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Abstract

We identify the eigenvalue problem for the graph Laplacian on a
Hamming graph as an analog to the problem of modes of vibration on a
continuum, and show that the eigenvectors of the graph Laplacian matrix
are the basis functions for the Fourier transform on the Boolean domain.
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{εi} Rn, n
γn = {Σn−1

i=0 ξiεi|0 ≤ ξi ≤ 1} i

î
V = {0, 1, · · · , 2n − 1} E = {{i, j}|i, j ∈ V, (̂i ⊕ ĵ) = 1}

(̂i ⊕ ĵ) =
∑n−1

k=0 îk ⊕ ĵk

{0, 1}n

f : {0, 1}n → {−1, 1}

U(x, y, t)

∆U =
1
c2

∂2U

∂t
,

c



∆u = λu,

t = 0

u(x, y) =
∞∑

m=1

∞∑
n=1

Amn sin(mπx) sin(nπy).

sin(mπx) sin(nπy) m n

G L(G), D − A A = (aij)
G aij = {i, j} G 0 D

(dii) = di, i n

H aij (̂i ⊕ ĵ) = 1 0 di = n 0 ≤ i ≤ 2n − 1,
L(H) = (hij).

L(H)u = λu,

λ u

i f

f̂ (̂i) =
1
2n

2n−1∑
j=0

f(ĵ)χî(ĵ),

f

f(ĵ) =
2n−1∑
i=0

f̂ (̂i)χî(ĵ),

χî(ĵ) = (−1)(̂i·ĵ) (̂i· ĵ) =
∑n−1

k=0 îk · ĵk

f f̂
χî(ĵ) n = 3, 4× 4

n = 2 f̂

U = (uij)
uij = (−1)(̂i·ĵ) L(H), L(H) ·U = U ·C
C



χî(ĵ) = (−1)(̂i·ĵ) i j n = 3

−1 −1 −1 −1
−1 −1 −1 −1

−1 −1 −1 −1
−1 −1 −1 −1

−1 −1 −1 −1
−1 −1 −1 −1

−1 −1 −1 −1

(i, j) (HU)ij L(H) · U

(HU)ij =
2n−1∑
k=0

hik · ukj =
∑

k

(dik − aik) · (−1)(k̂·ĵ).

dik k = i n aik

n k

(HU)ij = n · (−1)(̂i·ĵ) −
∑
k∈K

(−1)(k̂·ĵ),

K = {k|(k̂ ⊕ î) = 1} |K| = n (−1)(k̂·ĵ) = ak · (−1)(̂i·ĵ)

(HU)ij = (n−
n−1∑
k=0

ak) · (−1)(̂i·ĵ).

î k̂ p ak = −1 p ĵ ak = 1∑
k ak n, ak ak −1

ĵ (ĵ),
∑

k ak = n− 2 · (ĵ).

(HU)ij = {n− (n− 2 · (ĵ))} · (−1)(̂i·ĵ) = 2 · (ĵ) · (−1)(̂i·ĵ) = 2 · (ĵ) · uij ,

�

(cjj) = 2 · (ĵ).

θj fj q

θj = q(d− j)− d

fj = (d
j )(q − 1)j ,

d q j 0
d. q = 2 d = n θj n θ′j
f ′j



θ′j = 2j

f ′j = (n
j ).

{2 · (ĵ)|0 ≤ j ≤ 2n − 1} = {2j|0 ≤ j ≤ n}
|{i|(̂i) = j, i ∈ {0, 1, · · · , 2n − 1}| = (n

j ).

n = 3 U



3 −1 −1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0

0 −1 −1 3 0 0 0 −1
−1 0 0 0 3 −1 −1 0

0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1 −1 3





1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




0 2 2 4 2 4 4 6
0 −2 2 −4 2 −4 4 −6
0 2 −2 −4 2 4 −4 −6
0 −2 −2 4 2 −4 −4 6
0 2 2 4 −2 −4 −4 −6
0 −2 2 −4 −2 4 −4 6
0 2 −2 −4 −2 −4 4 6
0 −2 −2 4 −2 4 4 −6
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