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Abstract: Code-division multiple access technology is widely used in telecommunications and its performance has been extensively inves-
tigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae
which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come
from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate
(BER) for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading
sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experi-
mental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.
1 Introduction and preliminaries

In CDMA (code-division multiple access) systems, each bit is trans-
mitted by using a sequence of chips, x1, x2, …, x2β, where 2β is
called spreading factor. We prefer to use the vector notation,
x = [x1, x2, . . . , x2b]

`, where the operator (·)` denotes the trans-
position. In the case of chaos-shift-keying-based CDMA systems
[1–3], a chaotic map, say g( · ), is employed to generate x as
follows: x1 is randomly drawn from the natural invariant distribu-
tion of the map and xi+1 = g(xi) for i∈ {1, 2, …, 2β− 1}. For
example, if the logistic map given by Chebyshev polynomial func-
tion of order two is employed, then xi+1 = 1− 2x2i [4]. According
to the bit value (‘+1’ or ‘−1’), the transmitter sends either x or −x.
At the receiver site, the incoming signal is not exactly the same as
the one which was transmitted because is affected by fading, white
Gaussian noise is added and other chaotic sequences are super-
posed. These sequences represent bits sent to other users and they
are generated by applying the same method as above, except that
their first entry is chosen to be statistically independent from x1.
The receiver correlates the received signal with a locally generated
copy of x and the result is further compared with a threshold in
order to decide if the received bit is either ‘+1’ or ‘−1’. The bit
error rate (BER) is given by the number of erroneously decoded
bits in respect to the total number of bits received [5, 6].
In recent years, novel chaos-based CDMA systems have been

introduced, some of which are differential chaos-shift keying
systems. Articles presenting this type of research can be found
either in telecommunications journals [6, 7], or in publications of
the researchers working in the field of circuits and systems [8–
11]. We do not plan to discuss here the content of these works.
However, it is important to observe that the inventors of the new
systems provide theoretical and experimental evaluations of BER,
in order to show the superiority in comparison with the already
existing CDMA systems. In what concerns theoretical analysis,
there are two important methodologies. The first one relies on a
Gaussian approximation which is known to be accurate when the
spreading factor is high. The origins of this approach can be
traced back to [12, 13]. The methods from the second class use a
special type of numerical integration which was introduced in
[14] and since then was successfully applied for BER estimation
when the spreading factor is low. A possible alternative is the
method from [5], but it is rarely used because is computationally
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intensive. A more detailed comparison of these methods can be
found, for example, in [15]. Other techniques can be found in
[16, 17].

The scenario we have discussed so far corresponds to the case of
a narrow-band channel. For the wide-band channel [1], the Saleh–
Valenzuela model [18, 19] is adopted. Each entry of the chaotic se-
quence is repeated s times such that the new sequence is

x1, . . . , x1︸����︷︷����︸
s samples

, x2, . . . , x2︸����︷︷����︸
s samples

, . . . , x2b, . . . , x2b︸������︷︷������︸
s samples

The receiver gets messages not only through the main path, but also
through the secondary paths. More importantly, the delay on each
secondary path is different from the delay on the main path.
Therefore, the structure of the received signal is much more compli-
cated because it contains multiple delayed copies of the original
message. Like in the case of narrow-band channel, the receiver cor-
relates this signal with the chaotic sequence of the user and pro-
duces the output z, which is further compared with a threshold in
order to decide if the received bit is either ‘+1’ or ‘−1’.
Obviously, z is a random variable because of the randomness of
the chaotic sequences as well as the randomness of fading, delay
and additive noise on each path from the transmitter to the receiver.
The very first theoretical BER formula for wide-band channel was
recently derived, under the assumption that z is Gaussian distributed
[1]. However, there exists empirical evidence that this crude ap-
proximation leads to over-pessimistic results in the case when the
number of secondary paths is small.

In this work, we propose to compute BER with higher accuracy.
We focus on the case when the chaotic sequences are generated by
using logistic map and assume that there are two propagation paths
from the transmitter to the receiver. Both paths experience Rayleigh
fading and are affected by additive white Gaussian noise. The sec-
ondary path is delayed in time by t, which represents a portion of
the chip interval. With the aforementioned convention that each
chip is extended into s samples, we have 0≤ t≤ s. We refer to
[1] for more details about this model. The main contributions of
this Letter are the following:

† In Section 3, we compute the BER conditional on random vari-
ables which model fading and delay, and then apply the law of total
access article published by the IET under the Creative Commons
-NonCommercial-NoDerivs License (http://creativecommons.org/
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probability for continuous distributions [20]. In addition, we pay a
special attention to the probabilistic model of delays, which are non-
negative integers, because the simplified models that have been
used in the previous literature treated them as continuous random
variables. Since we are interested in evaluating the influence of
the secondary path and that of the additive Gaussian noise, we
compute the theoretical BER for four different cases.
† For a fair comparison, in Section 4, we apply the crude Gaussian
approximation from [1] in order to evaluate the approximate BER’s
in the four cases we analyse.
† In Section 5, we resort to numerical examples for demonstrating
that our formulae for BER are more precise than those given by the
crude Gaussian approximation. A discussion on the theoretical and
empirical results of this Letter can be found in Section 6.

Owing to the limited typographic space, we cannot outline below
all the results we have obtained. This is why we present in this
Letter only the most important results, and the interested reader
can find more details in the supplemental material [21]. In the fol-
lowing section, we provide a more formal description of the system
which is studied in this work.
2 System model

Our main concern is the random variable z. Before giving its expres-
sion as it appears in [1], we introduce some definitions.

Assume that the received signal is the superposition of the mes-
sages from N users. Let the chaotic sequence for the nth user be

x(n) = x(n)1 , x(n)2 , . . . , x(n)2b

[ ]`
. Without loss of generality, we

assume that chaotic sequence of the user who received the signal
is x(1), and define

an = x(n)
( )`

x(1) = x(1)
( )`

x(n). (1)

Furthermore, we denote A = a1 + a2 + · · · + aN. For writing the equa-
tions more compactly, we also introduce

x(n)d = x(n)0 , x(n)1 , . . . , x(n)2b−1

[ ]T
, for all n [ {1, 2, . . . , N}.

In the equation above, we use the convention that x(n)0 = x(n)2b . In add-
ition, we define

bn = x(n)d

( )`
x(1) = x(1)

( )`
x(n)d (2)

and B = b1 + b2 + · · · + bN. For modelling the additive noise, we
Table 1 Contribution of the nth user to the received signal: α00 and α01 are statis
the main path and the secondary path, respectively. In comparison with the main
plays a key role as each chip is extended into s samples in order to analyse the
portion of the chip interval. It is obvious that 0≤ t≤ s. To be in line with the an
and the ‘true’ value of the previous bit is also ‘+1’

Path Fading

1

main α00 x(n)1 · · · x(n)1︸����︷︷����︸
s samples

secondary α01 x(n)2b · · · x(n)2b︸����︷︷����︸
t samples

x(n)1 · · · x(1︸����︷︷���
s−t sampl
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consider the zero-mean Gaussian random vector

j = [j1, j2, . . . , j2b]
`, (3)

whose covariance matrix equals N0I , where N0 > 0 and I denotes
the identity matrix of appropriate dimension. Let C = j`x(1). The
entries of ξ and those of x(n), x(n)d are statistically independent for
all n∈ {1, 2, …, N}.

The random variable z, which is used to decide if value of the
received bit is either ‘+1’ or ‘−1’, is computed as the correlation
between the received signal and the locally generated sequence
x(1). The contribution to the received signal of the nth user
(1≤ n≤N ) is described in Table 1. Using the results from the
table, it is straightforward to write down the expression of z [1]

z = d0A+ d1tB+ sC, (4)

with the convention that

d0 = a00s+ a01(s− t), (5)
d1 = a01t. (6)

In our derivations, we use the following assumptions:

(A1) The chaotic sequence for each user is generated by using the
logistic map (see Section 1). The very first entry of each such
chaotic sequence is drawn from the distribution given in [4, Eq.
(7)] such that, for any two different users, the very first entries of
their chaotic sequences are statistically independent.
(A2) The main path and the secondary path (where the delay t
occurs) are affected by Rayleigh fading (see Table 1). The fading
factor remains constant over a transmitted bit interval [1]. The par-
ameter of the Rayleigh distribution used to model the fading on the
main path is denoted b. For the secondary path, the parameter is b̃.
So, we write a00 �Rayleigh(b) and a01 �Rayleigh(b̃). We empha-
sise that α00 and α01 are statistically independent. In our calcula-
tions, the following results are useful [22, Chapter 35]

E[a00] = b
p

2

( )1/2
, (7)

E[a2
00] = 2b2, (8)

where E( · ) denotes the expectation operator. The moments of α01
can be obtained by replacing b with b̃ in the expressions above.
(A3) For n∈ {1, 2, …, N}, the random variables α00 and α01 are
statistically independent in rapport with the entries of the vectors
x(n), x(n)d and ξ.
tically independent Rayleigh random variables which model the fading for
path, the secondary path is delayed in time by t. The design parameter s
performance of the system when the secondary path is delayed by only a
alysis from [1], we assume that the ‘true’ value of the received bit is ‘+1’

Chip

· · · 2β

· · · x(n)2b · · · x(n)2b︸����︷︷����︸
s samples

n)�︸
es

· · · x(n)2b−1 · · · x(n)2b−1︸�������︷︷�������︸
t samples

x(n)2b · · · x(n)2b︸����︷︷����︸
s−t samples
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3 Theoretical BER

3.1 Main idea

The analysis from [21], which is based on computing the skewness
[23, Eq. (3.89)] for each term within (4), suggests that the Gaussian
assumption for z is inappropriate in the case when the number of
secondary paths is small. However, from the same analysis we
know that, for large β, the Gaussian distribution might be a good
approximation for the conditional distribution of z given α00, α01
and t (see also [13, 24]). This leads to the natural choice of comput-
ing first the conditional BER and then applies the law of total prob-
ability (for continuous distributions). This approach is in line with
what has been already done for similar problems, in the case of
narrow-band channels (see, e.g. [20]). The details of the calcula-
tions are outlined below.

3.2 Conditional BER

Given α00, α01, t and the fact that the ‘true’ value of the transmitted
bit is ‘+1’, BER is obtained by computing Pr (z , 0|a00, a01, t).
Therefore, we have

BER(a00, a01, t) =
1

2
erfc

E[z|a00, a01, t]
2Var[z|a00, a01, t]

√
( )

= 1

2
erfc

2Var[z|a00, a01, t]

(E[z|a00, a01, t])
2

{ }−1/2
( )

,

(9)

where erfc( · ) has the well-known expression [2, p. 48]

erfc(c) = 2
p

√
∫1
c

exp (−v2) dv.

Next, we employ results which are proved in [21, Chapter 3] (see
Lemma 3.2.2, Lemma 3.2.4 and Lemma 3.3.1) in order to calculate

E[z|a00, a01, t] = d0E[A]+ d1E[B]+ sE[C] = d0
2
(2b),

E[z2|a00, a01, t] = d20E[A
2]+ d21E[B

2]+ s2E[C2]+ 2d0d1E[AB]

= d20
N

4
(2b)+ 1

4
(2b)2 − 1

8
(2b)

[ ]

+ d21
N

4
(2b)+ s2

N0

2
(2b)+ 2d0d1

1

8
(2b− 2),

where δ0 and δ1 are given in (5) and (6), respectively.
The quantity of interest for us is

2Var[z|a00, a01, t]

(E[z|a00, a01, t])
2 = d1

d0

( )2 2N

2b
+ d1

d0

( )
2(2b− 2)

(2b)2
(10)

+ 1

d0

( )2

N0
4s2

2b
(11)

+ 2N − 1

2b
. (12)

Under the hypothesis that α01≠ 0, t ≠ 0 and r = α00/α01, we can re-
arrange some of the terms in the equation above

d1
d0

= 1

(s/t)(r + 1)− 1
, (13)

1

d0

( )2

N0
4s2

2b
= N0

ba2
00

2

1+ (1/r) 1− (t/s)
( )[ ]2 . (14)

These identities lead to the following conclusions:
J Eng 2015
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† Remark in (14) that the term N0(ba
2
00)

−1 can be written as
N0(Eba

2
00)

−1, where Eb is the bit energy and equals 2bE[x2i ]. We
refer to [20, Eq. (14)] for the definition of the bit energy. The
reader can also see in [21, Eq. (3.5)] that E[x2i ] = 1/2 for the logis-
tic map. Combining the results from (9), (11) and (14), we can con-
clude that the BER decreases when the product Eba

2
00 raises. It is

also interesting to note that the positive factor which multiplies
N0(ba

2
00)

−1 in (14) is smaller than two for all possible values of
r, t and s.
† The performance is the same for all selections of s and t for
which the ratio s/t has a certain value. An increase of s/t guarantees
a lower BER [see again (9), (10) and (14)].
† The increase of r has mixed effects in the sense that δ1/δ0
decreases, whereas the value of the expression in (14) grows.

3.3 Average BER

To gain more insight, we investigate separately the influence of the
second propagation path and that of the additive Gaussian noise.
Then we treat the general case.

Case #1: Effect of additive noise is neglected (N0 = 0). If we ignore
the term in (11), then Eb/N0 =∞ and the expression of conditional
BER becomes

BER(r, t)|Eb/N0=1 = 1

2
erfc z−1/2

r,t

( )
,

where

zr,t =
N/b

(s/t)(r + 1)− 1
[ ]2 + (b− 1)/b2

(s/t)(r + 1)− 1
+ 2N − 1

2b
.

Furthermore, we can calculate

BER(t)|Eb/N0=1 =
∫1
0

BER(r, t)|Eb/N0=1
[ ]

f (r) dr, (15)

where f(r) denotes the probability density function (PDF) of r. It
follows from (A2) that

f (r) = 2rb2b̃
2

r2b̃
2 + b2

( )2 , 0 , r , 1

[25, Corollary 3.4].

Case #2: N0 > 0, α00 and α01 are linearly dependent. Now we con-
sider that

a00/a01 = r0, (16)

where r0 is fixed (r0≥ 1). This is a major deviation from (A2), but it
will help us to gain more insight on the problem we analyse: it is the
case when the attenuation in the secondary path is higher than in the
primary path, which is the expected behaviour of the practical chan-
nels. This assumption leads to

BER(a00, t)|r=r0
= 1

2
erfc z−1/2

a00,t

( )
,

access article published by the IET under the Creative Commons
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Fig. 1 Values of BER(th) obtained when computing numerically the integral
in (18) are compared with LB – the lower bound in (25). These results are
for N = 4 users (left panel) and N = 40 users (right panel). The values of
the time delay t are given in the legend. In addition, s = 40, β= 50 and
r0 = 1.1
where

za00,t =
N

D2
1b

+ b− 1

D1b
2 + 2N0

a2
00bD

2
2

+ 2N − 1

2b
,

D1 =
d0
d1

= s

t
(r0 + 1)− 1,

D2 =
d0
a00s

= 1+ 1

r0
1− t

s

( )
.

(17)

We have

BER(t)|r=r0
=

∫1
0

BER(a00, t)|r=r0

[ ]
f (a00)da00, (18)

where

f (a00) = (a00/b
2) exp −a2

00/(2b
2)

[ ]
, 0 , a00 , 1, (19)

because a00�Rayleigh(b) [see (A2)]. For writing the formula in
(18) in a more convenient form, we firstly re-write za00,t as ζγ,t

zg,t = v+ w

g
,

g = a2
00,

(20)

v = N

D2
1b

+ b− 1

D1b
2 + 2N − 1

2b
, (21)

w = 2N0

bD2
2

. (22)

After some algebra, we get that the PDF of γ is
f (g) = exp (− g/�g)/�g, where 0 < γ <∞ and �g = 2b2. So

BER(t)|r=r0
=

∫1
0

BER(g, t)|r=r0

[ ]
f (g) dg

= 1

2

∫1
0
erfc(z−1/2

g,t )f (g) dg

=
∫1
0
Q(


2

√
z−1/2
g,t )f (g) dg

(23)

= 1

p

∫1
0

∫p/2
0

exp − z−1
g,t

sin2 u

( )
du

[ ]
f (g) dg. (24)

In (23), we have used the well-known relationship between the erfc
( · ) and the Gaussian Q-function. The reader can find more details
in [26, p. 85], where is also presented the identity we employed in
(24). The double integral in (24) cannot be easily computed, but it
allows us to obtain a lower bound for BER(t)|r=r0

.

Proposition 1: The following inequality holds true:

BER(t)|r=r0
≥ 1

2
1− 1

1+ w/�g
√

( )
. (25)

The proof is deferred to the Appendix.

Remarks:

(i) From (22), we know thatw = (Eb/N0)
−1 × (2/D2

2). This shows
clearly that the lower bound decreases when Eb/N0 raises. The
same identity shows that the lower bound also depends on r0, t
and s [see again the definition in (17)].
This is an open access article published by the IET under the Creative
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(ii) The lower bound does not depend on the number of users N
because, in the derivation of (25), the v-term from (20) was
ignored. For example, if we take N = 4 or N = 40, the lower
bound in (25) is the same (given that all other settings are
the same). For illustration, we plot in Fig. 1 the values of the
lower bound when β = 50, r0 = 1.1, s = 40, t ∈ {1, 20, 39}
and Eb/N0∈ {1 dB, 2 dB, …, 16 dB}. In the same figure, we
show the values of the integral in (18), which are numerically
computed for N = 4 and N = 40, respectively. Note that the
lower bound is a good approximation of the integral when
N = 4. It is not surprising that the approximation becomes
much worse when N is large. This suggests that the lower
bound might be used to approximate (18) only when N is small.
Case #3: N0 > 0, α00 and α01 are statistically independent. With the
convention that ζα00

,α01,t is given by the expression in (10)–(12), we
get

BER(a00, a01,t) =
1

2
erfc z−1/2

a00,a01,t

( )
, (26)

BER(t) =
∫1
0

∫1
0
BER(a00, a01,t)f (a00)f (a01) da00 da01, (27)

where f(α00) is the same as in (19). We have from (A2) that

f (a01) = (a01/b̃
2
) exp −a2

01/(2b̃
2
)

[ ]
, where 0 < α01 <∞. For the

evaluation of the integral in (27) can be used, e.g. the Matlab func-
tion quad2d.

Case #4: N0 > 0, α00 and α01 are statistically independent, t-delay is
random.

Obviously, this is the most interesting case because, in practical
applications, the value of t is not known a priori. The model
used in [1] assumes that t is sampled from an exponential distribu-
tion (with parameter λ), but was pointed out in the same reference
that t should be rather modelled as a discrete random variable than
as a continuous one. We introduce a new model for t, which is dis-
crete. The novel model is described by resorting to the following
algorithm:
Commons
.org/
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Step0: Let tc� Exponential(l), λ > 0. Hence, the PDF of tc is given
by f (tc) = λℓtc, where ℓ = exp (− λ) and tc≥ 0.
Step1: tq =def⌊tc⌋, where ⌊·⌋ denotes the largest integer not greater
than the real number in the argument. It is clear that
Pr (tq = i) = (1− ℓ)ℓi for i∈ {0, 1, 2, …}.
Step2: Take t = tq (mod s). Simple calculations lead to

Pr (t = j) = 1− ℓ

1− ℓs
ℓj for all j [ {0, 1, . . . , s− 1}. (28)

Remark that t cannot be equal to s. The model we introduced for t
leads to the following expression for BER

BER =
∑s−1

j=0

Pr (t = j)BER(j), (29)

where Pr (t = j) is given in (28) and BER( j) is evaluated by using
(26) and (27).

Remarks: It is clear that E[t] and E[t2] are two important quantities
involved in the evaluation of (29). This is why, we give below their
expressions

E[t] = ℓ

1− ℓs
(s− 1)ℓs − sℓs−1 + 1

1− ℓ
, (30)

E[t2] = E[t]+ ℓ2

1− ℓs
2(1− ℓs)

(1− ℓ)2
− 2ℓs−1s

1− ℓ
− ℓs−2s(s− 1)

[ ]
. (31)

Proofs of the identities outlined above can be found in [21, Section
1.2.3]. At the same time, it is well-known that the moments of tc are
Fig. 2 Case #1: BER(exp) [computed empirically from 106 simulated bits]
is compared with BER(th) [calculated by numerical integration with formu-
lae from Section 3.3] and BER(app) [calculated with the Gaussian approxi-
mation from Section 4] when the number of users N increases from 8 to 24.
Other settings: β= 50, s = 40, b = 

2
√

/2, b̃ = 0.9b and the values of t are
listed in the legend of the figure
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[22, Chapter 14]

E[tc] =
1

l
, (32)

E[t2c ] =
2

l2
. (33)

In [21, Fig. 1.2], we compare the moments computed with (30) and
(31) with those given by (32) and (33) for the case when s = 40 and
1/λ ∈ {1, 2,…, 20}. In that figure, one can see that the moments of
t and tc are almost the same when the mean of tc is small, but they
tend to be different when the mean of tc increases.

Following, we focus on the computation of BER when z in (4) is
assumed to be Gaussian distributed.

4 Computation of BER by using the Gaussian approximation
for z

For sake of comparison, we compute approximate BER’s by apply-
ing the method from [1], which assumes the distribution of z to be
Gaussian. We write down the calculations for the four cases consid-
ered in Section 3.3.

Case #1: The approximate BER, which we denote
B E

^

R(t)|Eb/N0=1, is given by

BE
^

R(t)|Eb/N0=1 = 1

2
erfc ẑ

−1/2
t

( )
, (34)

where

z
^

t
= 2Var[z]

(E[z])2
= 2E[z2]

(E[z])2
− 2. (35)

As C = 0, we employ (4), (7), (8) and [21, Lemma 3.2.2 Lemma
3.2.4] for the following calculations

E[z] = E[a00]s+ E[a01](s− t)
{ }

E[A]+ E[a01]tE[B]

= p/2
( )1/2

[bs+ b̃(s− t)]b,
(36)

E[z2] = s2E[a2
00]+ (s− t)2E[a2

01]
{

+2s(s− t)E[a00]E[a01]
}
E[A2]+ t2E[a2

01]E[B
2]

+ 2t sE[a00]E[a01]+ (s− t)E[a2
01]

{ }
E[AB]

= 2b̃
2
(s− t)2 + 2b2s2 + pbb̃s(s− t)

[ ]
× (Nb)/2− b/4+ b2[ ]

(37)

+ 2t(b/4− 1/4)× 2b̃
2
(s− t)+ (bb̃sp)/2

[ ]
+ Nbb̃

2
t2. (38)

Case #2: Using the notation from Section 3.3, we re-write the ex-
pression of z as z = α00[s + (s− t)/r0]A + α00(t/r0)B + sC. This
leads to the following results

E[z] = E[a00] s+ (s− t)/r0
[ ]

E[A]

= p/2
( )1/2

b s+ (s− t)/r0
[ ]

b,

E[z2] = E[a2
00] s+ (s− t)/r0

[ ]2
E[A2]

+ E[a2
00](t/r0)

2E[B2]+ s2E[C2]

+ 2E[a2
00] s+ (s− t)/r0

[ ]
(t/r0)E[AB].

All that remains is to plug-in the expressions for the moments of the
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random variables involved, to calculate z
^

t
like in (35) and then to

use the erfc( · ) function for computing BE
^

R(t)|r=r0
.

Case #3: It is easy to see that, in this case, the expression of E[z]
coincides with the one in (36). Similarly, E[z2] can be calculated
as the summation of (37) and (38) with s2E[C2]. Note that s2E
[C2] = s2N0β (see [21, Lemma 3.3.1]).
Case #4: It is straightforward to write down the following identities:

E[z] = E[d0]E[A],

E[d0] = −E[t]E[a01]+ s{E[a00]+ E[a01]},

E[z2] = E[d20]E[A
2]+ E[d21]E[B

2]+ s2E[C2]+ 2E[d0d1]E[AB],

E[d20] = E[t2]E[a2
01]− 2sE[t]{E[a2

01]+ E[a00]E[a01]}

+ s2{E[a2
00]+ E[a2

01]+ 2E[a00]E[a01]},

E[d21] = E[t2]E[a2
01],

E[d0d1] = −E[t2]E[a2
01]+ E[t]s{E[a00]E[a01]+ E[a2

01]}.

The moments of z can be then evaluated with the help of results
from [21, Lemma 3.2.2, Lemma 3.2.4 Lemma 3.3.1] and (7), (8).
For the first- and second-order moments of t we apply (30) and
(31).

Following, we resort to numerical examples for a better under-
standing of the results obtained so far.

5 Numerical examples

5.1 Experimental settings

In this section, we compare the theoretical BER with the empirical
values obtained from simulations. All the results are plotted in [21,
Figs. 2.1–2.8]. Due to the limited space, we display here only some
of these figures. We mention that each experimental result shown in
[21, Figs. 2.1–2.8] is produced by simulating the transmission of
Fig. 3 Case #2: In order to investigate the impact of r0 on the performance of the C
1.2, …, 2}. For clarity of the representation, we prefer to use for ordinates the lin
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106 bits. In all cases, the spread factor is 2β = 100 and each chip
is extended into s = 40 samples. The parameter b of the Rayleigh
distribution from which we sample α00 is taken to be


2

√
/2. This

choice guarantees that the expected power of fading on the main
channel is one: E[a2

00] = 1 [see (8)]. Selection of other parameters
is explained below, for each considered case. The nomenclature for
the four cases we analyse is the same as in Sections 3.3 and 4.
5.2 Experimental results

Case #1: In addition to b = 
2

√
/2, we set the parameter of the

Rayleigh distribution for α01 to be b̃ = 0.9b. As the additive
Gaussian noise is not considered (Eb/N0→∞), we are mainly con-
cerned with the degradation of performance when the number of
users increases. This is why we plot BER versus N in Fig. 2. The
values of BER are computed as follows (in parentheses we indicate
the acronyms used in the legend of the figure): (th) numerical inte-
gration of (15); (app) Gaussian approximation in (34); and (exp)
simulation of 106 bits. Remark in the same figure that t ∈ {1, s/
2, s− 1}, where s = 40. Disregarding how BER is computed,
BER increases when the ratio t/s raises and N is kept fixed. We
also remark that, for a given value of t/s, BER grows when N
becomes larger. These results are not surprising and they are in
line with the analysis from Section 3. Remark the agreement
between the values of BER(th) and BER(exp). However, for a
given set of experimental parameters, BER(app) is much larger
than both BER(th) and BER(exp), which shows clearly that in the
absence of additive Gaussian noise, the Gaussian assumption for
z leads to a poor approximation of BER.
Case #2: In contrast to Case #1, we now take Eb/N0 to be relatively
small, namely Eb/N0 = 2 dB. Then we choose r0 = 1.1 [see (16)] and
keep all other settings as shown in Fig. 2. The theoretical and em-
pirical values of BER are shown in [21, Fig. 2.2]. Observe the
nearly linear dependence between BER and the number of users.

In the second experiment conducted for Case #2, we maintain all
the settings as in the first one, except that N = 4 and Eb/N0 is varied
between 1 and 8 dB. The results are plotted in [21, Fig. 2.3], where
DMA-system, we alter the settings such that N = 4, Eb/N0 = 2 dB and r0∈ {1,
ear scale instead of the logarithmic scale
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Fig. 4 Case #3 The number of users is N = 4 and the variance of the addi-
tive Gaussian noise (N0) is varied in order to see the effect of Eb/N0 on BER
(th) [see Section 3.3], BER(app) [see Section 4] and BER(exp) [computed
empirically]. All other settings are the same as in Fig. 2
we can see the improvement in performance when Eb/N0 grows. In
the same figure can be also observed how inaccurate the Gaussian
approximation is when Eb/N0 is relatively large. For instance, the
Fig. 5 Case #4: Comparison of BER(Th), which represents the BER given in (29),
employs the formulae in (32) and (33), whereas the second one [Gauss app] uses (3
2 dB. The parameter of the exponential distribution from which tc is drawn is eithe
shown in the plots, BER(exp) is computed by simulating the transmission of 106 b

J Eng 2015
doi: 10.1049/joe.2015.0117
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BER computed with Gaussian approximation when t = 1 and Eb/
N0 = 8 dB is not only larger than the empirical BER obtained for
the same experimental settings, but is also larger than the empirical
BER corresponding to t = 20 and Eb/N0 = 8 dB.
In the last experiment for Case #2, the focus is on r0. We fix N = 4,
Eb/N0 = 2 dB and let r0 to take values from the set {1, 1.2, …, 2}.
According to Fig. 3, the increase of r0 slightly lowers the BER if t
= s− 1. On the contrary, BER is monotonically increasing with r0
when t ∈ {1, s/2}. For understanding this behaviour, we use the
definitions in Section 3.3 for evaluating za00,t . For example, when
t = 39, we have s/t ≃ 1, which implies D1≃ r0 and D2≃ 1. It
follows that:

za00,39 ≃
N

r20b
+ b− 1

r0b
2 + ct(r0)

≃ 0.08

r20
+ 0.02

r0
+ ct(r0),

where N = 4, β = 50 and ct(r0) represents those terms which do not
depend on r0. Hence, if r0 grows, then za00,39

becomes smaller and
BER(39)|r=r0

decreases [see (18)]. For t = 1, we have D1≃ s(r0 +
1) and D2≃ 1 + 1/r0. So

za00,1 ≃
N

s2(r0 + 1)2b
+ b− 1

s(r0 + 1)b2

+ 1

(1+ 1/r0)
2

1

a2
00

2N0

b
+ ct(r0)

≃ 5× 10−5

(r0 + 1)2
+ 5× 10−4

r0 + 1
+ 1

a2
00

1.26

(1+ 1/r0)
2 + ct(r0).
with two Gaussian approximations. The first approximation [Gauss app(c)]
0) and (31). In addition, b = 

2
√

/2, b̃ = 0.9b, 2β = 100, s = 40 and Eb/N0 =
r 1/5 (left panel) or 1/20 (right panel). For each value of N (number of users)
its

access article published by the IET under the Creative Commons
-NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
7



As we know E[a2
00] = 1, it means that the dominant term in the

equation above is the one that contains the factor 1/a2
00. This

leads to the conclusion that za00,1 is monotonically increasing
with r0 and explains the behaviour observed in Fig. 3.

Case #3: Similar to Case #1, we take b̃ = 0.9b for the plots in Fig. 4
and [21, Fig. 2.5]. In [21, Fig. 2.5], Eb/N0 = 2 dB and the number of
users ranges from 4 to 24. It is interesting that the difference
between BER(th) and BER(exp) increases when N raises, but at
least for t = 1 and t = 20, BER(th)−BER(exp) is clearly
smaller than BER(app)−BER(exp).

In the particular case of Fig. 4, the number of users is small (N =
4) and we remark the decrease of BER when Eb is kept fixed and N0

is lowered. As already observed in other graphs within this section,
BER(th) and BER(exp) are almost the same. In addition, the
Gaussian approximation BER(app) almost coincides with BER
(th) when Eb/N0 is small. The smaller N0 is, the worse the
Gaussian approximation is, and this trend confirms what we have
already noticed for Case #1 and Case #2.

Another interesting aspect is that in Case #2, the ratio α00/α01 is
fixed to 1.1, while in Case #3 the ratio of the means of distributions
from which α00 and α01 are drawn is about 1.1. This explains the
similarities between figures [21, Fig. 2.2] and [21, Fig. 2.5] as
well as the similarities between figures [21, Fig. 2.3] and [21,
Fig. 2.6].

Case #4: The key point is the randomness of the delay t. As we
already know from Section 3.3, t is a random variable obtained
by quantising tc. Bearing in mind that, in our settings, the
maximum possible value of t is s–1 = 39, we conduct experi-
ments for the situation when t is sampled from an exponential
Fig. 6 Case #4: For this figure, all settings are the same as in Fig. 5, except that th
noise N0 is selected such that Eb/N0 takes the values shown on the abscissas of th
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distribution with mean 5, as well as for the case when the
mean of the exponential distribution is 20. All other experimental
settings are described in Fig. 5, where we show how the BER
depends on the number of users (N ). We are mainly interested
in comparing the theoretical BER given in (29) with the empir-
ical results obtained from simulations. Under the assumption that
z is Gaussian distributed, the approximate BER is calculated by
using the expressions of E[t] and E[t2] from (30) and (31) in the
formulae outlined in Section 4. For comparison with results
reported previously (see [1]), we also compute another approxi-
mate BER which is obtained by employing the formulae in (32)
and (33) for E[t] and E[t2], respectively. As we can see in
Fig. 5, the two Gaussian approximations can differ significantly
if 1/λ (the mean of the exponential distribution from which tc is
sampled) is large. In the same figure, one can observe the differ-
ence between BER computed with (29) and the Gaussian approx-
imations. The fact that the two Gaussian approximations are
over-pessimistic can be also observed in Fig. 6, where the
number of users is fixed and the ratio Eb/N0 is increased from
1 to 8 dB.
With the exception of Fig. 2, a common characteristic of the plots
within this section is the relatively low value of the Eb/N0-ratio used
in simulations. In spite of the fact that the performance of the
CDMA system is modest, we preferred to use low values for Eb/
N0 because they correspond to the situation when the Gaussian ap-
proximation for z [see (4)] is still reasonably well. When the vari-
ance of additive noise is decreased, the gap between BER
computed with the approximation in [1] and the empirical results
becomes larger.

All the experimental results reported in this work can be repro-
duced by using our Matlab implementation which can be
e number of users is fixed to N = 4 and the variance of the additive Gaussian
e plots
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downloaded from the following web page: https://www.stat.
auckland.ac.nz/cgiu216/PUBLICATIONS.htm.

6 Final remarks

We demonstrated that the approximations applied in [1] for comput-
ing the BER of chaos-based CDMA systems in wide-band channels
lead to over-pessimistic results when the number of secondary paths
is small, and we proposed a novel methodology for computing more
accurately the BER. In our derivations, we have used a number of
supplementary assumptions. For instance, we have assumed that all
the transmitted bits have value ‘+1’ (see Table 1). However, we
provide in [21, Section 1.2.4 and Section 3.5] a rigorous proof of
the fact that BER remains the same, disregarding the values of
the bits transmitted for all N users.
All our calculations were performed for the case when the logis-

tic map is employed. The results can be extended to other chaotic
maps because the computation of the conditional BER relies only
on the first- and second-order moments, and these are already
known for the chaotic maps (see, e.g. [2]). The problems occur
when BER is evaluated by using the conditional BER because all
the integrals involved depend on the channel model. We have
only considered the Rayleigh model. For other models, the calcula-
tions might be more difficult (see, e.g. [26]).
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9 Appendix

9.1 Proof of Proposition 1

It is enough to observe in (21) that v > 0, which leads to

BER(t)|r=r0
≥ 1

2

∫1
0
erfc


g/w

√( )
f (g) dg

=
∫1
0
Q


2g/w

√( )
f (g) dg

= 1

p

∫1
0

∫p/2
0

exp − g/w

sin2 u

( )
du

[ ]
f (g) dg

= 1

p

∫p/2
0

∫1
0
exp − g/w

sin2 u

( )
exp (− g/�g)

�g
dg

[ ]
du

= 1

p

∫p/2
0

1+ �g

w sin2 u

( )−1

du

(39)

= 1

2
1− 1

1+ w/�g
√

( )
. (40)

In (39), we applied the identity from [26, Eq. (5.3)], while in (40)
we employed [26, Eq. (5.6)].
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