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Abstract

Jordan, Peano and others introduced digitizations of sets in the plane and in the 3D
space for the purpose of feature measurements. Features measured for digitized sets,
such as perimeter, contents etc., should converge (for increasing grid resolution)
towards the corresponding features of the  given sets before digitization. This type of
multigrid convergence is one option for performance evaluation of feature
measurement in image analysis with respect to correctness.

The paper reviews work in multigrid convergence in the context of digital image
analysis. In 2D, problems of area estimations and lower-order moment estimations do
have "classical" solutions (Gauss, Dirichlet, Landau et al.). Estimates of moments of
arbitrary order are converging with speed $f(r)=r^{-15/11}$. The linearity of
convergence is known for three techniques for curve length estimation based on
regular grids and polygonal approximations.

Piecewise Lagrange interpolants of sampled curves allow faster convergence speed. A
first algorithmic solution for convergent length estimation for digital curves in 3D has
been suggested quite recently. In 3D, for problems of volume estimations and lower-
order moment estimations solutions are known for about one-hundred years
(Minkowski, Scherrer et al.). But the problem of multigrid surface contents
measurement is still a challenge, and there is recent progress in this field.
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Abstract. Jordan, Peano and others introduced digitizations of sets in

the plane and in the 3D space for the purpose of feature measurements.

Features measured for digitized sets, such as perimeter, contents etc.,
should converge (for increasing grid resolution) towards the correspond-

ing features of the given sets before digitization. This type of multigrid

convergence is one option for performance evaluation of feature measure-
ment in image analysis with respect to correctness.
The paper reviews work in multigrid convergence in the context of digi-

tal image analysis. In 2D, problems of area estimations and lower-order

moment estimations do have "classical" solutions (Gauss, Dirichlet, Lan-

dau et al.). Estimates of moments of arbitrary order are converging with

speed �(r) = r
�15=11. The linearity of convergence is known for three

techniques for curve length estimation based on regular grids and polyg-

onal approximations. Piecewise Lagrange interpolants of sampled curves

allow faster convergence speed. A �rst algorithmic solution for conver-

gent length estimation for digital curves in 3D has been suggested quite

recently. In 3D, for problems of volume estimations and lower-order mo-

ment estimations solutions have been known for about one-hundred years

(Minkowski, Scherrer et al.). But the problem of multigrid surface con-

tents measurement is still a challenge, and there is recent progress in this

�eld.

1 Introduction

Geometric image analysis approaches are normally motivated by concepts in

Euclidean geometry. A common strategy is: approximate picture subsets in 2D

by polygons or in 3D by polyhedrons and use Euclidean geometry from that

moment on for any further object analysis or manipulation step. A theoretical

motivation is given by the fact that recti�able curves and measurable surfaces

can be approximated by polygonal curves or polyhedral surfaces up to any de-

sired accuracy. This means that if we consider grid resolution as a potentially

improvable parameter, then polygonal or polyhedral approximations appear to

converge (for a set-theoretic metric) to the original preimage of the given ob-

ject. The important question arises: does a convergence toward the true value

also hold for calculated properties? For example, if we measure the length of a

digital curve then the calculated value should converge to the correct length of

a preimage in Euclidean space digitized with increasing grid resolution.
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In ancient mathematics, Archimedes and Liu Hui [39] estimated the length

L(
) of a circular curve 
. Liu Hui used regular n-gon approximations, with

n = 3; 6; 12; 24;48;96; :::, see left of Fig. 1. In case of n = 6 it follows 3 � d <

L(
) < 3:46 � d for diameter d, and for n = 96 it follows that

223=71 < � < 220=70 ; i.e. � � 3:14 :

The used method is mathematically correct because the perimeters of inner and

outer regular n-gons converge towards the circle's perimeter for n ! 1. For

example, for the inner 3� 2n-gons, having perimeters

p2n = 2n � r
q
2r2 � r

p
4r2 � p2n ;

it follows
�(n) = jpn � 2�rj � 2�r=n ; for n � 6 :

The function �(n) de�nes the speed of convergence, which is linear in this case.

The perimeters of digitized circles have been calculated in image analysis

using sometimes graph-theoretical concepts such as the length of a 4-curve, or of

an 8-curve where diagonal steps are weighted by
p
2, see, for example, [13, 27].

Such graph-theoretical concepts of path-length measurements are not related

to digitized Euclidean geometry. Grid-intersection digitizations of line segments

having a slope of 45Æ (for 4-paths) or of 22:5Æ (for 8-paths) provide simple ex-

amples for illustrating this. Convergence of digital curves toward a preimage

with respect to the Hausdor�-Chebyshev-distance does not imply convergence

of length calculated for these digital curves, toward the true length, but a proper

preprocessing step (e.g. polygonal approximation of digital curves) may ensure

such a desirable property as will be shown below.

We recall another historic example [35] cited in [18]. Assume that the lateral

face L of a straight circular cylinder of radius � and of height h is cut by (k� 1)

planes, k � 2, which are parallel to the base circles and which segment the

cylinder into k congruent parts. Furthermore assume a regular n-gon, n � 3, in

every cross section including both base circles, see Fig. 2 for k = 4 and n = 6.

Fig. 1. Inner and outer hexagon approximating a circle (left), and percentage errors

for perimeter estimation using inner n-gons.
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Fig. 2. Triangulation of the lateral face of a straight circular cylinder [35].

The axis of the cylinder and any vertex of such an n-gon de�nes a halfplane,

which bisects an edge of the n-gon in the neighboring cross section or base circle.

Now we connect for two neighboring n-gons each edge in one n-gon with those

vertex of the other n-gon closest to this edge. This results into a triangulation

Tk;n (i.e. a speci�c polyhedrization) of the lateral face L of the cylinder into 2kn

congruent triangles having a surface area equal to

A(Tk;n) = 2�� � sin(�=n)
�=n

r
1
4
�4�2

�
sin(�=2n)

�=2n

�4 �
k

n2

�2
+ h2 :

If k and n go to in�nity then the length of the edges of the triangular faces of

Tk;n converges to zero. However, the surface area of Tk;n does not necessarily

converge towards the surface area A(L) = 2��h of the lateral face! This is only

true if k and n go to in�nity such that k=n2 converges to zero. If k=n2 converges

to g > 0 then A(Tk;n) converges to

2�� � sin(�=n)
�=n

q
1
4
�4�2g2 + h2 :

It may even happen that k=n2 goes to in�nity, e.g. k = n
3, and then it follows

that A(Tk;n) goes to in�nity as well! Note that this example is based on sampling

of surface points which cannot be assumed in image analysis. Digitization of sets

provides an even less accurate input for subsequent steps of feature measurement.

The paper speci�es the concept of multigrid convergence and reviews related

results for measurements of moments, the length of curves in 2D or 3D, and

surface area.

2 Multigrid Convergence

First we recall three digitization models frequently used in image analysis: Gauss

digitization, grid-intersection digitization (for 2D only), and inner or outer Jor-

dan digitization.

Let r > 0 be a real number called grid resolution. The dilation of a set

S � <n by factor r is de�ned to be

r � S = f(r � x1; : : : ; r � xn) : (x1; : : : ; xn) 2 Sg ;
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for n � 1. Following [17], this is a dilation with respect to the origin (0; : : : ; 0),

and other points in the Euclidean space <n could be chosen to be the �xpoint

as well.

In studies on multigrid convergence sometimes it may be more appropriate

to consider sets of the form r � S (the approach preferred, e.g., by Jordan and

Minkowski) digitized in the orthogonal grid with unit grid length, instead of sets

S digitized in r-grids with grid length 1=r. The study of r ! 1 corresponds

to the increase in grid resolution, and this may be either a study of repeatedly

dilated sets r �S in the grid with unit grid length, or of a given set S in repeatedly

re�ned grids. This is a general duality principle for multigrid studies [25]. We

choose the repeatedly re�ned grid approach for this paper which is of common

use in numerics. An r-grid point g
r

i1;:::;in
= (i1=r; : : : ; in=r) is de�ned by integers

i1; : : : ; in.

De�nition 1. For a set S � <n, n � 1, its Gauss digitization Gr(S) is de�ned

to be the set of all r-grid points contained in S. When r = 1 the Gauss digitization

is denoted by G(S).

For example, consider <2 and all r-grid points as centers of isothetic squares

with edge length 1=r. Then the set Gr(S) is de�ned to be the union of all those

squares having their center points in Gr(S).

If the given set is a curve 
 in the plane then the grid-intersection model [7,

12] is of common use in digital geometry. Of course, this scheme can be adapted

to r-grid points for any value of r > 0, and the resulting sequence of r-grid

points is the grid intersection digitization Ir(
), which can be characterized by

a start point and a chain code (i.e. a sequence of directional codes). A digital

straight line Ir(
) is an 8-curve of r-grid points resulting from the grid-intersec-

tion digitization of the straight line 
 in the Euclidean plane, excluding the

straight lines y = x + i=2, where i is an integer. A digital straight line segment

(DSS) is a �nite 8-connected subsequence of a digital straight line.

The important problem of volume estimation was studied in [17] based on

gridding techniques. Any grid point (i; j; k) in the Euclidean space <3 is assumed

to be the center point of a cube with faces parallel to the coordinate planes and

with edges of length 1. The boundary is part of this cube (i.e. it is a closed set).

Let S be a set contained in the union of �nitely many such cubes. Dilate the set

S with respect to an arbitrary point p 2 <3 in the ratio r : 1. This transforms S

into S
p
r
. Let lp

r
(S) be the number of cubes completely contained in the interior

of Spr , and let upr(S) be the number of cubes having a non-empty intersection

with S
p
r . In [17] it is shown that r�3 � lpr (S) and r

�3 � upr(S) always converge

to limit values L(S) and U (S), respectively, for r ! 1, independently of the

chosen point p. Jordan called L(S) the inner volume and U (S) the outer volume

of set S, or the volume V(S) of S if L(S) = U (S). The volume de�nition based

on gridding techniques was further studied, e.g., in [29,34].

The following de�nition is about an n-dimensional situation. For n = 3, a reg-

ular Euclidean cell complex consists of (topologically closed) r-cubes, r-squares,

r-edges and r-vertices (see [20] for a review on cell complexes), and generaliza-
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tions to higher dimensions, as well as a restriction to the two-dimensional case

are straightforward.

De�nition 2. For a set S � <n, n � 1, its Jordan digitizations J�
r
(S) and

J
+
r
(S) are de�ned as follows: the set J

�

r
(S) (also called the inner digitization)

contains all n-dimensional cells completely contained in the interior of set S,

and the set J
+
r
(S) (also called the outer digitization) contains all n-dimensional

cells having a non-empty intersection with set S.

The unions of all cells contained in J
�

r
(S) or J

+
r
(S) are isothetic polyhedra

J�
r
(S) or J+

r
(S), respectively. The Hausdor�-Chebyshev distance, generated by

the d1 metric, between the polyhedral boundaries @J�r (S) and @J
+
r
(S) is greater

than or equal to 1=r for any non-empty closed set S, and it holds that

J�
r
(S) � S � J+

r
(S)

in this case.

Gauss and Jordan digitizations have been used in gridding studies in math-

ematics (geometry of numbers, number theory, analysis). The model of grid-

intersection digitization has been introduced for computer images, and it may

be applied to planar curves.

A general scheme for comparing results obtained for picture subsets with

the true quantities de�ned by the corresponding operation on the preimage in

Euclidean space has been formalized in [36]. The following de�nition [18] speci�es

a measure for the speed of convergence toward the true quantity.

De�nition 3. Let F be a family of sets S in <n, and digr(S) a digital image of

set S, de�ned by a digitization mapping digr. Assume that a quantitative property

P, such as area, perimeter, or a moment, is de�ned for all sets in family F . An

estimator EP is multigrid convergent for this family F and this digitization

model digr i� there is a grid resolution rS > 0 for any set S 2 F such that the

estimator value EP(digr(S)) is de�ned for any grid resolution r � rS , and

jEP(digr(S)) � P(S)j � �(r)

for a function � de�ned for real numbers, having positive real values only, and

converging toward 0 if r !1. The function � speci�es the convergence speed.

Gauss and Dirichlet knew already that the number of grid points inside a

planar convex curve 
 estimates the area of the set bounded by the curve within

an order of O(L(
)), where L(
) is the length of 
.

Theorem 1. (Gauss/Dirichlet ca. 1820) For the family of planar convex sets,

the number of r-grid points contained in a set approximates the true area with

at least linear convergence speed, i.e. �(r) = r
�1

.

Today we know that the convergence speed of this estimator is actually at least

r
�1:3636 [15] for planar, bounded, 3-smooth (i.e. continuous 3rd derivatives with

positive curvature at all boundary points except a �nite number of arc endpoints)

convex sets, and it cannot be better than r
�1:5, which is a trivial lower bound.
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Theorem 2. (Huxley 1990) For the family of planar, bounded, 3-smooth convex

sets, the number of r-grid points contained in a set approximates the true area

with a convergence speed of �(r) = r
�
, for �1:5 � � < �1:3636.

Closing the gap is an open problem which is a famous subject in number theory

[28], and is closely related to digital geometry [24].

3 Moments and Moment-Based Features in 2D

In this section we cite worst-case error bounds from [25] in estimating real mo-

ments (and related features) of sets S � <2 from corresponding discrete mo-

ments. Note that in case of 3-smooth sets the claimed positive curvature ex-

cludes straight boundary segments. Throughout this section we assume that S

is a planar convex set whose boundary consists of a �nite number of C3 arcs,

also allowing straight line segments if not otherwise stated. The (p; q)-moments

of set S are de�ned by

Mp;q(S) =

Z
S

Z
x
p
y
q
dx dy ;

for integers p; q � 0. The momentMp;q(S) has the order p+q. In image analysis,

the exact values of momentsMp;q(S) remain unknown. They are estimated by

discrete moments �p;q(S) where

�p;q(S) =
X

(i;j)2G(S)

i
p � jq

which can be calculated from the corresponding digitized set G(S) of set S.

The grid resolution r has to be used as scaling factor if the approach involves

repeatedly re�ned grids. The moment-concept has been introduced into image

analysis in [14].

The contents or area A(S) of a planar set S, i.e. the moment M0;0(S) of

order zero, is estimated by the number of grid points in G(S), i.e. by the discrete

moment �0;0(S). For the center of gravity of a set S,�M1;0(S)

M0;0(S)
;
M0;1(S)

M0;0(S)

�

the estimate �
�1;0(S)

�0;0(S)
;
�0;1(S)

�0;0(S)

�

is calculated from its digital set G(S). The orientation of a set S can be described

by its axis of the least second moment. That is the line for which the integral of

the squares of the distances to points of S is a minimum. That integral is

I(S; '; �) =

Z
S

Z
r
2(x; y; '; �)dxdy ;
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where r(x; y; '; �) is the perpendicular distance from the point (x; y) to the line

given in the form

x � cos'� y � sin' = � :

We are looking for the value of ' for which I(S; '; �) takes its minimum, and by

this angle we de�ne the orientation of the set S. This '-value will be denoted

by D(S), i.e.

min
';�

I(S; '; �) = I(S;D(S); �); for some value of � :

Again, this feature is estimated by replacing integration and set S by a dis-

crete addition and a digital set G(S), respectively. With respect to applications

note that this feature requires sets with "a main orientation", i.e. M2;0(S) 6=
M0;2(S). Finally, we also mention the elongation of S (see [16, 42]) in direction

' which is the ratio of maximum and minimum values of I(S; '; �), i.e.

E(S) =

max
'; �

I(S; '; �)

min
'; �

I(S; '; �)
:

It may be estimated by digital approximations of the I-function values as in case

of the orientation of set S.

The curvature of the boundary of the considered set plays an important role.

It makes an essential di�erence whether at least one straight section on the

boundary is allowed or not.

Theorem 3. (Klette/�Zuni�c 2000) Let S a convex set whose boundary consists

of a �nite number of C
3
arcs, then Mp;q(S) can be estimated by r

�(p+q+2) �
�p;q(r � S) within an error of O(r�1), and this error term is the best possible.

However, if S is 3-smooth and convex, i.e. the boundary does not possess any

straight segment, then the application of Huxley's theorem leads to a reduced

upper error bound.

Theorem 4. (Klette/�Zuni�c 2000) Let a planar bounded 3-smooth convex set S

be given. Then Mp;q(S) can be estimated by r
�(p+q+2) � �p;q(r � S) within an

error of O

�
(log r)

47
22 ) � r�15

11

�
� O

�
r
�1:3636:::

�
.

The following theorem speci�es how progress in the estimation of the \basic

di�erence" jM0;0(r � S) � r
2 � A(S)j by O(�(r)) can be used to improve error

bounds for higher-order estimates jMp;q(S)� r
�(p+q+2) � �p;q(r �S)j, for a set S

being n-smooth, for some integer n = 3; 4; : : : ; including n =1. For a function

�(r) � 0, for r � 0, a family F�(r) of classes C of planar sets is de�ned such that

the the following conditions are satis�ed:

(i) C is nonempty;

(ii) if S 2 C then it satis�es

j�0;0(r � S) � r
2 � A(S)j = O (�(r)) ;
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(iii) if a set S belongs to C then any isometric transformation of S belongs to C

as well;
(iv) any set which can be represented by a �nite number of unions, intersections

and set-di�erences of sets from C also belongs to C.

This de�nition allows a formulation of the following theorem which 'translates'

possible future progress in number theory into a formulation of related error

bounds for moments of arbitrary order. Let F0 be the smallest family of sets

which contains all n-smooth planar convex bounded sets, and which is closed

with respect to �nite numbers of intersections, unions and set-theoretical di�er-

ences.

Theorem 5. (Klette/�Zuni�c 2000) Let S be a planar n-smooth convex set and

let �(r) be such that F0 is contained in the family F�(r). It follows that Mp;q(S)

can be estimated by r
�(p+q+2) � �p;q(r � S) within an error of O

�
�(r) � r�2�.

Let S be a set in a class in F0. The given theorems allow a derivation of the

following upper error bounds for feature estimations [25]. An upper error bound

for area estimates 1
r2

�0;0 (r � S) is directly given by Huxley's theorem, i.e.

��A (S) � 1
r2
� �0;0 (r � S)

�� = O

�
r
�(

15
11
�")

�
:

The same upper error bound holds for the estimates

1

r
� �1;0 (r � S)
�0;0 (r � S)

and
1

r
� �0;1 (r � S)
�0;0 (r � S)

of the coordinates
m1;0 (S)

m0;0 (S)
and

m0;1 (S)

m0;0 (S)

of the center of gravity, respectively. For the estimate of the orientation only

sets S with M2;0(S) 6=M0;2(S) are relevant. Then S's orientation D(S) can be

recovered within an worst-case error of O(r� 15
11

+"), by using the estimate

tan(2 � D(S)) � 2 � �1;1(r � S)
�2;0(r � S) � �0;2(r � S)

:

The elongation E of a 3-smooth convex set S can be estimated by

�(r � S) = t1(r � S) +
p
t2(r � S)

t1(r � S) �
p
t2(r � S)

;

for

t1(r � S) = �2;0(r � S) + �0;2(r � S)
and

t2(r � S) = 4 � (�1;1(r � S))2 + (�2;0(r � S) � �0;2(r � S))2 ;
for a planar set S. The error in the approximation E(S) � �(r � S) has an

upper error bound in O

�
r
�

15
11

+"
�
.

Of course, Theorems 3, 4, and 5 may also be used to derive error bounds for

features de�ned by moments of higher order than just up to order two.
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4 Length of Curves in 2D and 3D

There are provable convergent length estimators in 2D and 3D, where linear

multigrid convergence has been shown for planar convex curves. A superlinear

convergence O(r�1:5) of asymptotic length estimation has been achieved in [10]

just for the case of digitized straight lines, and there are superlinear length

estimators in 2D if sampling of curves is assumed instead of digitization.

4.1 Polygonal Approximations of Curves in 2D

Boundaries of digitized planar sets, or digitized planar curves, can be approxi-

mated by a polygon, using a digital straight segment (DSS) procedure to segment

the boundary into a sequence of maximal-length DSSs. The resulting polygon

depends on the starting point and the orientation of the scan. Besides this DSS-

based approach to the approximation of digital curves by polygons, there are

other possible approaches using minimum-length polygons; see [5, 6, 38]. We re-

view all three methods with respect to multigrid convergence.

Given a connected region S in the Euclidean plane and a grid resolution r,

the r-frontier @Gr(S) of S is uniquely determined. Note that an r-frontier may

consists of several non-connected curves even in the case of a bounded convex

set S. A set S is r-compact i� there is a number rS > 0 such that @Gr(S) is just

one (connected) curve, for any r � r0.

Theorem 6. (Kovalevsky/Fuchs 1992, Klette/Zunic 2000) Let S be a convex,

r-compact polygonal set in <2
. Then there exists a grid resolution r0 such that

for all r � r0, any DSS approximation of the r-frontier @Gr(S) is a connected

polygon with perimeter pr satisfying the inequality

jL(@(S)) � pr j � 2�
r

�
"DSS(r) +

1p
2

�
:

This theorem and its proof can be found in [25]. The proof is based to a large

extent on material given in [26]. The value of r0 depends on the given set, and

"DSS(r) � 0 is an algorithm-dependent approximation threshold specifying the

maximum Hausdor�-Chebyshev distance (generalizing the Euclidean distance

between points to a distance between sets of points) between the r-frontier

@Gr(S) and the constructed (not uniquely speci�ed !) DSS approximation poly-

gon. Assuming "DSS (r) = 1=r, it follows that the upper error bound for DSS

approximations is characterized by1

2�

r2
+

2�

r � p2 � 4:5

r
if r � 1 (i.e. r is large) :

The grid resolution 1=r is assumed in the chord property in [33], where a DSS is

de�ned to be a �nite 8-path. In the case of using cell complexes it is appropriate

to consider a �nite 4-path as a DSS i� its main diagonal width is less than
p
2,

see [1,32].

1 Let �(r) = 2�=r2 + 2�=r �
p
2. Then it follows that �(r)! �

p
2 as r !1.
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A second approach, see [38], is based on Jordan digitization of sets S in

the Euclidean plane. The di�erence set Or(S) n Ir(S) can be transformed into a

subset such that the Hausdor�-Chebyshev distance (generated by the d1 metric)

between its inner and outer boundary is exactly 1=r, i.e. the grid constant. The

perimeter of S can be estimated by the length of a minimum-length polygon

(MLP) contained in this subset, and circumscribing the inner boundary of this

subset, which is homeomorphic to an annulus. The subset can be described by

a sequence of r-squares, where any r-square has exactly two edge-neighboring

r-squares in the sequence. Such a sequence is called a one-dimensional grid

continuum (1D-GC). Such 1D-GCs are treated in the theory of 2D cell complexes

in the plane. This speci�es an alternative approach (GC-MLP in short) to the

approximation of digital curves; it has been experimentally compared with the

DSS method in [23].

For the case of GC-MLP approximations there are several convergence the-

orems in [38], showing that the perimeter of the GC-MLP approximation is a

convergent estimator of the perimeter of a bounded, convex, smooth or polyg-

onal set in the Euclidean plane. The following theorem is basically a quotation

from [38]; it speci�es the asymptotic constant for GC-MLP perimeter estimates.

Theorem 7. (Sloboda/Za�tko/Stoer 1998) Let 
 be a (closed) convex curve in

the Euclidean plane which is contained in a 1D-GC of r-squares, for r � 1. Then

the GC-MLP approximation of this 1D-GC is a connected polygonal curve with

length lr satisfying the inequality

lr � L(
) < lr +
8

r
:

Finally we sketch a third method, see [5,6], which is also based on minimum-

length polygon calculation. Assume an r-frontier of S which can be represented

in the form P = (v0; v1; : : : ; vn�1) where vertices are clockwise ordered and

the interior of S lies to the right. For each vertex of P we de�ne forward and

backward shifts: The forward shift f(vi) of vi is the point on the edge (vi; vi+1)

at the distance Æ from vi. The backward shift b(vi) is that on the edge (vi�1; vi)

at the distance Æ from vi.

In the approximation scheme as detailed below we replace an edge (vi; vi+1)

by a line segment (vi; f(vi+1)) interconnecting vi and the forward shift of vi+1,

which is referred to as the forward approximating segment and denoted by Lf (vi).

The backward approximating segment (vi; b(vi�1)) is de�ned similarly and de-

noted by Lb(vi). Now we have three sets of edges, original edges of the r-frontier,

forward and backward approximating segments. Let 0 < Æ � 0:5=r. Based on

these edges we de�ne a connected region A
Æ

r
(S), which is homeomorphic to the

annulus, as follows:

Given a polygonal circuit P describing an r-frontier in clockwise orientation,

by reversing P we obtain a polygonal circuit Q in counterclockwise order. In the

initialization step of our approximation procedure we consider P and Q as the

external and internal bounding polygons of a polygon PB homeomorphic to the

annulus. It follows that this initial polygon PB has area contents zero, and as a

set of points it coincides with @Gr(S).
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Now we `move' the external polygon P `away' from Gr(S), and the internal

polygon Q `into' Gr(S) as speci�ed below. This process will expand PB step

by step into a �nal polygon which contains @Gr(S), and where the Hausdor�-

Chebyshev distance between P and Q becomes non-zero. For this purpose, we

add forward and backward approximating segments to P and Q in order to

increase the area contents of the polygon PB.

To be precise, for any forward or backward approximating segment Lf (vi)

or Lb(vi) we �rst remove the part lying in the interior of the current polygon

PB and updating the polygon PB by adding the remaining part of the segment

as a new boundary edge. The direction of the edge is determined so that the

interior of PB lies to the right of it. The resulting polygon P
Æ

B
is referred to as

the approximating sausage of the r-frontier and denoted by A
Æ
r(S). The width

of such an approximating sausage depends on the value of Æ. An AS-MLP curve

for approximating the boundary of S is de�ned as being a shortest closed curve



Æ
r (S) lying entirely in the interior of the approximating sausage A

Æ
r(S), and

encircling the internal boundary of AÆ
r(S). It follows that such an AS-MLP curve



Æ
r (S) is uniquely de�ned, and that it is a polygonal curve de�ned by �nitely

many straight segments. Note that this curve depends upon the choice of the

approximation constant Æ.

Theorem 8. (Asano/Kawamura/Klette/Obokkata 2000) Let S be a bounded,

r-compact convex polygonal set. Then, there exists a grid resolution r0 such that

for all r � r0 it holds that any AS-MLP approximation of the r-frontier @Gr(S),

with 0 < Æ � :5=r, is a connected polygon with a perimeter lr and

jL(@S) � lr j � (4
p
2 + 8 � 0:0234)=r = 5:844=r: (1)

These three Theorems 6, 7 and 8 show that the DSS error bound of 4:5=r is

smaller than the AS-MLP bound 5:844=r, and the AS-MLP is smaller than the

GC-MLP bound 8=r : Further theoretical and experimental measures may be

used for performance comparisons such as e�ectiveness de�ned by the product

of error and number of generated line segments, or the time eÆciency of imple-

mented algorithms. With respect to asymptotic time complexity, a linear-time

algorithm is known for any of these three linear approximation (i.e. polygonal-

ization) methods [6, 23].

4.2 Higher-Order Approximation for Sampled 2D Curves

Higher-order approximations of curves with the purpose of length estimations

have been studied in [30, 31]: for k � 1, estimate the length L(
) of a Ck regular

parametric curve 
 : [0; 1] ! <n from (m + 1)-tuples Qm = (q0; q1; : : : ; qm) of

points qi = 
(ti) positioned on the curve 
. The parameters ti's are not assumed

to be given. Of course, sampling (see both examples in the Introduction) is a

di�erent situation compared to digitization. An increase in grid resolution r

de�ning a scale for two dimensions in the plane, corresponds to an increase in

the number m of sampling points de�ning a one-dimensional scale on the curve.
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Some assumptions about the distribution of the ti's are needed to make the

sampling problem solvable [30]. The problem is the easiest when the ti's are

chosen in a perfectly uniform manner, namely ti =
i

m
. In such a case it seems

natural to estimate 
 by a curve e
 that is piecewise polynomial of degree a � 1.

Then we prove

Theorem 9. (Noakes/Kozera/Klette 2001) Let 
 be C
s+2

and let ti's be sam-

pled perfectly uniformly. Then L(e
) = L(
) + O( 1
m
s+s0

), where s0 is 1 or 2

according as s is odd or even.

It is known [31] that Lagrange estimates of length based on a uniform grid do

not always converge to L(
) when the unknown ti's are non-uniform. In [30] it

is shown that there are some approximately uniform samplings of ti's for which

those estimates are well-behaved. More precisely

De�nition 4. For " � 0, the ti's are ("; k)-uniformly sampled if there is a C
k

reparameterization � : [0; 1]! [0; 1], for k � 1, such that ti = �( i

m
) + O( 1

m1+" ).

Lagrange estimates of length can behave badly for (0; k)-uniform sampling, see

[31], but for 0 < " � 1 the following theorem holds [30], using piecewise Lagrange

interpolants e
.
Theorem 10. (Noakes/Kozera/Klette 2001) Let the ti's be sampled ("; k)-uniformly

where 0 < " � 1 and k � 4. Then, for piecewise-quadratic Lagrange interpolantse
, determined by a sampled (m + 1)-tuple Qm and based on a uniform grid,

L(e
) = L(
) +O( 1
m4" ).

Whereas Theorem 9 permits length estimates of arbitrary accuracy (for s suf-

�ciently large), Theorem 10 refers only to piecewise-quadratic estimates (i.e.

s = 2), and accuracy is limited accordingly. However, even in the latter case it

holds that the quartic convergence speed2 is three magnitudes faster then the

linear convergence speed discussed for DSS, GC-MLP and AS-MLP polygonal-

izations (with s = 1). These sampling-based results encourage further research

on higher-order approximations for digitized curves.

4.3 A Polygonal Approximation of Curves in 3D

Consider the length estimation problem for recti�able curves 
 in the three-

dimensional Euclidean space. We assume curves 
 which lead to simple cube

curves for the digitization model J+
r (
).

A cube-curve is a sequence g = (f0; c0; f1; c1; :::; fn; cn) of r-faces fi and r-

cubes ci in <3, for 0 � i � n, such that r-faces fi and fi+1 are sides of r-cube ci,

for 0 � i � n and fn+1 = f0. Such a cube-curve is simple i� n � 4, and for any

two r-cubes ci, ck in g with ji�kj � 2 (mod n+1) it holds that if ci\ck 6= ; then
either ji� kj = 2 (mod n+ 1) and ci \ ck is an r-edge, or ji� kj = 3 (mod n+ 1)

2 Note that m speci�es an increase in the order of
p
m only with respect to a scale

for two dimensions in the plane, i.e. the quartic convergence speed in m may be
compared with a quadratic convergence speed in r.
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and ci \ ck is an r-vertex. A tube g is the union of all r-cubes contained in a

cube-curve g. Such a tube is a polyhedrally-bounded compact set in <3, and it

is homeomorphic with a torus in case of a simple cube-curve.

A curve is complete in g i� it has a non-empty intersection with any r-cube

contained in g.

De�nition 5. A minimum-length polygon (MLP) of a simple cube-curve g is

a shortest polygonal simple curve � which is contained and complete in tube g.

Following [38], the length of a simple cube-curve g is de�ned to be the length

L(�) of an MLP � of g. Theorem 7 states that this length estimation approach

is multigrid convergent to the true value in case of planar convex curves 
 as

speci�ed in this theorem.

An algorithm for approximating such an MLP in a simple cube-curve has

been speci�ed in [8]. It is based on the following theorem [21]. An edge contained

in a tube g is critical i� this edge is the intersection of three cubes contained in

the cube-curve g.

Theorem 11. (Buelow/Klette 2000) Let g be a simple cube-curve. Critical ed-

ges are the only possible locations of vertices of a shortest polygonal simple curve

contained and complete in tube g.

The algorithmic solution in [8] provides a polygonal approximation of desired

MLP's, and thus a length measurement method for simple cube-curves in 3D

space. The algorithm possesses a measured time complexity in O(n). However,

two open problems remain at this stage: the time complexity might be provable

always in O(n), and the convergence might be provable always towards the MLP.

For details of the algorithm see [8].

5 Surface Area of Regular Solids

A `3D object' can be modeled by a regular solid, which is de�ned to be a simply-

connected compact set having a measurable surface area [18]. Algorithms for

multigrid-convergent surface area estimation are still a research topic. Obviously,

increasing the grid resolution in a digitization of a regular solid in the form of

a 3D cell complex [4], and measuring the area of the resulting isothetic surface,

does not result in convergence to the true value. This might be compared with

the fact that 4-path length is not related to the length of a digitized curve in

2D. Marching-cube based polyhedrizations, see Fig. 3 do not support multigrid-

convergent surface area estimations toward the true value [19]. This might be

compared with the fact that 8-path length (with weighting factor
p
2 for diagonal

steps) is not related to the length of a digitized curve in 2D.

Polyhedrization is a common goal of segmenting the surface of a digitized

regular solid, normally given in the form of boundary points of a 3D grid point

set (e.g. using 3D Gauss digitization) or in the form of a two-dimensional grid

continuum (2D-GC) de�ned by a di�erence between the inner and outer Jordan

digitizations.
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Fig. 3. Three Euclidean sets digitized for increasing grid resolution and approximated

by marching-cube polyhedrizations.

5.1 Experimentally Measured Convergence

Expanding the ideas of DSS approximations into 3D leads to a digital plane seg-

ment (DPS) approach for achieving multigrid-convergent measurement of sur-

face area: the boundary of a Gauss- or Jordan-digitized set is segmented into

maximum-size DPSs, and surface areas of related polyhedral faces are added to

form a �nal estimate.

[32] introduced arithmetic geometry which allows characterizations of hy-

perplanes in n-dimensional spaces. [2] proposed a general de�nition that linked

planes and topology, introducing jaj+ jbj+ jcj thick planes. These planes were

further speci�ed and used in [11]. For a generalization to n dimensions see [3].

Digital plane segments can be de�ned within arithmetic geometry as follows:

r-cubes have eight directed diagonals. The main diagonal of a Euclidean plane

is those directed diagonal (out of these eight) that has the largest dot product

(inner product) with the normal of the plane. Note that in general there may be

more than one main diagonal for a Euclidean plane; if so, we can choose any of

them as the main diagonal. The distance between two parallel Euclidean planes

in the main diagonal direction is called the main diagonal distance between these

two planes.

Now consider a �nite set of faces of r-cubes in 3D space. A Euclidean plane

is called a supporting plane of this set if it is incident with at least three non-

collinear vertices of the set of faces, and all the faces of the set are in only one

of the (closed) halfspaces de�ned by the plane. Note that any non-empty �nite

set of faces has at least one supporting plane. Any supporting plane de�nes a

tangential plane, which is the nearest parallel plane to the supporting plane such

that all faces of the given set are within the closed slice de�ned by the supporting



Multigrid Convergence of Geometric Features 15

Fig. 4. Illustration of the main diagonal of a DPS.

and tangential planes. Note that a tangential plane may be a supporting plane

as well. Figure 4 gives a rough sketch of such a set of faces, where n denotes the

normal to the two parallel planes, and v is the main diagonal.

De�nition 6. A �nite, edge-connected set of faces in 3D space is a digital pla-

nar segment (DPS) i� it has a supporting plane such that the main diagonal

distance between this plane and its corresponding tangential plane is less thanp
3=r (i.e. the length of a diagonal of an r-cube).

Such a supporting plane is called e�ective for the given set of grid faces. Let

v be a vector in a main diagonal direction with a length of
p
3=r, let n be the

normal vector to a pair of parallel planes, and let d = n � p0 be the equation of

one of these planes. According to our de�nition of a DPS, all the vertices p of

the faces of a DPS must satisfy the following inequality:

0 � n � p� d < n � v

Let n = (a; b; c). Then this inequality becomes

0 � ax+ by + cz � d < jaj+ jbj+ jcj ;

i.e. an DPS is an edge-connected subset of faces in a standard plane [11]. A

simply-connected DPS is such that the union of its faces is topologically equiv-

alent (in Euclidean space) to the unit disk.

The general DPS recognition problem can be stated as follows: Given n

vertices fp1;p2; : : : ; png, does there exist a DPS such that each vertex satis�es

the inequality system

0 � n � pi � d < n � v; i = 1; : : : ; n ;

[40] suggests a method of turning this into a linear inequality system, by elimi-

nating the unknown d as follows:

n �pi � n � pj < n � v; i; j = 1; : : : ; n ;
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Fig. 5. Agglomeration of faces of a sphere and an ellipsoid into DPSs.

This system of n2 inequalities can be solved in various ways. [11, 40] use a Fourier

elimination algorithm. However, this algorithm is not time-eÆcient even for very

small cell complexes. In fact, in [40] a more advanced elimination technique than

Fourier-Motzkin was proposed to eliminate unknowns from systems of inequali-

ties. This technique eliminates all variables at once, whereas the Fourier-Motzkin

technique eliminates one variable at a time. Eliminating all variables at once

leads to an O(n4) algorithm for recognizing a DPS, which is faster than the

algorithm sketched in [11]. [40] included results for hyperplanes of arbitrary di-

mension. Note that two di�erent de�nitions are actually used to de�ne digital

planes, depending on what kind of connectivity relation is required:

0 � ax+ by + cz � d < jaj+ jbj+ jcj

or

0 � ax+ by + cz � d < max(jaj; jbj; jcj) :
The second de�nition was used in [40], but the results obtained there for the

elimination technique are equally valid for the �rst de�nition.

An incremental algorithm for DPS recognition has been proposed in [22],

based on updating lists of e�ective supporting planes. This algorithm can be

used for segmenting boundaries of digitized 3D sets into maximal-size DPSs, see

Fig. 5 for two examples.

Actually, any DPS recognition algorithm could be used for segmenting a

surface of a 3D cell complex into maximal-size DPSs. However, the starting

point and the search strategy during the process of `growing' a DPS are critical

for the behavior of such an algorithm. Also, after obtaining maximal-size DPSs,

it is not straightforward to derive a polyhedron from the resulting segmentation

of the surface.

Analytical surface area calculation of an ellipsoid, with all three semi-axes

a; b; c allowed to be di�erent, is a complicated task. If two semi-axes coincide,

i.e. in the case of an ellipsoid of revolution, the surface area can be analytically
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Fig. 6. Relative errors in surface area estimation for an ellipsoid in three orientations

for increasing grid resolution. Figure 5 illustrates resolution r = 40.

speci�ed in terms of standard functions. The surface area formula in the general

case is based on standard elliptic integrals. Example 2 in [18], reporting recent

work by G.Tee, speci�es an analytical method of computing the surface area

of a general ellipsoid. This area can be used in experimental studies as ground

truth to evaluate the performance of DPS algorithms in surface area estimation.

Figure 6 shows the error in the estimated value relative to the true value for an

ellipsoid in three di�erent orientations, using a search depth of 10 in region grow-

ing (breadth-�rst search). In general these DPS-based estimates behave `better'

than those based on convex hull (for digitized convex sets) or on marching-cube

algorithms. Convex hull and marching-cube methods lead to relative errors of

3.22% and 10.80% for r = 100, respectively, while the DPS error is less than

0.8%. The DPS method shows a good tendency to converge, but theoretical

work needs to be done to prove this. Altogether, there are working algorithms

which appear to provide multigrid-convergent surface area estimations, but there

is no related theorem stating this property for some type of 3D sets.

5.2 Multigrid Convergence of Estimated Surface Area

Recently there is actually progress on proving multigrid-convergent behavior of

surface area estimation, but so far without an algorithmic solution for the pro-

posed method! [9, 37] introduce the relative convex hull CHQ(P ) of a polyhedral

solid P which is completely contained in the interior of another polyhedral solid

Q. If the convex hull CH(P ) is contained in Q then CHQ(P ) = CH(P ); otherwise

CHQ(P ) � Q is a `shrunk version' of the convex hull. To be precise, let pq be

the (real) straight line segment from point p to point q in <3, and introduce the

following de�nition[37]:
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De�nition 7. A set A � Q � <3
is Q-convex i� for all p;q 2 A such that

pq � Q we have pq � A. Let P � Q. The relative convex hull CHQ(P ) of P

with respect to Q is the intersection of all Q-convex sets containing P .

For a set S � <3 we de�ned the inner and outer Jordan digitizations J�
r
(S)

and J+
r
(S) for grid resolution r � 1. If S is a regular solid with a de�ned surface

area, let A(S) be its surface area in the Minkowski sense [29].

Theorem 12. (Sloboda/Za�tko 2000) Let S � <3
be a compact set bounded by

a smooth closed Jordan surface #S. Then

lim
r!1

s

�
CH

J
+
r
(S)

�
J�
r
(S)
��

= A (S) :

This theorem, from [37], speci�es a method of multigrid convergence which still

requires research on algorithmic implementation, theoretical and experimental

convergence speed, and performance evaluation in comparison with other meth-

ods such as the DPS segmentation method sketched above.

6 Conclusions

Euclidean geometry speci�es the ground truth, the correct moment, length or

surface area prior to digitization. The concept of multigrid convergence may pro-

vide a general methodology for evaluating and comparing di�erent approaches.

The measurement of quantitative properties is certainly a main topic in digital

geometry. [27] is one of the early publications in this area, and [23] is one of

the more recent ones, both focusing on length estimates. Probability-theoretical

aspects of digitization errors [41, 43] have only been studied for a few elementary

�gures and simple geometric problems; further studies should provide answers

to open problems such as those listed in [25].

There is still no solution with respect to multigrid convergence for surface

area estimation which combines a convergence theorem and an algorithmic im-

plementation. The study of non-polygonal approximations of digitized curves

with respect to improvements in convergence speed appears as another impor-

tant open problem.

For all multigrid-convergence problems, it is important to determine what

optimumconvergence speed �(r) is actually possible (for example, see open prob-

lem de�ned by Theorem 2). A test set of six curves has been speci�ed in [23]

for evaluations of curve length estimations, and general ellipsoids are proposed

in [18] for surface area performance evaluations. Evaluation measures might be,

e.g., absolute error, eÆciency (error times number of generated segments), and

computing time. A classi�cation of properties L;A;Mp;q;V; E ;D; : : : with re-

spect to families of sets, optimum convergence speed, and optimum algorithmic

time complexity might be a long-term project.
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