such that the following assumption is valid:

H can be obtained by a �nite sequence of joints of a simple isothetic poly-

hedron H1 with a simple layered isothetic polyhedron H2. This joint is de�ned

by a partial overlap of a face P1 of H1 with a face P2 of H2 such that P2 is a

subset of P1, i.e. both faces are coplanar, and the merging face is the only face

that H1 and H2 joins.

The process may start with two isothetic parallelepipeds, each satisfying the

formula with jHAj = 8, and all other values are zero.

Now consider an arbitrary step within the joining process. Note that both

polyhedraH1 andH2 may only have A and C angles on the merging faces. In the

joining process, there are six possibilities for angles A and C, shown in Fig. 4:



Fig. 3. Six kinds of angles in an isothetic simple polyhedron

{ (i) an A-angle on P2 is joining with an A-angle on P1,
{ (ii) an A-angle on P2 is joining with a C-angle on P1,

{ (iii) an A-angle on P2 is joining with an edge on P1,
{ (iv) an A-angle on P2 is joining with an interior point of P1,

{ (v) a C-angle on P2 is joining with a C-angle on P1, and
{ (vi) a C-angle on P2 is joining with an interior point on P1.

We assume that Theorem 2 is valid for the isothetic polyhedra H1 and H2.

Let HA denotes the total number of A-angles of H1 and H2, HC denotes the

total number of C-angles of H1 and H2, and so on. Let T be de�ned as:

T = (HA +HG)� (HC +HE)� 2(HD1
+HD2

) :

Before the joining operation, T has a value of 16. We shall prove that T has the

value of 8 after the joining operation, and hence satis�es Theorem 2.

In situation (i), one A-angle of H1 and one A-angle of H2 are lost, this

decreases T by 2.

In situation (ii), one C-angle of H1 and one A-angle of H2 are lost, but the

union also gains either a D1- or a D2-angle. This operation decreases T by 2.

In situation (iii), one A-angle ofH2 is lost, but the union also gains a C-angle.

This operation decreases T by 2.



Fig. 4. Six possible joining operations.

In situation (iv), one A-angle of H2 is lost, but the union also gains an E-

angle. This operation decreases T by 2.

In situation (v), one C-angle of H1 and one C-angle of H2 are lost, this

increases T by 2.

In situation (iv), one C-angle ofH2 is lost, but the union also gains a G-angle.

This operation increases T by 2.

All joining operations ofA-angles decrease T by 2, while all joining operations

of C-angles increase T by 2. The number of A-angles on P2 is always four more

than the number of C-angles, as stated in Theorem 1. This shows that a joining

operation decreases the value of T (which was 16 before the joining operation)

by 8, which shows that the equality (HA+HG)�(HC+HE)�2(HD1
+HD2

) = 8

remains true after any of the joining operations. ut

3 Conclusion

The previously known equality PV �PC = 4 for isothetic simple polygons and the

shown equality (HA+HG)� (HC+HE)�2(HD1
+HD2

) = 8 for isothetic simple

polyhedra may be used towards generalizations for isothetic simple polyhedra in

arbitrary dimensions.



Both formulas are useful for analyzing isothetic boundaries. In 2D digital

images, we classify isothetic boundaries into inner (i.e. boundary of a hole) or

outer boundaries (see [5]) depending on whether PV � PC < 0 or PV � PC >

0, respectively. This classi�cation scheme is based on the one-to-one mapping

(duality) of convex into concave angles, and vice-versa, if changing from clockwise

to counterclockwise orientation.

Consider an isothetic cube in 3D. We have HA = 8. If this cube speci�es a

hole then we have HG = 8. All other angle counts are equal to zero. In general,

for isothetic surfaces in 3D digital images there is a duality of angles of type

A and G, C and E, D1 and D1 and D2 and D2, leaving the formula (HA +

HG)� (HC +HE)� 2(HD1
+HD2

) = 8 unchanged independent of whether the

isothetic polyhedral surface is considered as being the outer boundary of a simple

polyhedron, or an inner boundary of a polyhedral hole. However, the formula is

still of interest for pattern analysis purposes by providing a necessary condition

for having traced a complete 3D surface of an isothetic polyhedron, or by using

angle counts in the speci�ed six categories as shape descriptors. A classi�cation

into inner or outer boundary is possible by considering angle counts for a closed

isothetic circuit on the given isothetic polyhedral surface, e.g. de�ned by one of

the layered polyhedra.
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