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Summary. This paper? looks at the problem of approximating the length of the

unknown parametric curve 
 : [0; 1]! IRn from points qi = 
(ti), where the param-

eters ti are not given. When the ti are uniformly distributed Lagrange interpolation

by piecewise polynomials provides eÆcient length estimates, but in other cases this

method can behave very badly [15]. In the present paper we apply this simple

algorithm when the ti are sampled in what we call an "-uniform fashion, where

0 � " � 1. Convergence of length estimates using Lagrange interpolants is not as

rapid as for uniform sampling, but better than for some of the examples of [15]. As

a side-issue we also consider the task of approximating 
 up to parameterization,

and numerical experiments are carried out to investigate sharpness of our theoret-

ical results. The results may be of interest in computer vision, computer graphics,

approximation and complexity theory, digital and computational geometry, and

digital image analysis.

1 Introduction

Recent research in digital and computational geometry and image analysis

concerns estimation of lengths of digitized curves; indeed the analysis of dig-

itized curves in IR2 or IR3 is one of the most intensively studied subjects in

image data analysis. This paper contributes to this topic by showing that

there are possible improvements in convergence speed compared to all known

methods in digital geometry, however, based on sampling of curves (as com-

mon in approximation theory) compared to digitization (as common in digital

geometry).

A digitized curve is the result of a process (such as contour tracing or

2D thinning extraction) which maps a curve 
 (such as the boundary of

a region) onto a computer-representable curve. An analytical description of


 : [0; 1]! IR2 is not given, and numerical measurements of points on 
 are
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corrupted by a process of digitization: 
 is digitized within an orthogonal grid

of points ( i

m
;
j

m
), where i; j are permitted to range over integer values, and

m is a �xed positive integer called the grid resolution.

Depending on the digitization model [9], 
 is mapped onto a digital curve

and approximated by a polygonal curve 
̂m whose length is an estimator for

d(
). This is a standard approach for approximating a digital curve with re-

spect to geometric analysis tasks. However, di�erent smooth approximations

(e.g. snake model) are used in image analysis as well, where the convergence

analysis with respect to geometric �gures is omitted. Approximating poly-

gons 
̂m based on local con�gurations of digital curves do not ensure multi-

grid length convergence, but global approximation techniques yield linearly

convergent estimates, namely d(
)� d(
̂m) = O( 1
m
) [1], [11], [12] or [20]. Re-

cently, experimentally based results reported in [4] and [10] con�rm a similar

rate of convergence for 
 � IR3. In the special case of discrete straight line

segments in IR2 a stronger result is proved, for example, [6], where O( 1
m1:5 )

order of asymptotic length estimates are given. In Theorems 1 and 2 pre-

sented in this paper the convergence is of order at least O( 1
mr+1 ) and O(

1
m4" )

when 0 < " � 1, respectively.

For k � 1, consider the problem of estimating the length d(
) of a Ck reg-

ular parametric curve 
 : [0; 1]! IRn from m+1-tuples Q = (q0; q1; : : : ; qm)

of points qi = 
(ti) on the curve 
. The parameters ti are not assumed to be

given, but some assumptions are needed to make our problem solvable. For

example, if none of the ti lie in (0; 1
2
) the task becomes intractable. The prob-

lem is easiest when the ti are chosen in a perfectly uniform manner, namely

ti =
i

m
(e.g. see also [14] or [21]). In such a case it seems natural to estimate


 by a curve e
 that is piecewise polynomial of degree r � 1. We prove �rst

in this paper:

Theorem 1. Let 
 be Cr+2 and let ti be sampled perfectly uniformly. Then

there exists piecewise-r-degree polynomial e
, determined by Q such that d(e
) =
d(
) +O( 1

mr+p ), where p is 1 or 2 according as r is odd or even.

As usual, O(g(m)) means a quantity whose absolute value is bounded by some

multiple of g(m) as m!1. We are principally concerned with non-uniform

sampling. More precisely

De�nition 1. For 0 � " � 1, the ti's are said to be "-uniformly sampled

when there is an order-preserving Ck reparameterization � : [0; 1] ! [0; 1]

such that ti = �( i

m
) +O( 1

m1+" ).

Note that "-uniform sampling arises from two types of perturbations of

uniform sampling: �rst via a di�eomorphism � : [0; 1] ! [0; 1] combined

subsequently with added extra distortion term O( 1
m1+" ). In particular, for

� = id and " = 0 (" = 1) the perturbation is linear i.e. of uniform sampling

order (quadratic), which constitutes asymptotically a big (small) distortion

of a uniform partition of [0; 1]. The extension of De�nition 1 for " > 1 could

also be considered. This case represents, however, a very small perturbation
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of uniform sampling (up to a �-shift) which seems to be of less interest in

applications.

Lagrange estimates of length can behave badly for 0-uniform sampling

(the more elaborate algorithm of [15] is needed for this case), but for 0 < " � 1

we prove the following, using piecewise-quadratic Lagrange interpolants Qi

(see Section 4).

Theorem 2. Let the ti be sampled "-uniformly, where 0 < " � 1, and sup-

pose that k � 4. Then, there is a function?? e
, determined by Q, such that

d(e
) = d(
) +O( 1
m4" ).

Whereas Theorem 1 permits length estimates of arbitrary accuracy (for r

suÆciently large), Theorem 2 refers only to piecewise-quadratic estimates,

and accuracy is limited accordingly. The interest in this (the main result of

the present paper) lies in the non-uniform distribution of the unknown pa-

rameters ti's. The proofs of Theorems 1 and 2 also permit uniform estimates

of 
 up to reparameterization. Note that the construction of the piecewise-r-

degree polynomial interpolant P j
r including Qi (see Sections 3 and 4) requires

neither the explicit knowledge of 
 nor of the parameters ti (each P
j
r
is con-

structed over a uniform local grid in s 2 [0; r]; for Qi over uniform grid in

[0; 2]). The latter are used merely to compare d(
) with d(e
) and e
 with


, respectively. More speci�cally, in order to prove Theorems 1 and 2 both

global and local t- and s-parameterizations shall be used. On the other hand,

the explicit construction of the interpolant P r

j
(or Qi) approximating 
 (and

thus d(
)) resorts exclusively to the local parameterization.

For these results Q arises from uniform or "-uniform samplings as opposed

to digitization. So strict comparisons cannot be made. Our results seem rel-

evant to digital and image geometry nonetheless for the following reasons.

They provide comparisons with the interpolation and indicate potential prob-

lems which might arise in digitization based on non-uniform distribution of

ti. Moreover, they show that using piecewise Lagrange polynomial approach

to estimate length of a digiztized curve 
̂ may not always be appropriate.

Finally, as a special case we provide upper bounds for optimal rates of con-

vergence when piecewise polynomials are applied to the digitized curves. Re-

lated work can also be found in [2], [3], [7], [8], [17], and [19]. There is also

some interesting work on complexity [5], [18], [22], and [23].

2 Sampling and Curves

We are going to discuss di�erent ways of forming ordered samples 0 = t0 <

t1 < t2 < : : : < tm = 1 of variable size m + 1 from the interval? ? ? [0; 1].

The simplest procedure is uniform sampling, where ti =
i

m
(where 0 � i �

?? See section 4 for details.
? ? ? In the present context there is no real gain in generality from considering other

intervals [0; T ].
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m). Uniform sampling is not invariant with respect to reparameterizations,

namely order-preserving Ck di�eomorphisms � : [0; 1]! [0; 1], where k � 1.

A small perturbation of uniform sampling is no longer uniform, but may

approach uniformity in some asymptotic sense, at least after some suitable

reparameterization. The "-uniform sampling in De�nition 1 of the previous

Section is a possible example of such perturbation. Note that � and the

asymptotic constants are chosen independently of m � 1, and that "-uniform

implies Æ-uniform for 0 � Æ < ". Uniform sampling is "-uniform for any

0 � " � 1. At the other extreme are examples, where sampling increments

ti � ti�1 are neither large nor small, considering m, and yet sampling is not

"-uniform for any 0 < " � 1:

Example 1. Set ti to be i

m
or 2i�1

2m
according as i is even or odd. Then

(1=2m) � ti � ti�1 � (3=2m) for all 1 � i � m and all m � 1. Thus

sampling is 0-uniform. To see that sampling is not "-uniform for " > 0 as-

sume the opposite. Then, for some C1 reparameterization � : [0; 1] ! [0; 1],

ti+1 � ti = 1
2m

= �
�
i+1
m

�
� �

�
i

m

�
+ O( 1

m1+" ) and ti+2 � ti+1 = 3
2m

=

�
�
i+2
m

�
� �

�
i+1
m

�
+O( 1

m1+" ). By the Mean Value Theorem

1

2m
=
�
0(�

(m)
1i )

m
+O(

1

m1+"
);

3

2m
=
�
0(�

(m)
2i )

m
+O(

1

m1+"
); (1)

for some �
(m)

1i 2 ( i

m
;
i+1
m

) and �
(m)

2i 2 ( i+1
m
;
i+2
m

). Fixing i and increasing m,

�
0(�

(m)
1i )! �

0(0) and �0(�
(m)
2i )! �

0(0). On the other hand, by (1), �0(�
(m)
1i )!

1=2 and �0(�
(m)

2i )! 3=2: a contradiction.

Let k � k be the Euclidean norm in IRn, where n � 1, with < �; � >

the corresponding inner product. The length d(
) of a Ck parametric curve

(k � 1) 
 : [0; 1] ! IRn is de�ned as d(
) =
R 1
0
k _
(t)kdt, where _
(t) 2

IRn is the derivative of 
 at t 2 [0; 1]. The curve 
 is said to be regular

when _
(t) 6= 0, for all t 2 [0; 1]. A reparameterization of 
 is a parametric

curve of the form 
 Æ  : [0; 1] ! IRn, where  : [0; 1] ! [0; 1] is a C
k

di�eomorphism. The reparameterization 
 Æ has the same image and length

as 
. Let 
 be regular: then so is any reparameterization 
 Æ  . We say that

curve 
 is parameterized proportionally to arc-length when k _
(t)k is constant

for t 2 [0; 1]. We want to estimate d(
) from ordered m + 1-tuples Q =

(q0; q1; q2; : : : ; qm) 2 (IRn)m+1, where qi = 
(ti), whose parameter values ti 2

[0; 1] are not known but sampled in some reasonably regular way: sampling

might be "-uniform for some 0 � " � 1. "-uniform sampling is invariant with

respect to Ck reparameterizations  : [0; 1]! [0; 1]. So suppose, without loss

of generality, that 
 is parameterized proportionally to arc-length.

We close this section with Figure 1 indicating why arbitrary sampling and

piecewise-quadratic Lagrange interpolation (see Section 3) in most cases gives

poor estimates for d(
) (and indeed for 
). In Figure 1 only the uniform data

yields reasonable approximations. In the next sections we show that some

kinds of non-uniform sampling also give good approximations.
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Fig. 1. Absolute errors E = j� � d(e
)j for a unit semicircle approximated with

the piecewise-quadratic interpolant e
: (a) For perfectly uniform sampling E =

0:00362662. (b) For 0-uniform sampling (where ti =
i

6
for i even and ti =

i

6
�

1

12

for i odd; 0 � i � 6) E = 0:323189. (c) For some random sampling E = 0:22992.

(d) For another random sampling E = 0:15394.

3 Uniform Sampling

We �rst consider length estimates of 
 in the easier case, where the ti's are

sampled perfectly uniformly: ti =
i

m
(with 0 � i � m). Suppose k = r + 2,

where r � 1, and (without loss of generality) that m is a multiple of r.

Then Q gives m

r
r + 1-tuples of the form (q0; q1; : : : ; qr), (qr; qr+1; : : : ; q2r),

: : :,(qm�r; qm�r+1; : : : ; qm). The j-th r + 1-tuple is interpolated by the r-

degree Lagrange polynomial P j
r : [0; r] ! IRn, here 1 � j �

m

r
: P j

r (0) =

q(j�1)r , P
j
r (1) = q(j�1)r+1,: : :,P

j
r (r) = qjr . Note that P

j
r is de�ned in terms

of a local variable s 2 [0; r]. Recall Lemma 2.1 of Part 1 of [13]:

Lemma 1. Let f : [a; b]! IRn be Cl, where l � 1 and assume that f(t0) = 0,

for some t0 2 (a; b). Then there exists a Cl�1 function g : [a; b] ! IRn such

that f(t) = (t� t0)h(t).

The proof of Lemma 1 shows that g = O(df
dt
). If f has multiple zeros t0 <

t1 < : : : < tk then k + 1 applications of Lemma 1 give

f(t) = (t� t0)(t� t1)(t� t2) : : : (t� tk)h(t); (2)

where h is Cl�(k+1) and h = O(d
k+1

f

dtk+1 ).

Assuming that 
 is Cr+2 (i.e. k = r + 2) we are now going to prove The-

orem 1, where estimation of d(
) is based on piecewise-r-degree polynomial
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interpolation. For each j-th r-tuple consider the interpolating polynomial P j
r
.

Let  : [t(j�1)r ; tjr] ! [0; r] be the aÆne mapping given by  (t(j�1)r) = 0

and  (tjr) = r, namely  (t) = mt � (j � 1)r. Thus _ (t) is identically m

(a di�eomorphism). Note that since both intervals [t(j�1)r; tjr ] and [0; r] are

uniformly sampled,  maps the ti's to the corresponding grid points in [0; r].

De�ne e
j = P
j
r
Æ : [t(j�1)r ; tjr]! IRn. Then as  is aÆne, e
j is a polynomial

of degree at most r. Note that f = e
j � 
 : [t(j�1)r; tjr ] ! IRn is Cr+2 and

satis�es f(t(j�1)r) = f(t(j�1)r+1) = � � � = f(tjr) = 0. By (2)

f(t) = (t� t(j�1)r)(t� t(j�1)r+1) � � � (t� tjr)h(t); (3)

where h : [t(j�1)r ; tjr]! IRn by Lemma 1 is C1. Still by proof of Lemma 1

h(t) = O(
d
r+1

f

dtr+1
) = O(

d
r+1




dtr+1
) = O(1); (4)

because deg(e
j) � r and d
r+1




dtr+1 is O(1). Thus by (3) and (4)

f(t) = O(
1

mr+1
); (5)

for t 2 [t(r�1)j ; trj ]. Di�erentiating function h (de�ned as a r + 1-multiple

integral of f (r+1) over the compact cube [0; 1]r+1; see proof of Lemma 1)

yields

_h(t) = O(
d
r+2

f

dtr+2
) = O(

d
r+2




dtr+2
) = O(1); (6)

as deg(e
j) � r. By (3) and (6) f = O( 1
mr

) and hence for t 2 [t(j�1)r ; tjr]

_
(t)� _e
j(t) = _f(t) = O(
1

mr
): (7)

Let V ?_
 (t) be the orthogonal complement of the line spanned by _
(t).

Since k _
(t)k = d(
),

_e

j
(t) =

< _e

j
(t); _
(t) >

d(
)2
_
(t) + v(t); (8)

where v(t) is the orthogonal projection of _e
j(t) onto V ?_
 (t). Since _e
j(t) =
_f(t)+ _
(t), we have _e


j
(t) = (1+

< _f(t); _
(t)>

d(
)2
) _
(t)+ v(t). Furthermore, by (7),

v = O( 1
mr

). Since < _
(t); v(t) >= 0, by the Binomial Theorem the norm

k _e
j(t)k =
k _
(t)k

s
1 + 2

< _f(t); _
(t) >

d(
)2
+O(

1

m2r
) = k _
(t)k(1+

< _f(t); _
(t) >

d(
)2
)(9)
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up to the O( 1
m2r ) term; note that by (7) j2

< _f(t); _
(t)>

d(
)2
+ O( 1

m2r )j < 1 holds

asymptotically. Integrating by parts,
R t

jr

t(j�1)r
(k _e
j(t)k � k _
(t)k) dt =Z t

jr

t(j�1)r

< _f(t); _
(t) >

d(
)
dt+O(

1

m2r+1
) = �

Z t
jr

t(j�1)r

< f(t); �
(t) >

d(
)
dt+O(

1

m2r+1
):

Since 
 is compact and at least C3 by (4) and h = O(1) we have< h(t); �
(t) >=

O(1) and < h(t); 
(3)(t) >= O(1). Similarly, by (6) we have < _h(t); �
(t) >=

O(1). Hence, by (3) and Taylor's Theorem applied to r(t) =< h(t); �
(t) > at

t = t(j�1)r, we get < f(t); �
(t) >= (t� t(j�1)r)(t� t(j�1)r+1) : : : (t� tjr)(a+

O( 1
m
)), where a is constant in t and O(1). Since sampling is uniform the in-

tegral
R
t
jr

t(j�1)r
(t� t(j�1)r)(t� t(j�1)r+1) : : : (t� tjr)dt vanishes when r is even.

So 1
d(
)

R
t
jr

t(j�1)r
< f(t); �
(t) > dt is either O( 1

mr+2 ) or O(
1

mr+3 ), according as

r is odd or even. As 2r+1 � r+3 (for r � 2) and 2r+1 � r+2 (for r � 1),Z
t
jr

t(j�1)r

(k _e
j(t)k � k _
(t)k) dt = �
O( 1

mr+2 ) if r � 1 is odd

O( 1
mr+3 ) if r � 2 is even.

Take e
 to be a track-sum of the e
j , i.e. d(e
) = �
m

r

�1

j=0 d(e
j) = d(
)+O( 1
mr+p ),

where p is 1 or 2 according as r is odd or even. This proves Theorem 1.

Notice that, by (5), perfectly uniform sampling permits estimates of 


with uniform O( 1
mr+1 ) error. Next we consider non-uniform samplings, for

which piecewise-quadratic interpolation gives good length estimates.

4 "-Uniform Sampling

Let k = 4, so that 
 : [0; 1] ! IRn and its reparameterizations are at least

C
4. Fix 0 < " � 1, and let the ti's be sampled "-uniformly. We are going

to prove Theorem 2. Without loss of generality m is even. For each triple

(qi; qi+1; qi+2), where 0 � i � m � 2, let Qi : [0; 2] ! IRn be the quadratic

curve (expressed in local parameter s 2 [0; 2]) satisfying Qi(0) = qi, Q
i(1) =

qi+1, and Q
i(2) = qi+2. Write Qi(s) = qi+ a1s+ a2s

2, where s 2 [0; 2]. Then

a0 = qi; a1 =
4qi+1 � 3qi � qi+2

2
and a2 =

qi+2 � 2qi+1 + qi

2
: (10)

By Taylor's Theorem 
(tq) = 
(ti)+ _
(ti)(tq � ti) + (1=2)�
(�q))(tq � ti)
2, for

either q = i+1 or q = i+2 and some ti < �q < tq . Combining the latter with


(ti) = qi, 
(ti+1) = qi+1, 
(ti+2) = qi+2 and substituting into (10) yields

a2 = (1=2) _
(ti)(ti+2 � 2ti+1 + ti) +O(
1

m2
): (11)

Because sampling is "-uniform the Mean Value Theorem gives

tq � ti = �
0(�q)

1

m
+O(

1

m1+"
); (12)
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for either q = i+1 or q = i+2 and some ti < �q < tq . Thus by (11) and (12)

a2 =
ti+2 � 2ti+1 + ti

2
_
(ti) +O(

1

m2
): (13)

Furthermore

ti+2�2ti+1+ti = �(
i+ 2

m
)��(

i+ 1

m
)�(�(

i+ 1

m
)��(

i

m
))+O(

1

m1+"
)(14)

because sampling is "-uniform. By Taylor's Theorem the following holds

�(
i+ 1

m
) = �(

i

m
) + _�(

i

m
)
1

m
and �(

i+ 2

m
) = �(

i

m
) + _�(

i

m
)
2

m
; (15)

up to a O( 1
m2 ) term. Substituting (15) into (14) and taking into account

"-uniformity renders

ti+2 � 2ti+1 + ti = O(
1

m1+"
): (16)

The latter combined with (13) and "-uniform sampling yields

a2 = O(
1

m1+"
) +O(

1

m2
) = O(

1

m1+"
): (17)

A similar argument results in

a1 =
4ti+1 � 3ti � ti+2

2
_
(ti) +O(

1

m2
) = O(

1

m
): (18)

From (17) and (18),

dQ
i

ds
= a1 + 2sa2 = O(

1

m
) and

d
2
Q
i

ds2
= 2a2 = O(

1

m1+"
); (19)

where s 2 [0; 2]. Let  : [ti; ti+2]! [0; 2] be the quadratic  (t) = b0+b1t+b2t
2

satisfying  (ti) = 0,  (ti+1) = 1, and  (ti+2) = 2 (although  depends on

i we suppress this in the notation). Inspection reveals b1 = (ti+1 � ti)
�1 �

b2(ti+1+ti), and b2 = ((ti+1�ti)�(ti+2�ti+1))[(ti+1�ti)(ti+2�ti+1)(ti+2�

ti)]
�1. Furthermore, as before, by "-uniformity (ti+1 � ti) � (ti+2 � ti+1) =

O( 1
m1+" ), and m

3(ti+1 � ti)(ti+2 � ti+1)(ti+2 � ti) = O(1), where the right-

hand side of the latter is bounded away from 0 (as � is a di�eomorphism

de�ned over a compact set [0; 1]). Hence,

b2 = O(m2�") and � (t) = 2b2 = O(m2�"): (20)

As easily veri�ed (ti+1 � ti)
�1 = O(m). Hence, coupling b1 = (ti+1 � ti)

�1 �

b2(ti+1 + ti) with (20) yields

_ (t) = b1 + 2b2t = O(m) + b2(2t� (ti+1 + ti)) = O(m); (21)

as sampling is "-uniform and 2t � (ti+1 + ti) = O( 1
m
), for t 2 [ti; ti+2]. In

particular,  is a di�eomorphism for m large. De�ne e
i = Q
i Æ : [ti; ti+2]!
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IRn. Then e
i is polynomial of degree at most 4. Its derivatives of order 2 � p �

4, areO(m(p�1)(1�")). Indeed, by (19), (20), (21), deg( ) � 2 and deg(Qi) � 2

�e

i
= Q

i
00

_ 2+Qi
0

� = O(
1

m1+"
)O(m2)+O(

1

m
)O(m2�") = O(m1�");(22)

e
(3)
i

= 3Qi
00

_ � = O(
1

m1+"
)O(m)O(m2�") = O(m2�2"); (23)

e
(4)
i

= 3Qi
00

� 2 = O(
1

m1+"
)O(m4�2") = O(m3�3"): (24)

Then f = e
i � 
 : [ti; ti+2] ! IRn is C4 and satis�es f(ti) = f(ti+1) =

f(ti+2) = 0. By (22), (23), (24) and "-uniformity we have

d
2
f

dt2
= O(m1�");

d
3
f

dt3
= O(m2(1�"));

d
4
f

dt4
= O(m3(1�")): (25)

Use Lemma 1 to write f(t) = (t � ti)(t � ti+1)(t � ti+2)h(t), where h :

[ti; ti+2] ! IRn is C1, respectively. Then again by Lemma 1 and (25) we

have h = O(d
3
f

dt3
) = O(m2(1�")). Furthermore (6) coupled with (25) renders

_h = O(m3(1�")). The latter combined with the "-uniformity yields

_f = O(
1

m2"
) and f = O(

1

m1+2"
): (26)

As in the proof of Theorem 1 de�ne V ?_
 (t) to be the orthogonal complement

to the space spanned by _
(t). Then expand _e
j(t) according to (8), where v(t)
is the orthogonal projection of _e


j
(t) onto V ?_
 (t). Similarly to (9), by using

(26) we arrive at v = O( 1
m2" ) and thus

k _e

j
(t)k = k _
(t)k(1 +

< _f(t); _
(t) >

d(
)2
) +O(

1

m4"
); (27)

for which we use " 2 (0; 1]. Consequently, by (9), (26), and (27) the integralR t
i+2

t
i

(k _e
i(t)k � k _
(t)k) dt =Z
t
i+2

t
i

< _f(t); _
(t) >

d(
)
dt+O(

1

m1+4"
) = �

Z
t
i+2

t
i

< f(t); �
(t) >

d(
)
dt

up to O( 1
m1+4" ). Now < f(t); �
(t) >= (t � ti)(t � ti+1)(t � ti+2)r(t), where

r(t) =< h(t); �
(t) >. Taylor's Theorem applied to r at ti yields r(t) = r(ti)+

(t�ti) _r(�), for some ti < � < ti+2. Similarly to the argument used for uniform

sampling, r(ti) = O(m2(1�")) and _r = O(m3(1�")). Consequently, by (16)R
t
i+2

t
i

(t� ti)(t� ti+1)(t� ti+2)dt =
1
12
(ti� ti+2)

3(ti+2�2ti+1+ ti) = O( 1
m4+" )

and hence the integral
R
t
i+2

t
i

<f(t);�
(t)>

d(
)
)dt =

r(ti)

d(
)

Z
t
i+2

t
i

(t� ti)(t� ti+1)(t� ti+2)dt+O(
1

m5
)O(m3(1�"))
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is O( 1
m2+3" ). So again by "-uniformity

R
t
i+2

t
i

(k _e

i
(t)k�k _
(t)k) dt = O( 1

m2+3" )+

O( 1
m1+4" ) = O( 1

m1+4" ), and we �nally arrive at d(e
) = �
m

2
�1

j=0 d(Q2j) = d(
)+

O( 1
m4" ): This proves Theorem 2.

Notice that "-uniform sampling, permits (by (26)) estimates of 
 with

uniform O( 1
m1+2" ) error. Moreover, by taking " = 1 in Theorem 2 we obtain

a stronger statement (as �-perturbation of uniform sampling is still allowed;

see De�nition 1) than Theorem 1 when r = 2. Note also that Theorem 2

has nothing to say about the case " = 0. This is dealt with in [15] using a

di�erent approach.

5 Experiments

Next we test the sharpness of the theoretical results in Theorems 1 and

2 with some numerical experiments. Our test curves are a semicircle and

cubic 
s; 
c : [0; 1] ! IR2, given by 
s(t) = (cos(�(1� t)); sin(�(1 � t))) and


c(t) = (�t; (�t+1
�+1

)3). Of course d(
s) = �, and numerical integration gives

d(
c) = 3:3452. Experiments were performed with Mathematica.

5.1 Uniform Sampling

We �rst discuss convergence of length estimates for piecewise polynomial ap-

proximations and perfectly uniform sampling. Experiments were conducted

for both test curves, with r = 1; 2; 3; 4 for which Theorem 1 asserts er-

rors that are O( 1
m2 ), O(

1
m4 ), O(

1
m4 ), and O( 1

m6 ), respectively. For each

r = 1; 2; 3; 4 the minimum and maximum number of interpolation points

were (min1;max1) = (min2;max2) = (7; 101), (min3;max3) = (7; 100), and

(min4;max4) = (9; 101). Let e
r;m
r

represent a piecewise-r-degree polynomial

interpolating mr points. In each row of Tables 1 and 2 (for a �xed 1 � r � 4)

we list only some speci�c values obtained from the set of absolute errors

Em
r

(
) = jd(
)�d(e
r;m
r

)j (heremr indexes e
r;m
r

, whereminr � mr � maxr

and mr = rn + 1), namely: Emax
r

min
r

(
) = maxmin
r
�m

r
�max

r

Em
r

(
) and

Emax
r

(
). Moreover, for each r, in searching for the estimate of convergence

rate O( 1
m�

) (where m+1 = mr is a number of interpolation points) a linear

regression is carried out on pairs of points (log(mr�1);� log(Em
r

(
)), where

minr � ir � maxr and ir = rn + 1. Here are the results. Both Tables 1

and 2 suggest that (in these cases at least) the statements in Theorem 1 are

sharp. (The last two rows of Table 2 are somewhat irrelevant in that Lagrange

interpolation returns, for r � 3, the same curve 
c, up to machine precision.)

5.2 "-Uniform Sampling

A full report on experiments with piecewise-quadratic Lagrange interpolation

with "-uniform sampling is given in [16]. We experimented with "1 = 1, "1=2 =
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Table 1. Results for length estimation d(
s) of semicircle 
s.

r minr maxr � (where Em
r
/ m

��) E
max

r

min
r

(
s) Emax
r

1 7 101 1.99943 0.0357641 1.29191�10�4

2 7 101 3.98485 0.0036266 5.09874�10�8

3 7 100 3.97964 0.0026509 3.98087 �10�8

4 9 101 5.98218 0.0001136 3.19167 �10�11

Table 2. Results for length estimation d(
s) of cubic curve 
c.

r minr maxr � (where Em
r
/ m

��) E
max

r

min
r

(
c) Emax
r

1 7 101 2.00006 0.0357641 5.18348�10�6

2 7 201 4.09546 0.0036266 1.22657�10�12

3 7 100 n=a
a

5.90639�10�14a 4.44089�10�16a

4 9 101 n=aa 2.73115�10�13a 4.44089�10�16a

a not applicable (see above).

1=2, "1=3 = 1=3, and for l = 1; 2; 3, with di�eomorphisms �l : [0; 1] ! [0; 1],

given by �1(t) = t, �2(t) = 1
�+1

t(�t + 1), and �3(t) =
exp(�t)�1

exp(�)�1
. These

functions are used to de�ne �rst "-uniform random sampling

ti = �l(
i

m
) + (Random[ ]� 0:5)

1

m1+"
; (28)

where Random[ ] takes the pseudorandom values from the interval [0; 1] and

0 � i � m. In addition, we experimented with two other families of skew-

symmetric "-uniform samplings with �1 and 0 � i � m:

(i) ti =
i

m
+

(�1)i+1

2m1+"
(ii) ti =

8<:
i

m
if i even,

i

m
+ 1

2m1+" if i = 4k + 1,
i

m
�

1
2m1+" if i = 4k + 3:

(29)

In all cases t0 = 0; t1 = 1. Piecewise-quadratic interpolation was implemented

for both kinds of sampling, with m even running from m = 6 up to m = 100

and to m = 200, respectively. These experiments with 
s and 
c showed

faster convergence than proved in Theorem 2 for sampling (28). However,

the statement of Theorem 2 appears to be sharp for the samplings (29): the

observed rates of convergence nearly coincide with those asserted by the theo-

rem: �1 = 4, �1=2 = 2 and �1=3 = 4=3. Note also that for 0-uniform sampling

(29)(i), and for semicircle 
s and cubic curve 
c, a piecewise-quadratic La-

grange polynomial interpolant does not provide good estimates of d(
s) and

d(
c), respectively (see Figure 2).
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50 100 150 200

0.2

0.4

0.6

0.8
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0.4

absolute error with m sampling

(a) (b)

Fig. 2. Absolute errors plotted for 0-uniform skew sampling (29)(i) (where m2 is

even and 6 � m2 � 200): (a) Em2(
s) against m2. (b) Em2(
c) against m2.

6 Conclusion

The problem of estimating d(
) of a Ck curve seems rather straightforward

when the parameter values ti 2 [0; 1] are given, for example when sampling is

uniform. This paper examines a class of samplings for which the same simple

methods give length estimates converging to the true value d(
), including

investigation of convergence rates. Our results appear to be sharp for the class

of samplings studied in this paper. Piecewise Lagrange interpolation does not

work well for 0-uniform samplings (more elaborate methods for dealing with

these are given in [15]) and so the class of "-uniform samplings is of special

interest where 0 < " � 1. In general, the relationship between convergence of

length estimates and uniform convergence to the image of 
 seems not quite

straightforward. Because the methods used herein are relatively simple, they

are also widely applicable. Unlike the situation in [15] there is no convexity

requirement on 
, and there is no need to restrict attention to planar curves.
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