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Abstract

We identify the eigenvalue problem for the graph Laplacian on a Hamming graph as an
analog to the problem of modes of vibration on a continuum, and show that the eigenvectors
of the graph Laplacian matrix are the basis functions for the Fourier transform on the Boolean
domain.
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1 Introduction

A recent tutorial paper [1] described how the Fourier transform on a Boolean domain was re-
invented by Kahn et al. [2] to show the relation between the influence factors of variables on a
Boolean function and the coefficients of its Fourier transform. Since that paper Fourier transforms
on Boolean domains have been applied in such areas as the sampling theorem, approximation
of Boolean functions, noise reduction in Boolean functions, complexity problems, etc. Another
important application of general Fourier transforms (not necessarily of Boolean type) is their wide
use in image processing [3].

In this paper we exhibit the Fourier transform kernel as a solution of the eigenvalue problem for
the graph Laplacian on an n-dimensional Hamming graph. We arrived at this result by pursuing
the analogy between the geometric and graph-theoretic pictures. As pointed out by Brooks [4],
one of the reasons for passing back and forth between the geometric and graph-theoretic pictures
is that a problem which appears difficult from one point of view may be relatively easy, or even
already solved, from the other point of view. Another reason is that attitudes towards various
results may differ markedly in the two areas, and comparing them may be an important source of
insight.

Fourier transforms and eigenvalue problems are both applied in nature: we have mentioned
some applications of Fourier transforms on Boolean domains, and there are numerous applications
of them on real domains; on the other hand, eigenvalues and eigenvectors of Hamming graphs have
applications to coding theory [5,6], and, of course, eigenfunctions derived from Laplacians on real
domains are used in many practical problems.

This paper is organized as follows: In Section 2 Hamming graphs and hypercubes are identified
as graph-theoretic and geometric aspects of the same object; in Section 3 the eigenvalue problem
for the Laplacian is described for each aspect; and in Section 4 it is shown that the eigenvectors
for the graph Laplacian form the kernel of the Fourier transform on the Boolean domain.
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Figure 1: The first column shows the 2D Hamming graph with vertices indexed by ¢ and the
corresponding Boolean domain indexed by the binary number ¢; the other three columns show the
Fourier transform pairs, f and f for the Boolean functions AND, OR and XOR of two variables.

2 Hamming Graphs and Hypercubes

A binary Hamming graph is a graph corresponding to the vertices and edges of a unit hyper-
cube. If {¢;} denotes the standard orthonormal basis of R", the n-dimensional unit cube is
YV = {E?;()l €0 < & < 1} A vertex of a Hamming graph is indexed by an integer ¢ corre-
sponding to its coordinate ¢ regarded as a binary number. So a Hamming graph consists of a
vertex set V = {0,1,---,2" — 1} with the edge set E = {{i,j}|i,j € V,(i ® j) = 1}, where
(G®j) = ZZ;S ir @ ji (bitwise exclusive-or followed by a sideway add). Note that the Boolean
domain {0, 1}"™ can also be indexed by a bit-string corresponding to an integer in binary, and there
is a one to one correspondence between the Hamming graph vertices and the Boolean domain. A
Hamming graph can be used to visualize a Boolean function f : {0,1}"™ — {—1,1} by assigning a
value to each vertex or putting circles on vertices with value 1 as shown in the upper right three
figures of Fig. 1. According to the “dictionary” between graphs and manifolds [4] the Hamming
graph and the hypercube are corresponding entities in the two spaces, and we expect that what-
ever happens in one space also happens (in full or in part) in the other. In the next section we
consider the eigenvalue problem in both spaces.

3 The Laplacian Eigenvalue Problem

Consider the vibration problem for a hypercubic medium, for simplicity the 2D case of the vibration
of a square membrane. Under appropriate conditions the transverse displacement U(x,y,t) from
the equilibrium position of the membrane satisfies the wave equation
1 9°U
AU = Ry (1)
where cis the wave velocity. The solution is a triple Fourier series [7 8] of which the spatial factors
of each term are solutions of the eigenvalue problem



Au = Au, (2)

and the shape of the membrane at t = 0 is given by the Fourier series

o0 (o]
u(z,y) = Z Z A sin(marz) sin(nmy). (3)

m=1n=1
The functions sin(mnz) and sin(nmy) are eigenfunctions, with eigenvalues m and n, of Eq. (2).
The eigenvalues are chosen to satisfy the boundary condition. The graph-theoretic counterparts
of Egs. (2) and (3) are the eigenvalue problem for the graph Laplacian on the Hamming graph
and the Fourier expansion of Boolean functions. In the next section we consider how these are

related.

4 Graph Laplacians and Fourier Transforms on Boolean Do-
mains

The Laplacian of a graph G, denoted by L(G), is defined to be D — A, where A = (a;;) is the
adjacency matrix of G (ie., a;; = 1if {,j} isan edge of G and 0 otherwise) and D is the diagonal
matrix with (di;) = d;, the degree of the i-th node [9]. For the n-dimensional Hamming graph
H, a;is1if (i ®7) = 1 and 0 otherwise, and d; = n for 0 < i < 2" — 1, that is, the Hamming
graph is an equi-degree or regular graph. We denote the Laplacian matrix by L(H) = (hi;). The
eigenvalue problem for the Hamming graph Laplacian is

L(H)u = Au, (4)

where )\ is the eigenvalue and v is the eigenvector.
On the other hand the Fourier transform of a Boolean function is defined as follows [1]. The
i-th Fourier coefficient of a Boolean function f is

2" -1
fi) =5 3 FON0), Q
§=0
and f can be uniquely represented as
A 27L_1 o .
FG) =Y Fix:0), (6)
i=0

where x;(7) = (=1)(9) is the basis function for the Fourier transform with (i-j) = ZZ;& e gr- (It
is also the kernel of the 1D Hadamard transformation [3].) Some examples of Fourier expansions
of Boolean functions are shown in Fig. 1 as pairs f and ffor the two-variable functions AND,
OR and XOR. As an example, Table 1 shows the kemel XZ(JA) for n = 3, and the upper left 4 x 4
matrix is the kernel for n = 2, needed to find the Fourier transforms fin Fig. 1.

It is apparent that Egs. (4) and (6) correspond to Egs. (2) and (3), respectively, and by analogy
with the continuum we expect the basis functions for the Fourier transform to be the eigenvectors
of the graph Laplacian. This is the content of the following theorem.

Theorem 1 The eigenvectors of the graph Laplacian for a binary Hamming graph are precisely
the basis functions of the Fourier transform on the corresponding Boolean domain (and hence
also the basis functions of the 1-dimensional Hadamard transform). Explicitly, U = (u;;), where
Ui = (—1)() is a matriz whose columns are eigenvectors of L(H), that is L(H)-U = U -C where
C is a diagonal matriz of eigenvalues.



Table 1: The Fourier transform kernel x;(j) = (—1)(%'5) (shown in row ¢ and column j) for n = 3.
It is also the kernel of the 1D Hadamard transformation for eight points.

0 1 2 3 4 5 6 7
+1 | +1|+1 | +1 | +1| +1 | +1 | +1
+1|-1|+1|-1]+1|-1]+4+1| -1
+1|+1|-1|—-1|+1|+1|—-1| -1
+1|-1|-1|+1|+1| —-1]-1|+1
+1|(+1|+1|+1 | -1 -1]-1]|-1
+1|-1|+1|-1]-1|+1|—-1|+1
+1 |41 -1 | —-1|—-1| —-1]+1]|+1
+1|-1|-1 |41 | -1 +1 | +1| -1
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Proof: The (i, j)-element (HU);; of L(H)-U is

2" —1 .
(HU);j = Y ha-uig = ) (die = age) - (~1) 9. (7)
k=0

k

For d;, only the term with & = ¢ contributes to the sum, and has value n, while for a;x, there are
n different k’s which contribute to to the sum and Eq. (7) becomes

(HU)i; =n- (=)D = 37 (~1)+9, (®)
keK
where K = {k|(k @ 1) = 1} with cardinality |K| = n. I we put (—1)*9 = q;, - (=1)@) Eq. (8)
can be written

n—1 .
(HU)ij = (n =Y a) - (=), (9)
k=0

Let the bit in which 7 and k differ be the p-th bit. Then aj, = —1 if the p-th bitof j is 1 and aj = 1
otherwise. The sum Ek ay, is n, when all a’s are 1, and a change of a from 1 to —1 subtracts 2
from this sum. Since the number of 1s in j is (j), the sum is therefore 3", ax = n — 2 (j). Thus
Eq. (9) becomes

(HU)ij={n—(n—2-())}- (-1 =2.(§) - (-1 =2 (§) - uy, (10)

which proves the theorem. |
Eq. (10) shows that the diagonal matrix of eigenvalues is

(¢jj) =2+ (j)- (11)

This agrees with the known eigenvalues and multiplicities of Hamming graph adjacency matrices.
The eigenvalues 0; and their multiplicities f; of a general Hamming graph matrix (for ¢ symbols
instead of 2) are given in [5] as

0; = qld—j)—d (12)
fi = (Da-1y,
where d is the dimension of the Hamming code, ¢ is the number of symbols, and j runs from 0 to

d. Putting ¢ = 2 and d = n and subtracting #; from n, the eigenvalues 0; and their multiplicities
f; of Hamming graph Laplacian matrix are therefore seen to be



0, = 2j (13)
fio= ).

The distinct eigenvalues are {2-(5)]0<j <27 -1} ={2§]0 < j < n} and their multiplicities
are |{7’|(7’) = .777’ € {Oa ]-7 T 72n - 1}‘ = (;L)

Equation (11) is striking, and there must be some unknown reason underlying it.

As an example, here is Eq. (10) for n = 3. (The matrix U on the right of the product is as in

Table 1.)
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5 Concluding Remarks

We have shown that the kemel of the Fourier transform on a Boolean domain is a matrix whose
columns are eigenvectors of the graph Laplacian for the corresponding Hamming graph. The
diagram below illustrates the concepts discussed in this paper and how they are related. Not all
are new. The object of this paper has been to draw attention to the missing arrow (shown thick)
which has so far been unnoticed.

Graph Laplacian eigenvalue problem ~— Real Laplacian eigenvalue problem

l Square boundary

Fourier expansion of Boolean function =~ <«—— Fourier expansion of real function

We note that, for the continuum, different shapes of boundary lead to different sets of eigen-
functions, while for the graph-theoretic analog there is a unique set of eigenvectors, presumably
because there is no freedom to shape the boundary. One graph-theoretic significance of our new
arrow can be found in coding theory: the Hamming graph is distance regular and distance transi-
tive (see [5] and [6]) and the entire structure of this graph and its related codes can be determined
from the related Bose-Mesner algebra, which is an algebra with two fixed bases, one of which is



the basis formed by the eigenvectors of the graph Laplacian. This basis can be used to study
special subalgegras of the Bose-Mesner algebra related to the so-called fusion schemes [10].

One of the authors (T'.S.) would like to acknowledge the assistance of the University of the

South Pacific in providing him with an agreeable research environment. The authors would like
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