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Abstract. One possible de�nition of the length of a digitized curve in

3D is the length of the shortest polygonal curve lying entirely in a cube

curve. In earlier work the authors proposed an iterative algorithm for the

calculation of this minimal length polygonal curve (MLP). This paper

reviews the algorithm and suggests methods to speed it up by reducing

the set of possible locations of vertices of the MLP, or by directly calcu-

lating MLP-vertices in speci�c situations. Altogether, the paper suggests

an in-depth analysis of cube curves.

1 Introduction

The analysis of digital curves in 3D space is of increasing practical relevance

in volumetric image data analysis, see cited examples of applications in [5, 6].

A digital curve is the result of a process (path on a 3D surface, 3D thinning

etc.) which maps captured `curve-like' objects into well-de�ned digital curves

(see de�nition below). The length of such a simple digital curve may be de�ned

based on local chain-code con�gurations in digital space [6], or on (global) curve

approximations in Euclidean space. The latter approach has the potential of

multi-grid convergence of estimated length toward the true length assuming that

a digitization model such as cube intersection [6] is used for obtaining test data

by digitizing curves of known length. For global length estimation algorithms

there are (at least) two options, the use of

1. the length of a 3D NSS (naive straight segment) approximation [5] of a

26-connected curve, or

2. the length of the 3D MLP (minimum-length polygonal) curve fully contained

and complete in the tube of a simple 6-connected closed curve [9, 10].

In earlier work the authors started with studying an algorithmic solution for the

3D MLP approach and proved that the only possible positions of MLP-vertices

are the so-called critical edges which are incident with three cubes of the simple

cube-curve [8], and presented an iterative algorithm for approximating the MLP

of a simple cube-curve in 3D [1]. It is expected [5] that the length estimation

behavior of 3D NSS compares to 3D MLP similarly as that of DSS to MLP



in the two-dimensional case [7]. However, to support such experiments we have

to continue to improve the time complexity of the 3D MLP approximation as

speci�ed so far in [1] for making statistically relevant performance evaluations

feasible.

The di�culty of the subject may be illustrated by the fact that the Eu-

clidean shortest path problem (given a �nite collection of polyhedral obstacles

in 3D space, and a source and a target point, �nd a shortest obstacle-avoiding

path from source to target) is known to be NP-hard [3]. However, there are

polynomial-time algorithms solving the approximate Euclidean shortest path

problem in 3D, see [4]. Our iterative algorithm in [7] is not yet known to be

always convergent to the exact 3D MLP, or whether it may only approximate in

well-de�ned cases, up to some error etc. the correct MLP. All our experiments

so far suggest that the algorithm presented in [1] is always convergent to the

correct 3D MLP, and time measurements also support the hypothesis that its

run-time behavior is asymptotically linear in the number of input cubes even if

a very small threshold is used for termination of the algorithm.

In this paper we review this algorithm and discuss three ways to speed it

up: 1) Not all critical edges contain MLP-vertices. We identify a subset of these

irrelevant critical edges which can then be excluded from further calculation. 2)

Certain critical edges can be identi�ed which can only contain MLP-vertices {

if at all { at their end-points. 3) The positions of MLP-vertices belonging to


at arcs of the MLP can under certain conditions be calculated in closed form.

Therefore the present paper may also be seen as a step towards an in-depth

analysis of the geometry of 3D MLP's in simple cube curves.

Although we are not able yet to provide a closed form solution for a 3D MLP

algorithm of a given simple cube-curve, these three steps lead in this direction

by replacing parts of the iterative procedure by direct computation.

In the following section the basic notions are introduced. We de�ne the length

of a simple cube-curve. In Section 3 we summarize our previous algorithm for

the calculation of this length. In Section 4 the three items mentioned above are

elaborated.

2 The Length of Simple Cube Curves

We start with the de�nition of simple cube curves, see Fig. 1 for two examples.

Any grid point (i; j; k) 2 R
3 is assumed to be the center point of a grid cube

with faces parallel to the coordinate planes, with edges of length 1, and vertices

at its corners. Cells are either cubes, faces, edges or vertices. The intersection of

two cells is either empty or a joint side of both cells. A cube-curve is a sequence

g = (f0; c0; f1; c1; :::; fn; cn) of faces fi and cubes ci, for 0 � i � n, such that

faces fi and fi+1 are sides of cube ci, for 0 � i � n and fn+1 = f0. It is simple

i� n � 4, and for any two cubes ci, ck in g with ji � kj � 2 (mod n) it holds

that if ci \ ck 6= ; then either ji � kj = 2 (mod n) and ci \ ck is an edge, or

ji � kj = 3 (mod n) and ci \ ck is a vertex. A tube g is the union of all cubes

contained in a cube-curve g. It is a polyhedrally-bounded compact set in R
3 ,



Fig. 1. Two cube-curves in 3D space.

and it is homeomorphic with a torus in case of a simple cube-curve. The cube-

curve on the left of Fig. 1 is simple, and the cube-curve on the right is not.

Analogously, edge-curves or face-curves may be de�ned in 3D space. This paper

deals exclusively with simple cube-curves. A curve P in 3D Euclidean space is

complete in g i� it has a non-empty intersection with any cube contained in g.

Following [9, 10], the length of a simple cube-curve g is de�ned to be the length

l(P) of a shortest polygonal simple curve P which is contained and complete

in tube g. A simple cube-curve g is 
at i� the center (grid) points of all cubes

contained in g are in one plane parallel to one of the coordinate planes.

A non-
at simple cube-curve in R
3 speci�es exactly one minimum-length

polygonal simple curve (MLP) which is contained and complete in its tube [10].

The MLP is not uniquely speci�ed in 
at simple cube-curves. Flat simple cube-

curves may be treated as square-curves in the plane, and square-curves in the

plane are extensively studied, see, e.g. [7]. It seems there is no straightforward

approach to extend known 2D MLP algorithms to the 3D case.

3 The Iterative Algorithm

This section contains fundamentals used in our algorithm presented in the con-

ference paper [1] for calculating the length of a simple cube-curve. Let g be a

simple cube-curve, and P = (p0; p1; :::; pm) be a polygonal curve complete and

contained in g, with p0 = pm.

Lemma 1. It holds m � 3 for any polygon P = (p0; p1; :::; pm) complete and

contained in a simple cube-curve.

The case m = 3 is possible. During a traversal along the curve P we leave cubes,

and we enter cubes. The traversal is de�ned by the starting vertex p0 of the curve

and the given orientation. Let CP = (c0; c1; :::; cn) be the sequence of cubes in the

order how they are entered during this curve traversal. Because P is complete

and contained in g it follows that CP contains all cubes of g, and no further

cubes are in g.

Lemma 2. For an MLP P of a simple cube-curve g it holds that CP contains

each cube of g just once.



Now we consider a special transformation of polygonal curves. Let P = (p0; p1; :::;

pm) be a polygonal curve contained in a tube g. A polygonal curve Q is a g-

transform of P i� Q may be obtained from P by a �nite number of steps,

where each step is a replacement of a triple a; b; c of vertices by a polygonal

sequence a; b1; :::; bk; c such that the polygonal sequence a; b1; :::; bk; c is contained

in the same set of cubes of g as the polygonal sequence a; b; c. The case k = 0

characterizes the deletion of vertex b, the case k = 1 characterizes a move of

vertex b within g, and cases k � 2 specify a replacement of two straight line

segments by a sequence of k + 1 straight line segments, all contained in g.

Lemma 3. Let P be a polygonal curve complete and contained in the tube g of

a simple cube-curve g such that CP is without repetitions of cells. Then it holds

that any g-transform of P is also complete and contained in g.
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Fig. 2. Critical edges of two cube-curves.

An edge contained in a tube g is critical i� this edge is the intersection of

three cubes contained in the cube-curve g. Figure 2 illustrates all critical edges

of the cube-curves shown in Fig. 1. Note that simple cube-curves may only have

edges contained in three cubes at most. For example, the cube-curve consisting

of four cubes only (note: there is one edge contained in four cubes in this case)

was excluded by the constraint n � 4. Based on these lemmata it was possible

to prove the following theorem [8]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible

locations of vertices of a shortest polygonal simple curve contained and complete

in tube g.

Note that this theorem also covers 
at simple cube-curves with a straightforward

corollary about the only possible locations of MLP vertices within a simple

square-curve in the plane: such vertices may be convex vertices of the inner

frontier or concave vertices of the outer frontier only because these are the only

vertices incident with three squares of a simple square-curve.

Our algorithm is based on the following model: Assume a rubber band is laid

through the tube g. Letting it move freely it will contract to the MLP which
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Fig. 3. Curve initializations (`clockwise').

is contained and complete in g. The algorithm consists of two subprocesses: at

�rst (A) an initialization process de�ning a simple polygonal curve P0 contained

and complete in the given tube g and such that CP0
contains each cube of g just

once (see Lemma 2), and second (B) an iterative process (a g-transform, see

Lemma 3) where each completed run transforms Pt into Pt+1 with l(Pt) �

l(Pt+1), for t � 0. Thus the obtained polygonal curve is also complete and

contained in g.

(A) The initial polygonal curve will only connect vertices which are end

points of consecutive critical edges. For curve initialization, we scan the given

curve until the �rst pair (e0; e1) of consecutive critical edges is found which are

not parallel or, if parallel, not in the same grid layer (see Fig. 2 (right) for a non-

simple cube-curve showing that searching for a pair of non-coplanar edges would

be insu�cient in this case). For such a pair (e0; e1) we start with vertices (p0; p1),

p0 bounds e0 and p1 bounds e1, specifying a line segment p0p1 of minimum length

(note that such a pair (p0; p1) is not always uniquely de�ned). This is the �rst

line segment of the desired initial polygonal curve P0.

Now assume that pi�1pi is the last line segment on this curve P0 speci�ed so

far, and pi is a vertex which bounds ei. Then there is a uniquely speci�ed vertex

pi+1 on the following critical edge ei+1 such that pipi+1 is of minimum length.

Length zero is possible with pi+1 = pi . In this case we skip pi+1, i.e. we do not

increase the value of i. Note that this line segment pipi+1 will always be included

in the given tube because the centers of all cubes between two consecutive critical

edges are collinear.

The process stops by connecting pn on edge en with p0 (note that it is possible

that a minimum-distance criterion for this �nal step may actually prefer a line

between pn and the second vertex bounding e0, i.e. not p0). This initialization

process calculates a polygonal curve P0 which is always contained and complete

in the given tube.

(B) In this iterative procedure we move pointers addressing three consecutive

vertices of the (so far) calculated polygonal curve around the curve, until a

completed run t + 1 does only lead to an improvement which is below an a-
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priori threshold � , i.e. l(Pt)� � < l(Pt+1). In all our experiments the algorithm

converges fast for a practically reasonable value of � .

Assume a polygonal curve Pt = (p0; p1; :::; pm), and three pointers addressing

vertices at positions i � 1, i, and i + 1 in this curve. There are three di�erent

options that may occur which de�ne a speci�c g-transform.

(O1) Point pi can be deleted i� pi�1pi+1 is a line segment within the tube.

Then subsequence (pi�1; pi; pi+1) is replaced in our curve by (pi�1; pi+1). In this

case we continue with vertices pi�1; pi+1; pi+2 . (O2) The closed triangular region

4(pi�1pipi+1) intersects more than just the three critical edges of pi�1, pi and

pi+1 (see Fig. 4), i.e. simple deletion of pi would not be su�cient anymore. This

situation is solved by calculating a convex arc (note: a convex polygon is the

shortest curve encircling a given �nite set of planar points [2]) and by replacing

point pi by the sequence of vertices q1,...,qk on this convex arc between pi�1
and pi+1 i� the sequence of line segments pi�1q1; : : : ; qkpi+1 lies within the

tube. Because the vertices are ordered we may use a fast linear-time convex hull

routine in case of (O2). Barycentric coordinates with basis fpi�1; pi; pi+1g may

be used to decide which of the intersection points is inside the triangle or not.1

In this case we continue with a triple of vertices starting with the calculated new

vertex qk. If (O1) and (O2) do not lead to any change, the third option may

lead to an improvement.

(O3) Point pi may be moved on its critical edge to obtain an optimum po-

sition pnew minimizing the total length of both line segments pi�1pnew and

pnewpi+1. That's a move on a critical edge and an O(1) solution is given below.

Then subsequence (pi�1; pi; pi+1) is replaced in our curve by (pi�1; pnew; pi+1).

In this case we continue with vertices pnew; pi+1; pi+2.

We consider situation (O3), i.e. pi lies on a critical edge, say e, and is not

collinear with p
i�1pi+1. Let le be the line containing the edge e. First, we �nd

the point p
opt

2 le such that

jp
opt

� p
i�1j+ jp

i+1 � p
opt
j = min

p2le

L(p)

with

L(p) = (jp� p
i�1j+ jp

i+1 � pj):

If p
opt

lies on the closed critical edge e we simply replace p
i
by p

opt
. If it does

not, we replace p
i
by that vertex bounding e and lying closest to p

opt
.

1 In the majority of such cases we found k = 1, i.e. pi is replaced by q1.



We give a slightly simpler solution for �nding the point p
opt

then provided

in [1]. W.l.o.g. let us assume that le is parallel to the x-axis:

le = f(t; ye; ze)
T
jt 2 Rg

for some �xed ye and ze. If xi�1 = xi+1 we �nd p
opt

= (xi�1; ye; ze)
T . Otherwise

@L

@x
(p

opt
) = 0

leads to a quadric equation in xopt,

(�i+1 � �i�1)x
2
opt

+ 2(�i�1xi+1 � �i+1xi�1)xopt + �i+1x
2
i�1 � �i�1x

2
i+1 = 0 ;

with �i = (ye � yi)
2 + (ze � zi)

2 :

Figure 5 illustrates a given simple cube curve by its critical edges only, the

initial polygon and the correct MLP as calculated by our algorithm. Note that

some of the vertices subdivide critical edges in a rational ratio speci�ed by the

heights of consecutive linear cube segments.
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Fig. 5. Initial polygon (dashed) and correctly calculated MLP. Critical edges are shown

as short line segments. The rest of the tube is not shown.

We illustrate the performance of the algorithm with respect to length mea-

surement on circles in R3 . We generate circles by

c(t) = Rx(�1)Rz(�2)Rx(�3)

0
@
r cos(t)

r sin(t)

0

1
A ; t 2 [0; 2�[:

Here, Rx and Rz are the 3 � 3 rotation matrices about the x- and the z-axis,

respectively. The angles �1; �2 and �3 are randomly chosen from a uniform dis-

tribution in the interval [0; �]. The radius r is randomly chosen from the interval

[0:5; 1]. In each experiment a circle is generated and digitized on a 3D grid. The
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Fig. 6. Results of the length estimation of digitized circles with resolution 1003 to

10003 using � = l(Pt) � 10�7.

grid size varies between 1003 and 10003. We performed experiments using di�er-

ent thresholds � , and Fig. 6 illustrates the case of � = l(Pt) �10
�7 and resolutions

(100 � n)3; n 2 f1; 2; : : : ; 10g. For each combination we estimated the length of

25 digitized circles. We normalized the results such that the true circumference

of the underlying circles is �.

4 Analysis of Cube Curves

In it's current form the above algorithm is slower than necessary. It can be sped

up by taking into account more of the available information about the possible

positions of vertices of the MLP. Here we propose three ways of doing so: 1) Not

all critical edges are relevant, i.e., not every critical edge can contain a vertex

of the MLP. Removing irrelevant critical edges reduces the number of necessary

computations. 2) In certain situations a critical edge can contain a vertex of the

MLP only { if at all { at one of its endpoints. This information can be used

for the initialization of the algorithm. 3) Consider a subsequence of the MLP

which is contained in one �xed grid-layer. Assume the correct endpoints are

known as well as the critical edges which contain the intermediate vertices of

the MLP. Under these conditions the positions of the intermediate vertices can

be calculated in closed form.

Considerations as started in this section may lead to a better understanding

whether it is possible to derive a non-iterative, i.e. closed form of an algorithm

calculating 3D MLPs within simple cube curves.

4.1 Removing Irrelevant Critical Edges

Consider a 
at arc of a simple cube curve, i.e. an arc all of which cubes lie within

one cube-layer. As shown in Fig. 7 this arc can be projected to a 2D plane, where

the cube-curve becomes a face-curve. The 2D MLP algorithm reported in [7] may



Fig. 7. A subsequence of a simple cube curve lying entirely in one cube-layer (top). Its

projection to a 2D face-curve. The vertices marked by dots indicate the corresponding

critical edges.

be used for such a planar segment of a simple cube curve. The following theorem

also shows how in this case irrelevant critical edges can be identi�ed.

Theorem 2. Let E = fei; ei+1; ei+2; ei+3; ei+4g be a sequence of consecutive,

parallel critical edges. Let ei; ei+2 and ei+4 be coplanar. Consider the projection

of the cube-curve segment containing E as in Fig. 7. Then ei+2 contains no vertex

of the MLP if line segment eiei+4 intersects the boundary of the face-curve at

ei+2 only.

Figure 8 illustrates the situation and no further proof is needed.

e1

e3

e5

e1

e3

e5

Fig. 8. Illustration of Theorem 2. Left: e3 contains a vertex of the MLP. Right: e3 does

not contain a vertex of the MLP and can be removed from the list of critical edges.



Fig. 9. Entering and leaving in same direction.

4.2 Vertices on Endpoints of Critical Edges

We again investigate 
at arcs of the cube-curve. The following theorem shows

that in a situation like the one shown in Fig. 9 the only possible positions of

MLP-vertices are the endpoints of critical edges.

Lemma 4. Let E = (ei; ei+1; : : : ; ei+n�1) be a sequence of consecutive critical

edges. If all these ej's are pairwise parallel then they lie within the same grid

layer (cube-layer).

Proof. Moving into another grid-layer results in a critical edge in the plane

between both grid layers, i.e. which is not parallel to the ej 's in the sequence E

before.

It holds that E = (ei; ei+1; : : : ; ei+n�1) is a maximum-length sequence of parallel

critical edges i� all the ej 's contained in E are pairwise parallel and ei�1 and

ei+n are not parallel to ei (and thus not parallel to any edge contained in E).

Theorem 3. Let E = (ei; ei+1; : : : ; ei+n�1) be a maximum-length sequence of

parallel critical edges. If ei�1 and ei+n are both in the upper (lower) face-layer,

the only possible vertex positions on the edges ei; : : : ; ei�n�1 are the upper (lower)

endpoints of these edges.

Note, that by speaking about \upper" and \lower" face-layer, we assumed a

horizontal layer. The same theorem holds if we replace \upper" and \lower" by

\left" and \right" or by \front" and \back".

Proof. The shortest path connecting an edge-sequenceE = (ei; ei+1; : : : ; ei+n�1)

lies within a horizontal plane, i.e., the positions of all vertices have the same z-

coordinate (x-coordinate for \left" and \right", y-coordinate for \front" and

\back"). Since the left and right neighbors of E are both above (below) the

cube-layer, it is optimal to move the vertices to the upper (lower) endpoints of

the edges ei; : : : ; ei�n�1.

4.3 Closed Form Evaluation of Vertex Positions

Let (ei; ei+1 : : : ; ei+n) be a sequence of consecutive parallel critical edges and

E = (ei; ej : : : ; ek) the sequence which results from the former sequence by



removing all the critical edges containing no vertex of the MLP. W.l.o.g. we

assume that E lies within a horizontal cube-layer.

Consider the sequence of the vertices (pa; pei ; pej ; : : : ; pek ; pb) being a subse-

quence of the MLP. Here pa and pb are assumed to be known, and pe denotes

the vertex lying on e. De�ne

l = jpapei j+ jpeipej j+ : : :+ jpekpbj;

and let (p)z be the z-coordinate of the vertex p.

Theorem 4. For the speci�ed situation it holds that the z-coordinates of pei ; pej ;

: : : ; pek are given by linear interpolations

(pei)z = (pa)z +
(pb)z � (pa)z

l
jpaeij;

(pej )z = (pei)z +
(pb)z � (pa)z

l
jeiej j; : : :

Proof. We represent ei by the set of points in R3 which lie on ei:

ei = f(xi; yi; z + �i)j�i 2 [0; 1]g:

We introduce a function � acting on the indices such that

E = (e�(1); e�(2) : : : ; e�(m)) :

Further we denote the positions of the vertices pa and pb by

pa = (x�(0); y�(0); ��(0)) and pb = (x�(m+1); y�(m+1); ��(m+1)) :

The length of the sequence (pa; pei ; pej ; : : : ; pek ; pb) is thus given by

L(��(1); : : : ; ��(m)) =

mX
i=1

q
(je�(i)e�(i+1)j)

2 + (��(i) � ��(i+1))
2 ;

where (je�(i)e�(i+1)j)
2 = (x�(i) � x�(i+1))

2 + (y�(i) � y�(i+1))
2. Since L does not

depend on the xi and yi directly but merely on the horizontal distances between

consecutive critical edges je�(i)e�(i+1)j we can replace E by E0 with edges

e0
i
= f(x0

i
; 0; �i)j�i 2 [0; 1]g

such that

x0
�(i) � x0

�(i+1) = je�(i)e�(i+1)j

which leads to

L =

mX
i=1

q
(x0

�(i) � x0
�(i+1))

2 + (��(i) � ��(i+1))2:



Fig. 10. An example for the application of Theo. 4: The position of the middle MLP-

vertex can be calculated using the theorem. In this case � = 1=3. An arc of the MLP

is represented by the thin line. The bold edges of the cube curve are the critical edges.

Minimizing L with respect to ��(1), : : : , ��(m) leads to

��(i) = ��(0) +
��(m+1) � ��(0)

x0
�(m+1) � x0

�(0)

(x0
�(i) � x0

�(0)):

Converting to the previous notation yields the formulae in the theorem.

Figure 10 shows a simple situation in which Theo. 4 can be applied. We �nally

present an example of a cube-curve with an MLP which can be calculated in

closed form (see Fig. 11). The vertices in the left and right arcs, which lie in the

Y-Z plane, can by Theo. 3 found to lie on the endpoints of critical edges. Which

of the critical edges in these arcs are e�ective can be found by a 2D method for

face-curves. The latter is also true for the two other arcs which lie in the X-Y

plane. The locations of the vertices on the e�ective critical edges of these arcs

can be found by Theo. 4.

5 Conclusion

In this paper we reviewed an algorithm for iterative approximation of 3D MLP

of a simple cube curve and initiated a discussion whether it is possible or not

to derive a closed-form, i.e. non-iterative algorithm for this computational prob-

lem. We have shown that certain irrelevant critical edges can be identi�ed, and

how the positions of some MLP-vertices can directly be calculated without an

iterative procedure. These �rst steps towards a better understanding of simple

cube curves are based on a segmentation of 3D cube curves into 2D face curves.

Triplets of run-length sequences may play a crucial role in analyzing simple

cube curves. Starting with one cube of a simple cube curve we may assign one

sequence of numbers to any of the three coordinate axes de�ned by consecutive



Fig. 11. The MLP of the shown cube-curve can be calculated in closed form using the

presented methods. See text for details.

run length' parallel to this coordinate axis (i.e. `how many consecutive cubes are

in the same layer with respect to the coordinate axis?'). These sequences may be

calculated during a �rst run through the given cube curve. For example, starting

at the lower left cube of the simple cube curve shown in Fig. 1 on the left, and

going to the right, we have sequences

1; 1; 1; 3; 6; 1; 1; 1; 1; 4; 4+

(4+ indicates that this run is in the same layer as the �rst cube) for the X-

coordinate axis (left to right),

4; 4; 2; 7; 1; 1; 5+

(again continuation of the same layer as the �rst 4 cubes) for the foreground-to-

background Y -axis, and

5; 2; 2; 2; 10; 1; 1; 1

for the bottom-to-top Z-axis. This shows that the longest run of 10 cubes appears

in one Z-layer, matching the situation of Theorem 3, followed by a run of 9 cubes

in one Y -layer. Such a longest run might be a good start for a 3D MLP algorithm.

An analysis of these run-length sequences is also expected to allow a more direct

calculation of (possible) positions of MLP vertices on critical edges. Figure 12

shows that these may be at irrational positions.

The evaluation of the practical relevance of algorithmic proposals (as dis-

cussed for the speed-up of the iterative algorithm) is particularly di�cult, since

the e�ect of these depends highly on the class of speci�c cube curves under con-

sideration. For example, it is easily possible to construct curves with no irrelevant

critical edges at one hand, and curves containing almost only irrelevant critical

edges, on the other hand. Similarly, the applicability of Theorem 4 depends on

the length of 
at arcs in the cube-curve.

The e�ect of methods such as presented here on the complexity of the dis-

cussed iterative algorithm will be subject to future research, in close relation to

methods modeling or generating speci�c classes of cube curves. For example, it

will be worthwhile to investigate whether Theorem 3 allows the identi�cation



Fig. 12. A cube curve with an MLP-vertex at an irrational position: As a consequence

of Theo. 4 the vertex marked by the dot is at � =
p
2=(2 +

p
2).

of at least two MLP-vertices for any given cube curve. This would allow a seg-

mentation of a cube curve into two cube arcs, and the independent treatment of

both arcs.
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