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Abstract

We describe a vision-based indoor mobile robot localisation algorithm that does not
require historical position estimates. The method assumes the presence of an a priori
map and a reference omnidirectional view of the workspace. The current
omnidirectional image of the environment is captured whenever the robot needs to
relocalise. A modified hue profile is generated for each of the incoming images and
compared with that of the reference image to find the correspondence. The current
position of the robot can then be determined using triangulation as both the reference
position and the map of the workspace are available. The method was tested by
mounting the camera system at a number of random positions positions in a 11.0m x
8.5m room. The average localisation error was 0.45 m. No mismatch of features
between the reference and incoming image was found amongst the testing cases.
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Abstract. We describe a vision-based indoor mobile robot localisation

algorithm that does not require historical position estimates. The method

assumes the presence of an a priori map and a reference omnidirectional

view of the workspace. The current omnidirectional image of the envi-

ronment is captured whenever the robot needs to relocalise. A modi�ed

hue pro�le is generated for each of the incoming images and compared

with that of the reference image to �nd the correspondence. The cur-

rent position of the robot can then be determined using triangulation as

both the reference position and the map of the workspace are available.

The method was tested by mounting the camera system at a number of

random positions positions in a 11.0m � 8.5 m room. The average local-

isation error was 0.45 m. No mismatch of features between the reference

and incoming image was found amongst the testing cases.

1 Introduction

Under the traditional deliberative motion control architecture, a robot needs to

know its own position in the environment before making a navigation plan. If the

robot is �rst switched on or wants to re-position itself after getting lost, no reli-

able previous position estimates will be available for the localisation stage. Many

common localisation methods, notably dead-reckoning using extended Kalman

�ltering [4], cannot cope with such a condition.

In this paper, we describe a passive, vision-based localisation technique that

does not involve the use of historical position estimates, and takes advantage

of the richer information in an image. An omnidirectional imaging system is in-

troduced to provide colour and textual information to the system. The distinc-

tive features from an incoming image are extracted using a region segmentation

method. The extracted features are then matched with those from a reference

image to generate matched landmarks. The placement of arti�cial landmarks in

the environment is unnecessary.

In section 2, we review previous work in vision-based localisation methods

that do not require historical position estimates. Section 3 outlines our local-

isation approach. It also describes the image segmentation and triangulation
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techniques adopted in the system. The test results are discussed in section 4

before summarising the paper in section 5.

2 Maps and Landmarks

Map matching can usually be carried out without the use of an image. A local

map is �rst generated for the area around the robot, using the measurements

from a laser or ultrasonic range �nder [2, 7]. The local map is then matched

against di�erent regions of a global map, at di�erent orientations. Since the map

matching uses a local distance map, the localisation process can be confounded if

objects with similar shapes are present in the environment. Also, the correlation

operation requires considerable computation.

Many industrial robots are guided by bar codes [5], reective tape [3, p313{

317], ceiling light patterns [3, p472{477] or other arti�cial landmarks. A global

positioning system (GPS) is a notable example of an arti�cial emitter in an

outdoor navigation. While the landmark recognition step is usually quite simple,

the cost of laying out and maintaining the well calibrated landmarks can be very

expensive, and impractical in some environments.

Visual images usually have high spatial resolution and can provide details

such as the colour and texture of the object being observed. With the extra in-

formation provided by visual sensors, the robot can have a better understanding

of the complex surroundings. In many cases, natural landmarks can be extracted

from the incoming images.

Using the concept of a \view �eld" [1], tiny visual features may be extracted

from an image together with their relative spatial relations, to form a landmark.

The memory requirement for the storage of typical indoor scenes is thus reduced

to about 16000 bytes per m2. Both Lin and Zhang [6, 8] process the sparsely

sampled omnidirectional image with neural networks to extract landmarks for

localisation, in which 120 and 1600 bytes were retained respectively for each

image frame. While the storage of these landmarks requires only modest amount

of memory, the image capturing stage involves a lot of preparative work and

makes the localisation system quite inexible.

3 Vision-Based Localisation System

Algorithm 1 shows the overall process of localisation. Our method assumes an

a priori map for the environment. An omnidirectional image is used to simplify

camera motion; panning control is not required.

To locate the robot, a vertically central strip of an omnidirectional image

is segmented into regions by analysing the horizontal hue pro�le, then matched

against region boundaries in a reference image, and triangulation is used to

calculate the new robot position.

The imaging system comprises two Sony EVI-D31 cameras and two OMT

SEQ-P1S frame grabber cards with a Pentium based controller, to be mounted on



Algorithm 1 Localise

1: On �rst invocation, call Initialise()

2: CurrentImage = ObtainImage()

3: Create all tokens of 3 consecutive region MHI median values for ReferenceImage

4: Create all tokens of 3 consecutive region MHI median values for CurrentImage

5: Find longest token match between ReferenceImage and CurrentImage

6: for each of the �rst, middle and last matching boundary pairs: do

7: Triangulate position from the map position of the boundary pair

8: end for

9: return the average of the three position estimates

ObtainImage:

1: Take 8 images at 45o increments, link them together to one image

2: Extract the 30 pixel high central strip

3: Calculate the MHI for each pixel in the strip

4: for each 10-pixel wide band do

5: Calculate the band MHI median

6: end for

7: Find region boundaries by di�erentiating the band median sequence

8: for each region between boundaries do

9: calculate the region MHI median

10: end for

11: return the sequence of region MHI values

Initialise:

1: ReferenceImage = ObtainImage()

2: Load the environment map

3: Calculate the map positions of boundaries in ReferenceImage

our mobile robot as a multi-purpose exible vision system. To ensure controllable

images for testing the current development stage, a single camera is mounted

on a tripod. The images captured for this study have a resolution of 320� 240

pixels and a colour depth of 24 bits. To facilitate comparing results, the zoom

control of the camera was adjusted for a view angle of 45o (horizontal) � 34o

(vertical) at 84cm above the oor. At each location, 8 images were taken in 45o

increments. At present the camera head should face the same direction when

taking the �rst image amongst each series; the purpose is to discover the robot

position and later we expect to remove this constraint and also discover the

orientation. The 8 images were linked together to form a panoramic view of the

environment, shown in Figure 1. A horizontal strip of 2560� 30 pixels is then

cut from the center of the omnidirectional image and used for the rest of the

processing.

The representation of the image may be further simpli�ed by extracting the

hue channel of an HSV model. For humans, colour discontinuity often repre-

sents separation between objects. While the hue channel is relatively immune to

variations in illumination, some hue values have little meaning and are sensitive

to minor changes, notable values near white, gray and black. The modi�ed hue

index (MHI) is then de�ned:



a

b

Fig. 1. Omnidirectional view of the workspace: a) the original panoramic image. b)

The horizontal strip cut from original view, which is marked by the white box shown

in image a). (The view shown in b) has been stretched vertically for better display.)

MHI =

8
>><
>>:

�2=3 � � S >= 0:15 and V >= 10 (black)

�1=4 � � S < 0:15 and V >= 90 (gray)

�1=3 � � S < 0:15 and V > 90 (white)

H otherwise (other colours)

(1)

where H,S,V represents the hue [0; 2�), saturation [0; 1] and value [0; 100].

The image is divided into 10-pixel wide vertical bands and the median MHI

is computed for each band. Most of the smaller uncharted objects, e.g. network

cable ducts, electric switches etc, are removed by band median �ltering.

When viewing a large object, we may �nd regions with relatively constant

values in the MHI band median pro�le, as illustrated in Figure 2. The regional

boundaries may represent object edges or distinctive changes in the surface fea-

tures of objects. We can locate potential regional boundary lines by thresholding

the di�erentiated MHI band median pro�le. To facilitate the later matching op-

eration, a \region median" is calculated for each detected region by calculating

the median MHI of all the bands within the region boundaries.

Fig. 2. (a) The modi�ed hue index pro�le. (b) the di�erentiation of the MHI pro�le.



3.1 Preparations for the Map and Reference Image

Since the band median �ltering method removes minor features, the level of

detail required in the map is not high, and maps should not be diÆcult to

maintain. The complexity of the environment determines the minimum number

of reference images that needs to be taken. If the visibility of di�erent parts of the

workspace to the reference point is blocked, more reference points are required.

In this study, a simpler environment was considered where only one reference

point was suÆcient. The exact position of the reference point was determined

by surveying before taking the �rst image.

The viewing angle from the reference point to the edges of the large objects

can be calculated from the coordinates of the regional boundaries on the om-

nidirectional image. The map position of these objects can then be estimated

by extending the line-of-sight at the given viewing angle until an intersection is

formed on the map, as depicted in Figure 3.
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Fig. 3. Mapping of the observed feature for the reference image. The map position of

an observed feature can be found by extending the line-of-sight at the given viewing

angle until an intersection is formed.

3.2 Localisation System

An omnidirectional snapshot of the environment is taken whenever the robot

needs to re-locate itself, and the MHI is calculated to identify regions. Since

the positions of large objects are known, the current position of the robot can

be identi�ed using triangulation once enough matches have been established be-

tween boundary lines in the reference and current images, that represent features

in the map.

The feature matching process is crucial to the performance of the localisation

stage. When the robot moves to di�erent parts of the room, the relative size of the

regions on the MHI pro�le may change. Some features may become too small



and be left unaccounted for. Due to the presence of uncharted objects, some

unexpected features may appear while some expected ones may be occluded.

Also changes in reectance of object surfaces may appear as features after MHI

processing. The proposed matching algorithm should be tolerant to these defects.

Omnidirectional images have the important property that the sequence of

modi�ed hue regions remains the same, providing all the objects are still visi-

ble to the observer. A sequence of triples is formed for the reference image by

grouping the region median values of three consecutive regions (that is for re-

gions f(1; 2; 3); (2; 3; 4); (3; 4; 5); : : :g) into \tokens." The list of region median

values for the current image is then searched to locate the possible matches for

each of the reference tokens. A match is declared if the region medians for each

of the three consecutive regions of current image are within a certain tolerance

from the respected regions of the reference token. The tolerance level was set to
5
36
� radians in this study. Ideally, we can obtain a token sequence match from

the incoming image that contains as many regions as the reference. In practice

the longest token is taken as the best match.

The location and orientation of the robot (x; y; �) can be found by solving

the following non-linear simultaneous equations:

tan(2 � � � �� �i) =
yi � y

xi � x
(2)

where xi; yi, represent the x; y coordinates of the ith object edge on the map,

and �i represents the observed angle of the ith object edge from the robot. See

Figure 4 for further explanation.

0o

90o

�

�i

(x; y; �)

(xi; yi)

y

x

Fig. 4. Geometric conventions.

In this study, the camera head was aligned to a �xed direction before taking

the �rst image. The localisation module thus needs to solve for only the two

position variables (x; y), So a minimum of two matched features are required.

As an initial investigation, the average is taken of three sets of position esti-

mates, which are generated by taking the observed angles of the �rst, last and

the middle regional boundaries of the longest token match from equation 2.



4 Results and Discussions

The vision-based localisation method was tested in an 11.0m � 8.5m laboratory.

As shown in Figure 5, nine random testing positions were generated. The test

results are shown in Table 1. The average localisation is 0.45 m with a standard

deviation of 0.22 m. No mismatch was found between the reference and current

image when examined the longest token match for each testing case.
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Fig. 5. The testing environment for the localisation algorithm. The inuence of partial

occlusion is demonstrated. The dotted lines from location A and the reference point

represent their line-of-sight when supposedly viewing the same edge of an object. Due

to partial occlusion, the robot at location A is not really the true edge and thus leads

to a large localisation error.

Table 1. Localisation error of the testing cases

Position A B C D E F G H I

x-coordinate (m) 5.57 2.11 3.93 2.70 5.58 4.53 2.95 1.98 3.69

y-coordinate (m) 2.98 3.10 3.82 4.14 4.91 5.13 7.02 7.43 7.79

localisation error (m) 0.66 0.91 0.50 0.38 0.25 0.45 0.23 0.27 0.44

Although the proposed method may not be accurate enough for the use

in a standalone localisation system, that does not poise a serious problem. In

this study, we intend to develop a vision-based localisation system that does

not depend on the historical position estimates. In this way, the relative rough

position estimates can be re�ned using more established localisation methods,

such as extended Kalman �ltering.

The test samples that give large localisation error are located far away from

the reference point. The view can be quite di�erent from that captured at the

reference point. For example, only a fraction of the partition can be visualised

at location A. As a result, the observed boundary at location A is not really the

true edge of the partition (circled with dots in Figure 5) and thus leads to a

large error.



In the current system, the robot position was calculated using only three of

the matched features with the rest being discarded. These other matches could

potentially be used to improve the accuracy and robustness of the technique. In

addition, range sensors can be introduced to the system to reduce the ambiguities

arisen during various stage of the operation.

5 Conclusion

A vision-based robot localisation system is proposed that does not involve the

use of historical position estimates. A modi�ed hue pro�le is generated for each

of the incoming omnidirectional images. The extracted hue regions are matched

with that of the reference image to �nd corresponding region boundaries. As

the reference image, exact location of the reference point and the map of the

workspace are available, the current position of the robot can be determined by

triangulation.

The method was tested by placing the camera set-up at a number of di�erent

random positions in a 11.0m � 8.5m room. The average localisation error was

0.45 m. No mismatch of features between the reference and incoming image was

found. While the proposed localisation method may not be suÆciently accurate

if used alone, it provides a good initial position estimate for the use of other

more established localisation methods, such as extended Kalman �ltering.
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