
Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www.citr.auckland.ac.nz)

CITR-TR-83                         February 2001

Minimum-Length Polygons
In Approximation Sausages

Tetsuo Asano1, Yasuyuki Kawamura1, Reinhard Klette2,
And Koji Obokata1

Abstract

The paper introduces a new approximation scheme for planar digital curves. This
scheme defines an approximating sausage ‘around’ the given digital curve, and
calculates a minimum-length polygon in this approximating sausage. The length of
the polygon is taken as an estimator for the length of the curve being the (unknown)
preimage of the given digital curve. Assuming finer and finer grid resolution it is
shown that this estimator converges to the true perimeter of an r-compact polygonal
convex bounded set. This theorem provides theoretical evidence for practical
convergence of the proposed method towards a ‘correct’ estimation of the length of a
curve. The validity of the scheme has been verified through experiments on various
convex and non-convex curves. Experimental comparisons with two existing schemes
have also been made.
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Abstract. The paper introduces a new approximation scheme for planar
digital curves. This scheme de�nes an approximating sausage `around'
the given digital curve, and calculates a minimum-length polygon in this
approximating sausage. The length of this polygon is taken as an estima-
tor for the length of the curve being the (unknown) preimage of the given
digital curve. Assuming �ner and �ner grid resolution it is shown that
this estimator converges to the true perimeter of an r-compact polygonal
convex bounded set. This theorem provides theoretical evidence for prac-
tical convergence of the proposed method towards a `correct' estimation
of the length of a curve. The validity of the scheme has been veri�ed
through experiments on various convex and non-convex curves. Experi-
mental comparisons with two existing schemes have also been made.
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1 Introduction and Preliminary De�nitions

Approximating planar digital curves is one of the most important topics in im-
age analysis. An approximation scheme is required to ensure convergence of esti-
mated values such as curve length toward the true length assuming a digitization
model and an increase in grid resolution. For example, the digital straight segment

approximation method (DSS method), see [3, 8], and the minimum length poly-

gon approximation method assuming one-dimensional grid continua as boundary
sequences (MLP method), see [9], are methods for which there are convergence
theorems when speci�c convex sets are assumed to be the given input data, see
[6,7, 10]. This paper studies the convergence properties of a new minimumlength
polygon approximation method based on so-called approximation sausages (AS-
MLP method).

Motivations for studying this new technique are as follows: the resulting DSS
approximation polygon depends upon starting point and the orientation of the
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boundary scan, it is not uniquely de�ned, but it may be calculated for any
given digital object. The MLP approximation polygon is uniquely de�ned, but
it assumes a one-dimensional grid continua as input which is only possible if
the given digital object does not have cavities of width 1 or 2. The new method
leads to a uniquely de�ned polygon, and it may be calculated for any given
digital object.

Let r be the grid resolution de�ned as being the number of grid points per
unit. We consider r-grid points gri;j = (i=r; j=r) in the Euclidean plane, for inte-
gers i; j. Any r-grid point is assumed to be the center point of an r-square with
r-edges of length 1=r parallel to the coordinate axes, and r-vertices.

The digitization model for our new approximation method is just the same
as that considered in case of the DSS method, see [4{6]. That is, let S be a set in
the Euclidean plane, called real preimage. The set Cr(S) is the union of all those
r-squares whose center point gri;j is in S. The boundary @Cr(S) is the r-frontier
of S. Note that @Cr(S) may consists of several non-connected curves even in the
case of a bounded convex set S. A set S is r-compact i� there is a number rS > 0
such that @Cr(S) is just one (connected) curve, for any r � r0. This de�nition
of r-compactness has been introduced in [6] in the context of showing multigrid
convergence of the DSS method.

The validity of the proposed scheme has been veri�ed through experiments
on various curves, which are described in Section 5. It has also been compared
with the existing schemes in convergence and computation time.

2 Approximation Scheme

Given a connected region S in the Euclidean plane and a grid resolution r, the
r-frontier of S is uniquely determined. We consider r-compact sets S, and grid
resolutions r � rS for such a set, i.e. @Cr(S) is just one (connected) curve. In such
a case the r-frontier of S can be represented in the form P = (v0; v1; : : : ; vn�1)
in which the vertices are clockwise ordered so that the interior of S lies to the
right of the boundary. Note that all arithmetic on vertex indices is modulo n.

Let Æ be a real number between 0 and 1=(2r). For each vertex of P we de�ne
forward and backward shifts: The forward shift f(vi) of vi is the point on the
edge (vi; vi+1) at the distance Æ from vi. The backward shift b(vi) is that on the
edge (vi�1; vi) at the distance Æ from vi.

For example, in the approximation scheme as detailed below we will replace
an edge (vi; vi+1) by a line segment (vi; f(vi+1)) interconnecting vi and the
forward shift of vi+1, which is referred to as the forward approximating segment

and denoted by Lf (vi). The backward approximating segment (vi; b(vi�1)) is
de�ned similarly and denoted by Lb(vi). Refer to Fig. 1 for illustration. Now we
have three sets of edges, original edges of the r-frontier, forward and backward
approximating segments. Let 0 < Æ � :5=r. Based on these edges we de�ne a
connected region AÆ

r(S), which is homeomorphic to the annulus, as follows:
Given a polygonal circuit P describing an r-frontier in clockwise orientation.

By reversing P we obtain a polygonal circuit Q in counterclockwise order. In
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Fig. 1. De�nition of the forward and backward approximating segments associated
with a vertex vi.

the initialization step of our approximation procedure we consider P and Q as
the external and internal bounding polygons of a polygon PB homeomorphic to
the annulus. It follows that this initial polygon PB has area contents zero, and
as a set of points it coincides with @Cr(S).

Now we `move' the external polygon P `away' from Cr(S), and the internal
polygon Q `into' Cr(S) as speci�ed below. This process will expand PB step
by step into a �nal polygon which contains @Cr(S), and where the Hausdor�
distance between P and Q becomes non-zero. For this purpose, we add forward
and backward approximating segments to P and Q in order to increase the area
contents of the polygon PB.

To be precise, for any forward or backward approximating segment Lf (vi) or
Lb(vi) we �rst remove the part lying in the interior of the current polygon PB
and updating the polygon PB by adding the remaining part of the segment as a
new boundary edge. The direction of the edge is determined so that the interior
of PB lies to the right of it.

De�nition 1. The resulting polygon P Æ
B is referred to as the approximating

sausage of the r-frontier and denoted by AÆ
r(S).

The width of such an approximating sausage depends on the value of Æ. It is
easy to see that as far as the value of Æ is at most half of the grid size, i.e.,
less or equal 1=(2r), the approximating sausage AÆ

r(S) is well de�ned, that is, it
has no self-intersection. It is also immediately clear from the de�nition that the
Hausdor� distance from the r-frontier @Cr(S) to the boundary of the sausage
AÆ
r(S) is at most Æ � 1=(2r).
We are ready to de�ne the �nal step in our AS-MLP approximation scheme

for estimating the length of a digital curve. Our method is similar to that of the
MLP as introduced in [9].

De�nition 2. Assume a region S having a connected r-frontier. An AS-MLP
curve for approximating the boundary of S is de�ned as being a shortest closed

curve 
Ær (S) lying entirely in the interior of the approximating sausage AÆ
r(S),

and encircling the internal boundary of AÆ
r(S).

It follows that such an AS-MLP curve 
Ær (S) is uniquely de�ned, and that it is a
polygonal curve de�ned by �nitely many straight segments. Note that this curve
depends upon the choice of the approximation constant Æ. An example of such
a shortest closed curve 
Ær (S) is given in Fig. 2, with Æ = :5=r.
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Fig. 2. Left: construction of approximating sausage. Right: approximation by shortest
internal path.

3 Properties of the Digital Curve

We discuss some of the properties of the approximating polygonal curve 
Ær (S)
de�ned above, assuming that @Cr(S) is a single connected curve.

Non-sel�ntersection: The AS-MLP curve 
Ær (S) is de�ned as being a shortest
closed curve lying in the approximating sausage. Since it is obvious from the
de�nition that the sausage has no self-intersection, so does the curve.

Controllability: The width of an approximating sausage can be controlled by
selecting a value of Æ, with 0 < Æ � :5=r.

Smoothness: Compared with the other two approximation schemata DSS and
MLP, our approximating curve is `more smooth' in the following sense: the
angle associated with a corner of an approximatingpolygon is the smaller one
of its internal angle and external angle. We consider the minimumangle of all
these angles associated with a corner of the AS-MLP curve. Similarly, such
minimum angles may be de�ned for approximating DSS and MLP curves.
It holds that the minimum AS-MLP angle is always greater than or equal
to the minimum DSS or minimum MLP angle, if a convex set S has been
digitized. Note that `no small angle' means `no sharp corner'.

Linear complexity: Due to the de�nition of our curve 
Ær (S) the number of
its vertices is at most twice that of the r-frontier.

Computational complexity: Assuming that a triangulation of an approxi-
mating sausage is given, linear computation time suÆces to �nd a shortest
closed path: we can triangulate an approximating sausage in linear time since
the vertices of the sausage can be calculated only using nearby segments. So,
linear time is enough to triangulate it. Then, we can construct an adjacency
graph, which is a tree, representing adjacency of triangles again in linear
time. Finally, we can �nd a shortest path in linear time by slightly modi-
fying the linear-time algorithm for �nding a shortest path within a simple
polygon.

Figure 3 gives visual comparisons of the proposed AS-MLP method with two
existing schemes DSS and MLP.
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Fig. 3. Original region with DSS (left), MLP (center), and proposed approximation
using Æ = :5=r (right).

4 Convergence Theorem

In this section we prove the main result of this paper about the multigrid con-
vergence of the AS-MLP curve based length estimation of the perimeter of a
given set S.

Theorem 1. The length of the approximating polygonal curve 
Ær (S) converges
to the perimeter of a given region S if S is a r-compact polygonal convex bounded

set and 0 < Æ � :5=r.

We sketch a proof of this theorem with an investigation of geometric properties
of the r-frontier of a convex polygonal region S.

We �rst classify r-grid points into interior and exterior ones depending on
whether they are located inside of the region S or not. Then, CHin is de�ned
to be the convex hull of the set of all interior r-grid points. CHout is the convex
hull of the set of those exterior r-grid points adjacent horizontally or vertically
to interior ones. See Fig. 4 for illustration.

Lemma 1. The di�erence between the lengths of CHin and CHout is exactly

4
p
2=r.

Fig. 4. Interior r-grid points (�lled circles) and exterior points (empty circles) with
the convex hulls CHin of a set of interior points and CHout of a set of exterior points
adjacent to interior ones.
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Now, we are ready to state the following lemmawhich is of crucial importance
for proving the convergence theorem.

Lemma 2. Given an r-compact polygonal convex bounded set S, the approxi-

mating polygonal curve 
Ær (S) is contained in the region bounded by CHin and

CHout, for 0 < Æ � :5=r.

Let CH be the convex hull of the set of vertices of the approximating polyg-
onal curve 
Ær (S). The convex hull CH is also bounded by CHin and CHout.
Obviously, the vertices of CH are all intersections of approximating segments.
Furthermore, exterior intersections do not contribute to CH, where external (in-
ternal, resp.) intersections are those on the external (internal, resp.) boundary
of the approximating sausage. Therefore, we can evaluate the perimeter of CH.
An increase in distance of an internal intersection from the boundary of CHin

corresponds to an increase in length of an approximating segment, and a de-
crease of distance of its associated intersection to the inner hull CHin. Thus,
such an intersection is farthest at a corner de�ned by two unit edges. Thus, the
maximum distance from CHin to CH is bounded by

p
2=6, which implies that

the perimeter of CH is bounded by
p
2�=3.

Lemma 3. Let CH be the convex hull of all internal intersections de�ned above.

Then, the approximating polygonal curve 
Ær (S) lies between the two convex hulls

CHin and CH. The maximum gap between CHin and CH is bounded by
p
2=6,

and for their perimeter we have

Perimeter(CH) � Perimeter(CHin) + 4
p
2=r: (1)

So, if the approximating polygonal curve 
Ær (S) is convex, then we are done.
Unfortunately, it is not always convex. In the remaining part of this section we
evaluate the largest possible di�erence on lengths between 
Ær (S) and CH.

Lemma 4. The approximating polygonal curve 
Ær (S) is concave when two con-

secutive long edges of lengths di�1 and di with intervening unit edge satisfy

di > 3di�1 + 1.

By analysis of the possible di�erences from the convex chain, we obtain the
following theorem.

Theorem 2. Let S be a bounded, convex polygonal set. Then, there exists a grid

resolution r0 such that for allr � r0 it holds that any AS-MLP approximation of

the r-frontier @Cr(S), with 0 < Æ � :5=r, is a connected polygon with a perimeter

lr and

jPerimeter(S) � lr j � (4
p
2 + 8 � 0:0234)=r = 5:844=r: (2)

5 Experimental Evaluation

We have seen above that the perimeter estimation error by AS-MLP is bounded
in theory by 5:8=r for a grid resolution r, for convex polygons. To illustrate
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Fig. 5. Experimental objects.

its practical behavior we report on experiments on various curves, which are
described below. Although we have restricted ourselves to convex objects in the
preceding proof, we took non-convex curves as well in these experiments. Figure
6 illustrates a set of objects used for experiments as suggested in [5].

CIRCLE: the equation of the circle is

(x� 0:5)2 + (y � 0:5)2 = 0:42:

YINYANG: the lower part of the yinyang symbol is composed by arcs of 3
half circles: the lower arc is a part of CIRCLE, and the upper arcs are parts of
circles whose sizes are half of CIRCLE.

LUNULE: this object is the remainder of two circles, where the distance
between both center points is 0.28.

SINC: the sinc equation corresponding to the upper curve is

y = sin
� �x

4�x

�
:

SQUARE: the edges of the isothetic SQUARE are of length 0.8.

5.1 Two Existing Approximation Schemes

We sketch both existing schemes which are used for comparisons, where the DSS
and MLP implementation reported in [4] has been used for experimental evalua-
tion. First, the digital straight segment (DSS) algorithm traces an r-frontier, i.e.
vertices and edges on @C(S), i.e. a boundary of C(S), and detects a consecutive
sequence of maximum length DSSs. The sum of the lengths of these DSS is used
as DSS curve length estimator. The DSS algorithm runs in linear time.

The minimum-length polygon (MLP) approximation needs two boundaries,
of set I(S) and of set O(S), as input. Roughly saying, I(S) is the union of r-
squares that are entirely included in S, in other words, all four r-vertices of such
a square are included in a convex set S; and O(S) is obtained by `expanding'
I(S) by a dilation using one r-square as structuring element. The MLP algorithm
calculates the shortest path in the area O(S)nI(S) circumscribing the boundary
of I(S). The length of such a shortest path is used as MLP curve length estimator.
The MLP algorithm also takes linear time.
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Fig. 6. Test sets drawn in unit size.

In the experiments we computed the errors of three approximation schemes
for the speci�ed objects digitized in grid resolutions r = 32 � 1024: For DSS
and AS-MLP, C(S) was used as a digitized region, where C(S) is a set of pixels
whose midpoints are included in S. For MLP, I(S) and its expansion was used.

5.2 Experiments

Following the given implementations of DSS, and MLP, also our new AS-MLP
scheme has been implemented in C++ for comparisons. We have computed the
curve length error in percent compared to the true perimeter of a given set S.
The error EDSS of the DSS estimation scheme is de�ned by

EDSS =
P (S)� P (DSSS )

P (S)

where P (S) is the true perimeter of S and P (DSSS ) is the perimeter of the
approximation polygon given by the DSS scheme. EMLP and EASMLP are anal-
ogously de�ned.

Figure 7 shows the errors for all �ve test curves, the boundaries of CIRCLE,
YINYANG, LUNULE, SINC, and SQUARE in that order, from top to bottom.
The diagrams for DSS, MLP, and AS-MLP are arranged from left to right, in
each row of the �gure. The graphs illustrate that AS-MLP has smaller errors in
general than MLP has, but DSS is the best among the three.

6 Conclusion

We proposed a new approximation scheme for planar digital curves and analyzed
its convergence to the true curve length by stating a theorem for convex sets. To
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Fig. 7. Estimation errors: DSS in left column, MLP in the middle, and AS-MLP on
the right; top row for circle, followed by lower part of yinyang, lunule, sinc curve, and
square.
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verify its practical performance we have implemented this scheme and tested it on
various curves including non-convex ones. The results re
ected the theoretical
analysis of the three schemes, that is, DSS is the best in accuracy, and our
scheme is in the middle. The AS-MLP approximation curves are smoother (see
our de�nition above) than the MLP or DSS curves,
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