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1 Introduction

The basic problem in shape from shading is to recover surface values Z(x; y)

of an object surface from its variation in brightness. The surface function Z is

assumed to be de�ned in image coordinates (x; y). It is identical to the depth
of surface points visualized in an image, i.e., to the Euclidean distance between

image plane and surface point.

We assume parallel illumination of a Lambertian surface. The illumination is

characterized by an orientation (ps; qs;�1) and its intensity E0. For the surface

we assume that it may be modelled by a function Z(x; y), and �(x; y), with

0 � �(x; y) � 1, denotes the albedo (i.e. the re
ectance constant) at point (x; y).

The surface function Z(x; y) satis�es the following image irradiance equation

1 + psp+ qsqp
1 + p2

s
+ q2

s

p
1 + p2 + q2

= �(x; y) �E0 �E(x; y) (1)

over a compact image domain 
, where (p; q) = (p(x; y); q(x; y)) is the surface

gradient with p = @Z=@x and q = @Z=@y at point (x; y) 2 
, and E(x; y) is the

image brightness at this point formed by an orthographic (parallel) projection

of re
ected light onto the xy-image plane. Throughout this paper we assume

that E0 � �(x; y) = 1, for all points (x; y) 2 
, i.e. we assume a constant albedo

for all projected surface points. This approach is called albedo-dependent shape
recovery, see Klette et al. [5]. The above nonlinear, �rst-order partial di�erential
equation has been studied with a variety of di�erent techniques (see, e.g., Horn
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[1,3]; Horn and Brooks [2]; Tsai and Shah [13]; Lee and Kuo [9]; Kimmel and

Bruckstein [4]). The traditional approaches employ regularization techniques.

However, Oliensis [10] discovered that in general, shape from shading must be

assumed to be ill-posed, and regularization techniques should be used with cau-

tion. Furthermore, Zhang et al. [15] pointed out that all shape from shading

algorithms produce generally poor results. Therefore, new shape from shading

methods should be developed to provide more accurate, and realistic results.

Pentland [11] proposed a method based on the linearity of the re
ectance map

in the surface gradient (p; q), which greatly simpli�es the shape from shading

problem. This leads to the following linear image irradiance equation:

1 + psp+ qsqp
1 + p2

s
+ q2

s

= E(x; y) : (2)

As an example, such a special case arises e.g. in recovering the shape of parts of

the lunar surface (\Maria of the moon"). De�ning

F (x; y) = E(x; y)
p
1 + p2

s
+ q2

s
� 1 ;

we can rewrite (2) as

psp+ qsq = F (x; y) ;

that is

ps
@Z

@x
(x; y) + qs

@Z

@y
(x; y) = F (x; y) : (3)

Horn [1] �rst proposed a method for recovery of shapes described by (3). For the

suÆcient conditions assuring the well-posedness of the problem (3) we refer the

reader to Kozera [6]. Kozera and Klette [7,8] presented four algorithms based

on explicit �nite di�erence methods. Ulich [14] also discussed two explicit and

one implicit �nite di�erence algorithm for (3). So far it has not yet been studied

which �nite di�erence algorithms for (3) are better in practical use. The method

used for the proof of stability and convergence are relatively complicated.

In this paper, we consider (3) over a rectangle domain


 = f(x; y) 2 IR2 : 0 � x � a; 0 � y � bg

with the following initial condition

Z(x; 0) = �(x); 0 � x � a (4)

and boundary conditions

Z(0; y) =  0(y); 0 � y � b (5)

Z(a; y) =  1(y); 0 � y � b (6)

where the given functions �(x);  0(y) and  1(y) satisfy

� 2 C([0; a])\ C2((0; a));  0;  1 2 C([0; b])\C
2((0; b))
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and �(0) =  0(0); �(a) =  1(a); and (ps; qs) 6= (0; 0). Throughout this paper we

assume that the Cauchy's problem (3){(6) is well-posed over a rectangle 
, that
is, there exists a unique solution Z(x; y) to the corresponding partial di�erential

equation satisfying the boundary conditions ((5) and/or (6)) and depending

continuously on the given initial condition (4), and we also suppose that the

solution Z(x; y) is suÆciently smooth, at least Z(x; y) 2 C2( �
), see Kozera [6].

The organization of the the rest of the paper is as follows. In Section 2 we

present ten di�erent discretizations of equation (3): four explicit, two implicit

and four semi-implicit schemes. The initial condition Z(x; 0) is used for all these

methods, but di�erent boundary conditions Z(0; y) and/or Z(a; y) are required.

In Section 3 we discuss the accuracy, solvability, consistency, stability and con-

vergence of these methods. The conclusions are given in Section 4.

2 Finite Di�erence Algorithms

Suppose that the rectangular domain 
 is divided into small grids by parallel

lines x = xi (i = 0; 1; : : : ;M ) and y = yj (j = 0; 1; : : : ; N ), where xi = ih,

yj = jk and Mh = a, Nk = b, M and N are integers, h is the grid constant

in x-direction (i.e. distance between neighboring grid lines) and k is the grid

constant in y-direction. For convenience, we shall denote by Z(i; j) the value

Z(xi; yj) of solution Z(x; y) on the grid point (xi; yj).

2.1 Explicit Schemes

Forward-Forward (FF) Scheme: Approximating @Z=@x and @Z=@y with the

forward di�erence quotient gives the following discretization for (3):

ps
Z(i + 1; j)� Z(i; j)

h
+ qs

Z(i; j + 1)� Z(i; j)

k
+ O(h+ k) = F (i; j) ;

where O(h + k) = �hZxx(xi; �1)=2 + kZyy(xj; �2)=2; xi � �1 � xi+1; yj�1 �

�2 � yj . Denoting by Zi;j an approximation of Z(i; j) and then dropping the

truncation error O(h+ k) gives

ps
Zi+1;j � Zi;j

h
+ qs

Zi;j+1 � Zi;j

k
= Fi;j:

A rearrangement of this equation then yields the two-level explicit scheme

Zi;j+1 = (1 + c)Zi;j � cZi+1;j +
k

qs
Fi;j; (7)

i = 0; 1; : : : ;M � 1; j = 0; 1; : : :; N � 1;

where the corresponding �nite di�erence initial conditions Zi;0(i = 0; 1 : : : ;M )

and boundary conditions ZM;j(j = 0; 1; : : : ; N ) are given, c = psk

qsh
, qs 6= 0.

Remark 1: The FF scheme is classi�ed as explicit because the value of Zi;j+1 at
the (j + 1)th level is calculated directly from known values of Zi;j and Zi+1;j at
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the previous jth level. It is a two-level scheme because values of Z at only two

levels of j are involved in the scheme.

Remark 2: As mentioned above, the truncation error of the FF scheme is in the

order of O(h + k).

Remark 3: Given a linear shape from shading problem (3), the FF scheme with

the above boundary condition recovers the unknown shape over a domain of

in
uence which coincides with the entire 
, that is,

DFFM
= 
:

But if we only give the following boundary conditions Z0;j(j = 0; 1; : : :; N ), then

the domain of in
uence of the FF scheme is as follows

DFF0
= f(x; y) 2 IR2 : 0 � x � a; 0 � y � (�b=a)(x� a)g:

The same scheme with di�erent boundary conditions coincides with di�erent

domains of in
uence. Therefore, boundary conditions are very important to the

�nite di�erence algorithms for the linear shape from shading (3).

Backward-Forward (BF) Scheme: This is a modi�cation of the FF �nite

di�erence scheme, in which the forward di�erence approximation for @Z=@x is

replaced by the backward di�erent quotient. If we use the above techniques, we

can get the following two-level explicit scheme

Zi;j+1 = cZi�1;j + (1� c)Zi;j +
k

qs
Fi;j; (8)

i = 1; : : : ;M ; j = 0; : : : ; N � 1;

where initial conditions Zi;0(i = 0; 1; : : : ;M ) and boundary conditions Z0;j(j =

0; 1; : : :; N ) are given, c = psk

qsh
, qs 6= 0.

Remark 1: The truncation error of the BF scheme is O(h+ k).

Remark 2: The domain of in
uence of the BF scheme with the above boundary

condition,DBF0
, is entire 
. But if the corresponding �nite di�erence boundary

conditions are given by ZM;j(j = 0; 1; : : : ; N ), then the domain of in
uence is

DBFM
= f(x; y) 2 IR2 : 0 � x � a; 0 � y � (b=a)xg:

Lax-Friedrichs (LF) Scheme: Another explicit scheme for solving the lin-

ear shape from shading problem is the Lax-Friedrichs scheme. Approximating

@Z=@x with the central di�erence quotient and @Z=@y with the forward di�er-

ence approximation, and then replacing Zi;j by its average at the (i + 1)th and

(i� 1)th levels.

ps
Zi+1;j � Zi�1;j

2h
+ qs

Zi;j+1 �
1
2
(Zi+1;j + Zi�1;j)

k
= Fi;j;
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or, equivalently

Zi;j+1 =
1� c

2
Zi+1;j +

1 + c

2
Zi�1;j +

k

qs
Fi;j; (9)

i = 1; : : : ;M � 1; j = 0; 1; : : : ; N � 1;

where initial conditions Zi;0(i = 0; 1; : : : ;M ), boundary conditions Z0;j and

ZM;j(j = 0; 1; : : : ; N ) are given, c = psk

qsh
, qs 6= 0. It holds that the truncation

error of the LF scheme is O
�
h2 + k + h2=k

�
, and the domain of in
uence of the

LF scheme, DLF , is entire 
.

Leapfrog Scheme: Approximating both @Z=@x and @Z=@y with the central

di�erence quotient yields

ps
Zi+1;j � Zi�1;j

2h
+ qs

Zi;j+1 � Zi;j�1

2k
= Fi;j:

This leads to the following three-level explicit scheme

Zi;j+1 = Zi;j�1 + c(Zi�1;j � Zi+1;j) +
2k

qs
Fi;j; (10)

i = 1; : : : ;M � 1; j = 1; : : : ; N � 1;

where Zi;0(i = 0; : : : ;M ); Z0;j and ZM;j(j = 0; : : : ; N ) are given, c = psk

qsh
, qs 6= 0.

Remark 1: The truncation error of the leapfrog scheme is O(h + k), and the

domain of in
uence of the leapfrog scheme, DLeap, is entire 
.

Remark 2: The leapfrog scheme is a multistep scheme because Zi;j+1 at the

(j + 1)th level is calculated using values at the two previous levels: Zi�1;j and

Zi+1;j at the jth level and Zi;j�1 at the (j�1)th level. To start the computations

of the leapfrog scheme we must specify the values of Zi;0 and Zi;1 for all i, usually

Zi;1 can be calculated by another scheme, e.g., the FF scheme, the BF scheme

or others.

2.2 Implicit Schemes

Each of the methods described previously is explicit. At the new (j +1)th level,

the �nite di�erence scheme contains only the one unknown value Zi;j+1, which

is calculated explicitly from values of Z known at previous jth levels. These

algorithms are easy to program and require few computations to determine the

values of Z at each new (j+1)th level. Unfortunately, the accuracy of the explicit

schemes is usually low since the truncation errors are only O(h+k), and we will

see that the stability of the explicit schemes require much smaller step size.

Central-Backward (CB) Scheme: As before, approximating @Z=@x with the

central di�erence quotient and @Z=@y with the backward di�erence quotient, we

get

ps
Zi+1;j+1 � Zi�1;j+1

2h
+ qs

Zi;j+1 � Zi;j

k
= Fi;j:
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This equation can be rearranged to yield the following two-level implicit scheme.

�

c

2
Zi�1;j+1 + Zi;j+1+

c

2
Zi+1;j+1 = Zi;j +

k

qs
Fi;j; (11)

i = 1; : : : ;M � 1; j = 0; : : : ; N � 1;

where the initial conditions Zi;0(i = 0; : : : ;M ), the boundary conditions Z0;j

and ZM;j(j = 0; : : : ; N ) are given, c = psk

qsh
, qs 6= 0.

Remark 1: The truncation error of the CB scheme is O
�
h2 + k

�
, the domain of

in
uence of the scheme, DCB , is entire 
.

Remark 2: The CB scheme is implicit, since there are three unknown values of

Z at the same (j + 1)th level. Assuming values are known at the jth level we

may substitute i = 1 to M � 1 in (11) to obtain the following set of tridiagonal

linear algebraic equations with unknowns Zi;j+1; i = 1; : : : ;M � 1 :

2
666664

1 c

2

�
c

2
1 c

2

. . .
. . .

. . .

�
c

2
1 c

2

�
c

2
1

3
777775

2
666664

Z1;j+1

Z2;j+1

...

ZM�2;j+1
ZM�1;j+1

3
777775
=

2
666664

Z1;j

Z2;j

...

ZM�2;j
ZM�1;j

3
777775
+ (12)

k

qs

2
666664

F1;j
F2;j
...

FM�2;j
FM�1;j

3
777775
+
c

2

2
666664

Z0;j+1

0
...

0

�ZM;j+1

3
777775
; j = 0; 1; : : : ; N � 1:

The computations of the CB scheme will take much more time because it requires

to solve a linear algebraic systems at each j level.

Crank-Nicolson (CN) Scheme: Another implicit �nite di�erence algorithm

used to solve the linear shape from shading problem is the CN scheme:

ps
1

2

�
Zi+1;j � Zi�1;j

2h
+
Zi+1;j+1 � Zi�1;j+1

2h

�
+ qs

Zi;j+1 � Zi;j

k
= Fi;j:

Rearrangement of this equation then yields a two-level CN scheme

�

c

4
Zi�1;j+1 + Zi;j+1 +

c

4
Zi+1;j+1 =

c

4
Zi�1;j + Zi;j �

c

4
Zi+1;j +

k

qs
Fi;j ; (13)

i = 1; : : : ;M � 1; j = 0; 1; : : : ; N � 1;

where Zi;0(i = 0; 1; : : : ;M ); Z0;j and ZM;j(j = 0; : : : ; N ) are given, c = psk

qsh
,

qs 6= 0.

Remark 1: The truncation error of the CN scheme is O
�
h2 + k2

�
. The domain

of in
uence of the scheme, DCN , is entire 
.
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Remark 2: At each j level, the CN scheme also requires to solve a tridiagonal

systems of linear equations with the following coeÆcients matrix:

2
666664

1 c

4

�
c

4
1 c

4

. . .
. . .

. . .

�
c

4
1 c

4

�
c

4
1

3
777775

2.3 Semi-implicit Schemes

An explicit �nite di�erence scheme for (3) contains only one unknown value of Z

at each j level. The unknown value is calculated directly from the known values

of Z at the previous levels. Therefore, explicit schemes are easy to be computed.

The disadvantage of explicit schemes is that their accuracy is lower since the or-

der of their truncation errors is usually lower. For an implicit scheme, there are

three unknown values of Z at each j level. Implicit schemes are more accurate

than explicit schemes since the order of the truncation errors of implicit schemes

is higher than that of explicit schemes. However, the computation of implicit

schemes takes much more time than that of explicit schemes because implicit

schemes require to solve a linear algebraic systems for each j. In order to over-

come the drawbacks and take the advantages of explicit and implicit schemes, we

consider the following semi-implicit schemes which contain two unknown values

of Z at each j level.

Forward-Backward (FB) Scheme: Approximating @Z=@x with the forward

di�erence quotient and @Z=@y with the backward di�erence quotient gives

ps
Zi+1;j � Zi;j

h
+ qs

Zi;j � Zi;j�1

k
= Fi;j;

or, equivalently

Zi+1;j = (1� d)Zi;j + dZi;j�1+
h

ps
Fi;j; (14)

i = 0; 1; : : :;M � 1; j = 1; 2; : : : ; N;

where Zi;0(i = 0; : : : ;M ) and Z0;j(j = 0; : : : ; N ) are given, ps 6= 0; d = 1=c.

Remark 1: The truncation error of the FB scheme is O(h + k). The domain of

in
uence of the scheme, DFB0
, is entire 
.

Remark 2: The FB scheme involves two unknown values of Z at the jth level,

but it can be calculated in the order i = 1 to M � 1, since Zi;j is known when

Zi+1;j is computed.

Remark 3: Semi-implicit schemes have the advantages of both explicit and im-

plicit schemes, such as computationally simple, very stable, not need in solving

of a set of linear algebraic equations, etc.
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Backward-Backward (BB) Scheme: Approximatingboth @Z=@x and @Z=@y

with the backward di�erence scheme yields

Zi;j =
1

1 + c
Zi;j�1 +

c

1 + c
Zi�1;j +

k

qs(1 + c)
Fi;j; (15)

i = 1; : : : ;M ; j = 1; : : : ; N;

where Zi;0(i = 0; 1; : : : ;M ) and Z0;j(j = 0; 1; : : : ; N ) are given, c = psk

qsh
, c 6= �1,

qs 6= 0. The truncation error of the BB scheme is O(h + k). The domain of

in
uence of the BB scheme, DBB0
, is entire 
.

Weighted Semi-implicit (WS) Scheme: The Weighted semi-implicit scheme

for (1) is:

ps
1

2

�
Zi;j+1 � Zi�1;j+1

h
+
Zi+1;j � Zi;j

h

�
+ qs

Zi;j+1 � Zi;j

k
= Fi;j:

Rearranging gives the two-level semi-implicit scheme

Zi;j+1 = Zi;j +
c

2 + c
(Zi�1;j+1 � Zi+1;j) +

k

qs(2 + c)
Fi;j; (16)

i = 1; : : : ;M � 1; j = 0; 1; : : : ; N � 1;

where Zi;0(i = 0; 1; : : : ;M ); Z0;j and ZM;j(j = 0; : : : ; N ) are given, c = psk

qsh
,

c 6= �2, qs 6= 0. The truncation error of the WS scheme is O
�
h + k2

�
. The

domain of in
uence of the WS scheme, DWS , is entire 
.

The WS scheme also involves two unknown values of Z at the same (j+1)th

level. However, commencing with a given boundary value Z0;j and ZM;j , the

values of Zi;j+1 can be computed in the order i = 1 to M � 1, since Zi�1;j+1 is

known at each application of (16).

Box Scheme: The box scheme for solving (3) is as follows:

ps

2

�
Zi+1;j+1 � Zi;j+1

h
+
Zi+1;j � Zi;j

h

�
+

qs

2

�
Zi;j+1 � Zi;j

k
+
Zi+1;j+1 � Zi+1;j

k

�
= Fi;j:

Rearrangement of this equation then yields

Zi+1;j+1 = Zi;j +
1� c

1 + c
(Zi+1;j � Zi;j+1) +

2k

qs(1 + c)
Fi;j; (17)

i = 0; 1; : : : ;M � 1; j = 0; 1; : : :; N � 1;

where Zi;0(i = 0; 1; : : : ;M ) and Z0;j(j = 0; 1; : : : ; N ) are given, c = psk

qsh
, c 6= �1,

qs 6= 0. The truncation error of the box scheme is O
�
h2 + k2

�
. The domain of

in
uence of the box scheme, Dbox0
, is entire 
.
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3 Analysis of Finite Di�erence Algorithms

Given the above list of schemes we are naturally led to the question of which

of them are useful and which are not. In this section we �rstly determine which

schemes have solutions that approximate solutions of the shape from shading

problem (3). Later on we determine which schemes are more accurate than others

and also investigate the eÆciency of the various schemes.

3.1 Consistency

De�nition 1. A �nite di�erence scheme is said to be consistent with a partial
di�erential equation i� as the grid constants tend to zero, the di�erence scheme
becomes in the limit the same as the partial di�erential equation at each point
in the solution domain.

Theorem 1. All the above �nite di�erence schemes are consistent with (3), the
LF scheme is consistent if k=h is constant.

Proof. As mentioned in Section 2, the truncation errors of the FF, BF, leapfrog,

FB and BB schemes are O(h+ k); the truncation error of the CB is O
�
h2 + k

�
,

WS is O
�
h+ k2

�
, CN and box are O

�
h2 + k2

�
. It is obvious to see that the

limit of all the truncation errors is zero as h; k!0. Therefore, all the above �nite

di�erence schemes except the LF scheme are consistent with (3). On the other

hand, the truncation error of the LF scheme, O
�
h2 + k + h2=k

�
, tends to zero

as h; k!0 if k=h is constant. So the LF scheme is also consistent with (3). ut

3.2 Solvability

Theorem 2. Let c = psk

qsh
be a �xed constant, qs 6= 0. Then,

(a) all the above explicit schemes are solvable;

(b) the CB scheme is solvable if jcj < 1, the CN scheme is solvable if jcj < 2;

(c) the FB scheme is solvable if ps 6= 0, the BB and box schemes are solvable if
c 6= �1, the WS scheme is solvable if c 6= �2.

Proof. At �rst we prove (a) and (b). From equations (7){(10), it is obvious that

all the explicit schemes are solvable.

For the CB scheme, we must solve a set of tridiagonal linear algebraic systems

(12) at each j level. Therefore, the necessary conditions under which the CB

scheme is solvable is that the coeÆcients matrix of the systems

2
666664

1 c

2

�
c

2
1 c

2

. . .
. . .

. . .

�
c

2
1 c

2

�
c

2
1

3
777775
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is strict diagonally dominant. From the de�nition of a strict diagonally dominant

matrix, we have

j � c=2j+ jc=2j < 1; i:e:; jcj < 1:

The solvability of the CN scheme can be proved analogously.

Secondly we prove (c). The FB scheme involves two unknown values of Zi+1;j
and Zi;j at the jth level, but Zi+1;j can be calculated in the order i = 1 toM�1,

since Zi;j is known when the initial values Zi;0(i = 0; : : : ;M ) and boundary

conditions Z0;j(j = 0; : : : ; N ) are given. That is, the FB scheme is solvable. The

solvability of the BB scheme can be proved analogously. About the WS scheme,

it also involves two unknown values Zi;j+1 and Zi�1;j+1 at the (j + 1)th level.

However, commencing with a given boundary value Z0;j and ZM;j(j = 0; : : : ; N ),

the values of Zi;j+1 can be computed in the order i = 1 toM �1, since Zi�1;j+1
is known at each application of the WS scheme. Using the same method, we can

see that the box scheme is also solvable under the given conditions. ut

3.3 Stability

De�nition 2. A �nite di�erence scheme is said to be stable i� the di�erence
between the numerical solution and the exact solution of the di�erence scheme
does not increase as the number of rows of calculation at successive j levels in
the solution domain is increased.

In order to obtain the stability of all the schemes in the paper, we need the

following lemma.

Lemma 1. (Von Neumann criterion of stability) [12]: Given a �nite di�erence
scheme with constant coeÆcients

LhZi;j = Fi;j; (18)

where Lh is a �nite di�erence operator. Let Zi;j = gjeI�i with I2 = �1; � =

2�lh; l = �1 (g is called ampli�cation factor). If we substitute this value Zi;j into
the homogenous �nite di�erence scheme associated with (18), and eliminating the
common factor, we obtain an expression for g. Then the �nite di�erence scheme
(18) is stable if and only if there is a constant K > 0 (independent of �; h and
k) such that

jgj � 1 +Kk (19)

for all �. If k=h is constant, the stability condition (19) can be replaced by

jgj � 1:

Theorem 3. Let c = psk

qsh
be a �xed constant, qs 6= 0. Then,

(a) the FF scheme is stable if and only if �1 � c � 0;
(b) the BF scheme is stable if and only if 0 � c � 1;
(c) the LF and the leapfrog schemes are stable if and only if jcj � 1;
(d) the CB and the CN schemes are unconditionally stable;
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(e) the FB scheme is stable if and only if d � 1, where d = 1=c;

(f) the BB scheme is stable if and only if c � 0 or c < �1;

(g) the WS and the box schemes are unconditionally stable.

Proof. (a) Replacing Zi;j in the FF scheme (7) by gjeI�i for each value of i and

j, we have that

gj+1eI�i = (1 + c)gjeI�i � cgjeI�(i+1) ;

which gives the ampli�cation factor as

g = 1 + c� ceI�

= 1 + c (1� cos �) � Ic sin �

= 1 + 2c sin2
�

2
� I � 2c sin

�

2
cos

�

2
;

and

jgj2 =

�
1 + 2c sin2

�

2

�2

+

�
2c sin

�

2
cos

�

2

�2

= 1 + 4c(1 + c) sin2
�

2
:

We see that jgj is less than or equal to 1 if and only if �1 � c � 0. By Lemma 1,

the FF scheme is stable i� �1 � c � 0.

(b) The ampli�cation factor for the BF scheme is given by

g = 1� c+ ce�I�

= 1� c (1� cos �) � Ic sin � :

The magnitude of g is

jgj2 = 1� 4c(1� c) sin2
�

2
:

We see that jgj is bounded by 1, that is, the scheme is stable i� 0 � c � 1.

(c) For the LF scheme the ampli�cation factor is

g =
1� c

2
eI� +

1 + c

2
e�I�

= cos � � Ic sin �

and

jgj2 = 1� (1� c2) sin2 � :

We see that jgj � 1, that is , the LF scheme is stable if and only if jcj � 1. On

the other hand, the ampli�cation factor of the leapfrog scheme satis�es

g2 + (I:2c sin �)g � 1 = 0 :
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Solving the quadratic equation gives

g1;2 = �Ic sin � �

q
1� (c sin �)

2
:

If jcj � 1, then the quantity under the square root sign is real, and

jg1j
2
= jg2j

2
= (c sin �)

2
+ 1� (c sin �)

2
= 1

for all �. If jcj > 1, then for some � we have c sin � > 1 when the quantity under

the square root sign is negative and

g1;2 = �I

�
c sin � �

q
(c sin �)

2
� 1

�
:

At least one of these values g1; g2 has a modulus greater than 1. The leapfrog

scheme is, therefore, stable i� jcj � 1.

(d) The ampli�cation factor for the CB scheme is g = 1= (1 + Icsin�). We

have jgj � 1 for all �; it is said to be unconditionally stable. It is not diÆcult to

�nd out that the ampli�cation factor of the CN scheme is

g =
1� I c

2
sin �

1 + I c
2
sin �

;

so

jgj2 =
1 +

�
c

2
sin �

�2
1 +

�
c

2
sin �

�2 = 1

for any value of �, that is, the CN scheme is also unconditionally stable.

(e) The FB scheme has the ampli�cation factor

g =
d

d� (1� cos �) + I: sin �
=

d

d� 2 sin2 �

2
+ I:2 sin �

2
cos �

2

:

Therefore

jgj2 =
d2

d2 + 4(1� d) sin2 �

2

:

We see that jgj � 1, that is, the FB scheme is stable i� d � 1.

(f) The ampli�cation factor for the BB scheme is given by

g =
1

1 + c(1 � cos �) + Ic sin �
=

1

1 + 2c sin2 �

2
+ I:2c sin �

2
cos �

2

:

The magnitude of g is

jgj =
1

1 + 4c(1 + c) sin2 �

2

:

It is easy to �nd out that jgj � 1 i� c � 0 or c � �1. Combining this condition

with the solvability of the scheme, we have that the BB scheme is stable i� c � 0

or c < �1.
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(g) The ampli�cation factor of the WS scheme is

g =
2 + c� ceI�

2 + c� ce�I�
=

(2 + c(1� cos �)) � Ic sin �

(2 + c(1� cos �)) + Ic sin �
:

It follows that jgj = 1 for all values of c and �, that is, the WS scheme is

unconditionally stable.

For the box scheme the ampli�cation factor is given by

g =
1 + c+ (1� c)eI�

1� c+ (1 + c)eI�
=

((1 + c) + (1� c) cos �) + I(1 � c) sin �

((1� c) + (1 + c) cos �) + I(1 + c) sin �
:

It follows that jgj = 1 for all c and �, that is, the box scheme is also uncondi-

tionally stable. ut

Remark: Comparing our results and proof methods with Kozera and Klette [7, 8]

and Ulich [14], the ranges of the stability conditions for the FB and BB schemes

are wider, and the proof methods for all the schemes described in this paper

may be considered to be simpler.

3.4 Convergence

De�nition 3. A solution to a �nite di�erence scheme which approximates a
given partial di�erential equation is said to be convergent i� at each grid-point
in the solution domain, the solution of the di�erence scheme approaches the
solution of the corresponding partial di�erential equation as the grid constants
tend to zero.

Such a convergence to the true value, as the grid constants tend to zero,

is also called multigrid convergence in digital geometry and image analysis. To

obtain the convergence of all considered schemes, the following lemma is needed.

Lemma 2. Given a �nite di�erence scheme for a well-posed initial boundary
value problem of a partial di�erential equation. If the scheme is consistent and
stable, then it is convergent.

Applying Lemma 2, Theorem 2 and Theorem 3 we get the following conver-

gence theorem for the schemes discussed above.

Theorem 4. Let c = psk

qsh
be a �xed constant, qs 6= 0.Then,

(a) the FF scheme is convergent if �1 � c � 0;
(b) the BF scheme is convergent if 0 � c � 1;
(c) the LF and the leapfrog schemes are convergent if jcj � 1;
(d) the CB and the CN schemes are convergent for all c 2 IR;
(e) the FB scheme is convergent if d � 1, where d = 1=c;
(f) the BB scheme is convergent if c � 0 or c < �1;
(g) the WS scheme is convergent if c 6= �2; the box scheme is convergent if
c 6= �1.
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4 Conclusions

Four explicit, two implicit and four semi-implicit �nite di�erence algorithms are

analyzed for linear shape from shading problem. The analysis of di�erent algo-

rithms is achieved by comparing their domains of in
uence, truncation errors,

and consistency, solvability, stability and convergence of each scheme (see Table

1). Finally, we conclude this paper by itemizing a few main results.

{ The semi-implicit �nite di�erence algorithms for linear shape from shading

are discussed in this paper for the �rst time. The comparison of accuracy,

solvability, stability and convergence of each scheme indicates that the WS

and the box schemes are more useful.

{ All schemes presented in this paper are supplemented by a full domain of

in
uence, truncation error, consistency, solvability, stability and convergence

analysis, see Table 1.

{ The domain of in
uence of each scheme in this paper is entire 
.

{ In comparison with the results obtained by Kozera and Klette [7, 8] and

Ulich [14], the range of the stability and convergence of the FB and BB

schemes is identi�ed as being larger.

Scheme In
uence Domain Truncation Error Solvability Stability/Convergence

FF DFF
M

= 
 O(h+ k) qs 6= 0 �1 � c � 0

BF DBF0 = 
 O(h+ k) qs 6= 0 0 � c � 1

LF DLF = 
 O(h2 + k + h2=k) qs 6= 0 jcj � 1

Leap Dleap = 
 O(h+ k) qs 6= 0 jcj � 1

CB DCB = 
 O(h2 + k) qs 6= 0; jcj< 1 for all c

CN DCN = 
 O(h2 + k2) qs 6= 0; jcj< 2 for all c

FB DFB0
= 
 O(h+ k) ps 6= 0 d � 1

BB DBB0
= 
 O(h+ k) qs 6= 0; c 6= �1 c � 0/c < �1

WS DWS = 
 O(h+ k2) qs 6= 0; c 6= �2 for all c

box Dbox0 = 
 O(h2 + k2) qs 6= 0; c 6= �1 for all c

Table 1. Domain of in
uence, truncation error, solvability, stability and convergence
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