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Abstract: 4 

Maintenance decision making, selecting appropriate maintenance strategies for a road 5 

network, is an important and complex part of infrastructure asset management (IAM). Multi-6 

objective optimization (MOO) can help in clarifying and simplifying a decision making 7 

problem with multiple objectives and trading off objectives by identifying efficient solutions. 8 

Therefore, MOO is a helpful tool in decision making process. The aim of this paper is to 9 

analyze the optimization problem in practical decision making process using MOO and 10 

identify efficient solutions in the context of maintenance decision making. 11 

To accomplish this aim, this paper (1) introduces decision making in IAM and the previous 12 

applications of optimization; (2) discusses the mathematical formulation of optimization 13 

problems of decision making; (3) proposes an optimization method named dichotomic 14 

approach (DA) to solve the optimization problems of decision making and identify efficient 15 

solutions; (4) compares DA with Nondominated Sorting Genetic Algorithm II (NSGA II) 16 

using a practical maintenance decision making case; and (5) discusses other issues related 17 

with DA, such as controlling the numbers of identified solutions, the identification of non-18 

supported solutions and decision making with three or more objectives.  19 
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Using DA, optimization problems of decision making can be solved. Comparing with NSGA 20 

II, DA identifies more and better solutions, i.e. solutions are guaranteed to be efficient. The 21 

performance of DA algorithm in terms of computation time and implementation is also good. 22 

Keywords: 23 

Multi-objective optimization, maintenance decision making, infrastructure asset management, 24 

road network.  25 

1 Introduction 26 

Road, as an important infrastructure, is one of the socio-economic backbones of any society. 27 

Due to growing demands, decay of infrastructure and increasing financial pressure, the 28 

importance of the effective and efficient management of road is amplified. Infrastructure 29 

Asset Management (IAM), attempting to identify and implement the appropriate maintenance 30 

strategies for a road network, plays a role of increasing importance.  31 

Maintenance decision making, as an essential part of IAM, selects maintenance strategies for 32 

a road network so that the goals of IAM are achieved (Maunsell Limited 2004). Network 33 

maintenance involves a significant amount of investment and has great impact on the public 34 

(NAMS 2011), but also faces many challenges due to the complexity of decision making 35 

process. For example, network owners have to consider life-cycle cost, risk and level of 36 

service aspects, when often these outcomes are in conflict with each other. Hence, multi-37 

objective optimization (MOO) is applied to help in dealing with the issues at hand and 38 

trading off conflicting objectives.  39 

Most of the previous applications of MOO to maintenance decision making in IAM are based 40 

on heuristic methods. As introduced in Section 2.3, heuristic methods may identify unreliable 41 

solutions of poor quality, small coverage and bad distribution especially when analyzing 42 

practical decision making problems or big road networks. In this paper, a deterministic MOO 43 
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method named dichotomic approach (DA) is introduced to help with decision making when 44 

more than one objective is pursued. Then this method is tested with a practical decision 45 

making case and compared with Nondominated Sorting Genetic Algorithm II (NSGA II) 46 

which is one of the most effective multi-objective heuristic methods for decision making 47 

problems (Bai et al. 2012). 48 

2 Background 49 

2.1 Maintenance decision making in Infrastructure Asset Management 50 

Maintenance decision making attempts to select appropriate maintenance strategies for a road 51 

network. A maintenance strategy indicates types of interventions that will be applied to a 52 

segment of road at particular points in time. Strategies, containing different interventions at 53 

different times, have different effects on outcomes such as maintenance cost, pavement 54 

condition, level of service, etc. When selecting different strategies for the segments of a road 55 

network, the result in terms of outcomes is also different. The selections of strategies (a 56 

solution) are evaluated based on objectives and constraints of the maintenance decision. If a 57 

selection of strategies satisfies all constraints and has better outcomes in terms of objectives, 58 

this strategy is preferred.  59 

However, there are many challenges faced during the decision making process including: 60 

 Many objectives need to be considered simultaneously (Jaffe 2011). The objectives, 61 

originating from the owners of infrastructure, customers and/or agencies, may be in 62 

conflict with financial realities and/or the status/age of the road infrastructure 63 

(Harmon 2003). They are not commensurable. Hence, these objective should be 64 

analysed equally and individually;  65 

 The number of strategies may be large. If a road network has   segments with   66 

interventions over   years, then the number of alternative strategies is      (Harvey 67 
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2012). For long-term decision making such as life-cycle maintenance decision making, 68 

there may be a large number of alternative strategies. Thus, it is difficult to analyze 69 

these strategies and select appropriate ones in reasonable time; and, 70 

 Trading off maintenance strategies under multiple conflicting outcomes could be 71 

difficult. The proper trade-offs require adequate knowledge of the decision making 72 

problem at hand and its alternative options of decision. However, acquiring this 73 

knowledge and the options may be difficult.  74 

MOO assists in overcoming the challenges mentioned above as being detailed in the 75 

subsequent sections. 76 

2.2 Multi-objective optimization  77 

MOO analyzes optimization problems of maintenance decision making with multiple 78 

objectives and a number of constraints in such a manner that the overall return on the 79 

investment, such as financial benefit and improved network condition, is maximized at the 80 

network level. More specifically, MOO attempts to solve the optimization problems raised in 81 

decision making process and identify efficient solutions.  82 

Efficient solutions, also named Pareto solutions, are a group of feasible solutions that cannot 83 

be improved in one objective without worsening at least another objective (Hillier and 84 

Lieberman 2005). For maintenance decision making, a feasible solution indicates a selection 85 

of strategies for the entire road network that satisfies all constraints of the optimization 86 

problem of maintenance decision making; while an efficient solution is a set of feasible 87 

solution that achieves respective objectives in the best possible manner. Fig.1 is an example 88 

of a ten-year decision making with practical data which tries to optimize the network 89 

condition and minimize cost. It has 237 alternative strategies for ten segments. After 90 

analyzing all possible selections of strategies for the ten segments, all the feasible solutions 91 
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are shown as blue rhombic points. Efficient solutions, Solution A (selecting strategies with 92 

indexes of 0, 88, 118, 119, 129, 136, 137, 145, 153 and 219), Solution B (selecting strategies 93 

with indexes of 0, 88, 118, 119, 126, 136, 137, 152, 154 and 219) and Solution C (selecting 94 

strategies with indexes of 0, 88, 97, 119, 127, 133, 137, 147, 154 and 222), are shown as red 95 

square points.  96 

As a supporter of decision making, MOO with its efficient solutions can 97 

(1) handle the conflicting objectives and different constraints. For example, in Fig. 1 two 98 

conflicting objectives (optimizing condition and minimizing cost) are analysed; and 99 

the solutions that achieve the objectives in best possible manner are identified. 100 

Several multi-objective decision making problems have been successfully solved 101 

using MOO as introduced in Section 2.3. 102 

(2) largely simplify the decision making process. According to Fig. 1, practical decision 103 

making may have thousands of alternative feasible solutions even only ten segments 104 

are analysed. Because efficient solutions guarantee the best options of strategy 105 

selection for a decision making problem; decision makers only need to select one 106 

from the efficient solutions with the practical consideration such as policy or using 107 

methods such as Value Management (Lin and Shen 2007) without considering other 108 

possibilities. For example, in Fig. 1, a decision maker only needs to select from three 109 

 
Fig. 1 Solution Example. 
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efficient solutions rather than thousands of feasible solutions. This largely reduces the 110 

workload of the decision maker. When more segments are analysed, much more 111 

feasible solutions exist, so the decision becomes more difficult without the help of 112 

MOO.  113 

(3) show the achievable best outcomes of decision making. For example, in Fig. 1, 114 

solution A achieves the best outcome of one objective (least cost); and the solution B 115 

achieves the best outcome of the other objective (best condition). These two solutions 116 

indicate the range of achievable outcomes of objectives.  117 

(4) Help with trade-offs. If identified efficient solutions are well spread, they also show 118 

the relationship of objectives. When sacrificing one objective, the return on another 119 

objective can be estimated by moving from one solution to another. Trade-offs 120 

balance objectives by adjusting the scarification and return. Hence, efficient solutions 121 

are also important for trade-offs.  122 

Overall, MOO, identifying efficient solutions, helps in improving and understanding 123 

maintenance decision making and trading off.  124 

2.3 Applied multi-objective optimization 125 

MOO is increasingly applied to help with maintenance decision making in IAM (NAMS 126 

2011). However, many researches (Hsieh and Liu 1997; Yang et al. 2003; Jian et al. 2009) 127 

only identify one preferred solution rather than a set of efficient solutions for their MOO 128 

problems in the decision making process. One preferred solution requires decision makers to 129 

have adequate knowledge about their problems, and cannot support decision making as 130 

mentioned in Section 2.2. Thus, it is less useful than a set of efficient solutions. Wu and 131 

Flintsch (2009) also discuss the importance of efficient solutions for the decision making 132 

process in IAM.  133 
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Some researchers solve their problems with multi-objective heuristic methods, including 134 

Genetic Algorithm (GA) (Hyari and El-Rayes 2006; Ge 2010; Sharma 2010), Particle Swarm 135 

Optimization (PSO) (Chen et al. 2006; Dashti et al. 2007) and others (Fang et al. 2005; Tee 136 

and Li 2011). However, heuristic methods have some weaknesses. 137 

 Multi-objective heuristic methods try to identify solutions as close as possible to the 138 

efficient ones, but cannot guarantee the efficiency of the obtained solutions. Further, 139 

the gap between the identified and efficient solutions is unknown.  140 

 The identified solutions may vary, even when the same optimization problem is 141 

solved more than once. The variance of the identified solutions may be big. Hence, 142 

the risk of identifying poor solution is high. 143 

 Heuristic methods normally have parameters. Parameter calibration depends on the 144 

addressed problems, such as the number of strategies of a segment, the number of 145 

segments and the difficulty of constraints. It is difficult to do in a way that results in 146 

the consistently best possible performance of the algorithm. 147 

Bai et al. (2012) also mention the difficulty of generating good solutions with heuristic 148 

methods. Hence, they add some efficient solutions named “Extreme Points” as initial 149 

solutions, which are obtained by lexicographically optimizing one objective each time. These 150 

efficient solutions improve the performance of the applied multi-objective heuristic method, 151 

but cannot overcome the weaknesses mentioned above. 152 

Therefore, a deterministic method, solving MOO problems of maintenance decision making 153 

and being able to identify a set of efficient solutions, is necessary. 154 

3 Formulation of the optimization problem in decision making 155 

Before applying optimization, a decision making case should be mathematically formulated 156 

in a way that its goals and requirements are truly expressed using formulas. The optimization 157 
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problem in decision making process is a combinatorial optimization problem. It can be easily 158 

formulated as integer programming problem (IP) that requires all decision variables to be 159 

integer and all the formulas representing objectives and constraints to be linear. Binary 160 

variables are used as decision variables   (         )  representing the selection of 161 

strategies, as explained by Equation 1. 162 

    {
 
 

                             
                          

 Equation 1 

For example, if a decision making case wants to efficiently keep a road network in an 163 

acceptable condition, its maintenance decision pursues the best financial investment 164 

considering the network condition and the related financial factors. This should be expressed 165 

by the formulation of its optimization problem. If this road network has    segments and    166 

alternative strategies for segment    (  strategies in total), this decision making case can be 167 

formulated as Equations 2-6, where objectives are to obtain the maximizing present value 168 

(PV) benefit (Equation 2) and minimizing PV cost (Equation 3) with the acceptable pavement 169 

condition (Equation 4) and the annual budget of maintenance cost (Equation 5). Equation 6 170 

ensures exactly one strategy is selected for each segment. 171 

    ∑       

 

   

 Equation 2 

    ∑       

 

   

 Equation 3 

 subject to ∑    

 

   

         Equation 4 

  ∑        

 

   

             Equation 5 



 

Chen, Henning, Raith and Shamseldin  

  ∑  
    

                  Equation 6 

where,       PV benefit if strategy   is applied 

       PV cost if strategy   is applied 

       pavement performance index if strategy   is applied 

       acceptable pavement performance index 

        maintenance cost in year   if strategy   is applied 

         annual budget of year t 

The general formulation of an optimization problem for decision making is shown in 172 

Equations 7-9, where each of the   objectives can be formulated to be maximized or 173 

minimized. Constraints can be annual constraints and/or overall constraints.  174 

          ( )                         Equation 7 

       ( )                          Equation 8 

  ∑   
    

             Equation 9 

where   ( )  objective function k 

   ( )  constraint function l 

         acceptable value of constraint l 

    the number of objectives 

    the number of constraints 

4 Dichotomic approach (DA) 175 

DA, proposed by Cohon (1978), Dial (1979) and Cohon et al. (1979), is a deterministic 176 

optimization method that transfers a MOO problem into single-objective optimization (SOO) 177 

counterparts in an iterative manner (Przybylski et al. 2010). In iterations, weights are 178 
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calculated by pairs of consecutive identified solutions, which are used to weighted sum 179 

objectives and then establish new SOO counterparts. If a new feasible solution of a SOO 180 

counterpart is identified, this solution is inserted into the solution pool for further analysis in 181 

the next iteration. An iteration finishes when all pairs of consecutive identified solutions are 182 

analyzed. In this way, DA identifies efficient solutions for bi-objective optimization problems.  183 

Fig. 2 contains a flow chart of the algorithm of DA; and Fig. 3 illustrates its steps for a 184 

problem where two objectives are maximized. The steps involved in the algorithm of DA are:  185 

Step 1: Identification of endpoints    and   . The endpoints are the extreme points of the 186 

efficient frontier, which are identified by lexicographically optimizing each objective 187 

respectively. For example, in Fig. 3(b), endpoint  (  ) corresponds to the objective vector of 188 

optimizing objective    and endpoint  (  ) to that of optimizing objective   .  189 

Step 2: Calculation of weights. Weights (   and   ) are calculated based on two consecutive 190 

identified solutions (    and     ) using Equations 10 and 11, where   is the index of a 191 

solution. Initially,      , where   is the number of identified solutions. 192 

      ( 
   )    ( 

 ) Equation 10 

      ( 
 )    ( 

   ) Equation 11 

     ( )      ( ) Equation 12 

Step 3: Establishment of a new optimization problem. In this step, new single-objective 193 

optimization counterparts are established by weighted summing the original objectives 194 

(Equation 12). The constraints remain unchanged. Fig. 3(c), (e) and (g) illustrate the new 195 

optimization problems. After using a pair of solutions, the index      . 196 

Step 4: Solving. This step solves SOO counterparts established in Step 3. Many standard 197 

algorithms and software tools can identify the optimal solution of SOO counterparts. In this 198 

paper, Gurobi is used as a SOO solver.  199 
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Fig. 2 Flowchart of Dichotomic Algorithm. 

   

   

  

 

Fig. 3 Illustration of the Dichotomic Algorithm. 
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Step 5: If a new efficient solution is obtained from a SOO counterpart established by 200 

solutions    and     , this solution is inserted into the solution pool with the index of    . 201 

The indexes of solutions located after the new solution (the index is greater than    ) are 202 

updated. Fig. 3(d) and (f) are the examples of identifying new efficient solutions and adding 203 

them into the solution pool. 204 

Step 6: Iteration. To identify more efficient solutions, all pairs of consecutive identified 205 

solutions should be used to calculate weights and establish SOO counterparts. When    , a 206 

new pair of solutions   and      is sent to Step 2. When      , all (   )  pairs of 207 

identified solutions have been analyzed.   is updated to the new number of efficient solutions; 208 

and   is updated to (   ). The iteration process repeats until no new solution is identified 209 

in the last iteration. 210 

Step 7: Report solutions. All identified solutions are efficient solutions as shown in Fig. 3(h). 211 

Each solution represents an optional decision (a selection of strategies for the entire network) 212 

described by decision variables  . These solutions consist of the selections of strategies 213 

described by  . Outcomes, including objectives and constraints, can be estimated based on 214 

the selected strategies. 215 

5 Tests 216 

Computational tests are performed in this section to evaluate the performance of DA 217 

compared with NSGA II. NSGA II is one of the most advanced multi-objective heuristic 218 

methods (Deb et al. 2002), which is successfully applied to help with the trade-offs of a 219 

decision making case and achieves good result (Bai et al. 2012). According to the authors’ 220 

experience, NSGA II is one of the most effective heuristic methods for addressing multi-221 

objective optimization problems of decision making. 222 
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5.1 Studied Case 223 

In this section, a road network of a city is analyzed. This city wants to maximize the return of 224 

investment on road maintenance. Hence, a bi-objective optimization problem is established to 225 

maximize the maintenance benefit and minimize the maintenance cost under annual budget 226 

and condition requirement.  227 

This road network is divided into 699 segments. For every segment, ten-year maintenance 228 

strategies are generated by dTIMS CT 8 (Deighton Associates Limited 2008). Each strategy 229 

indicates types of treatments that are designed to be applied to a segment during ten years. In 230 

this case, the number of alternative strategies for a segment ranges from 8 to 161 based on the 231 

available treatments of this segment. Outcomes of a strategy are estimated based on its 232 

treatment using dTIMS CT 8. For example, Strategy 1 only applies a resurface treatment in 233 

Year 1 to Segment 1, which costs 60695 dollar in Year 1; while Strategy 64 applies a 234 

construction treatment in Year 8 to Segment 2, which costs 186630 dollar in Year 8. The 235 

yearly cost of strategies is recorded using a matrix, where       is the maintenance cost in 236 

Year   if Strategy   is applied. In this case,             and              . Other 237 

outcomes can be constructed in the same way such as PV benefit     , PV cost      and 238 

pavement performance index     . Then the objectives and constraints can be formulated as 239 

Equations 2-6 in Section 3.  240 

To analyze problems of different size, we consider the entire road network or only parts of it 241 

as shown in Columns (2) and (3) in Table 1. The applied NSGA II has a population of 300 242 

and 200 parents. The stopping criterion is the maximum number of iterations (300 for Case 1, 243 

700 for Case 2 and 1000 for Case 3).  244 

Computational tests are conducted on a PC with Intel(R) Core™ i5 processor, 3.33 GHz CPU, 245 

4.00 GB RAM. The computer program is written using Python 2.7.3. Gurobi 5.5.0 is used as 246 

the single-objective optimization solver. The computation time is measured as the CPU time.  247 

mailto:660@3.33GHz
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After constructing all matrixes of outcomes and a list of decision variables, the optimization 248 

problem established for this decision making case (Equations 2-6) is solved by DA. The 249 

algorithm of DA introduced in Section 4 is based on maximizing both objectives. In this case, 250 

the objective of minimizing PV cost can be converted to Equation 11; while the other 251 

objective of maximizing PV benefit remains the same (Equation 10).  252 

       ∑       

 

   

 Equation 10 

        ∑       

 

   

 Equation 11 

According to the algorithm of DA, weights   (     ) are iteratively calculated; and the 253 

SOO counterparts of the original bi-objective optimization problem of this decision making 254 

case can be established based on the weight as shown by Equations 12 -15. The SOO 255 

counterparts are solved by Gurobi; and solutions are obtained.  256 

        ( )      ( ) Equation 12 

 subject to ∑    

 

   

         Equation 13 

  ∑        

 

   

             Equation 14 

  ∑  
    

                  Equation 15 

5.2 Results  257 

The solutions of the optimization problem of the studied decision making case are shown in 258 

Fig. 4. In this case, one objective (PV Benefit) is maximized and the other (PV Cost) is 259 
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minimized. Hence, efficient solutions are located differently with Fig. 3 where both 260 

objectives are maximized. The computational result is shown in Table 1. 261 

Fig. 4 Identified Solutions 262 

Table 1 Summary of the Case Study 

Case 

Index 

Number of 

segments 

Number of 

strategies 

Number of identified solutions 
Computation Time

**
 

(s) 

DA NSGA II DA NSGA II 

(1) (2) (3) (4) (5) (6) (7) 

1 50 1823 47 28 (7
*
) 19.88 38.67 

2 400 11307 105 24 (0
*
) 206.35 273.55 

3 699 20412 136 20 (0
*
) 475.86 547.85 

 

* The number of efficient solutions. 

** The computation time is the CPU time only for the optimization, excluding input and output data. 
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According to Table 1, DA can analyze bi-objective optimization problems in decision making 263 

process and identify efficient solutions in reasonable time. Comparing with NSGA II, DA 264 

identifies more and better solutions in less time in all cases. The superiority of DA is more 265 

obvious when more segments are analyzed. The detailed analysis of the results is discussed 266 

below.  267 

Firstly, the solutions of DA are efficient solutions. According to Column (5) in Table 1, 268 

NSGA II identifies 7 efficient solutions when only 50 segments are analyzed. However, when 269 

400 or more segments are analyzed, no efficient solution is identified, which means the 270 

solutions of DA achieve more PV benefit than the solutions of NSGA II when spending same 271 

PV cost. For example, in Case 2, when spending 32500 dollar (PV value) on the maintenance, 272 

the solution of DA generates 470 dollar more PV benefit than the solution of NSGA II. 273 

Furthermore, the distance between the two sets of solutions is obviously increasing with the 274 

growth of the segments, see Fig. 4. Hence, the solutions of NSGA II become worse with the 275 

growth of the segments. 276 

Secondly, DA identifies more solutions than NSGA II. With the growth of the analyzed 277 

segments from 50 to 400 and 699, the problem becomes bigger, and DA identifies more 278 

solutions (47, 105 and 136 respectively). These solutions are all unique efficient solutions 279 

which are not worse than any other solutions. Even selecting different strategies, all these 280 

solutions satisfy the constraints of annual budget and condition requirement (acceptable 281 

average PPI). However, their objective vectors are different. The performance of NSGA II is 282 

worse as the identified solutions reduce from 28 to 24 and 20.  283 

Thirdly, DA always finds identical solutions when run more than once for the same problem. 284 

Hence its solutions are more reliable and stable. However, the solutions of NSGA II may be 285 

different when solving the same problem more than once, due to its randomness. 286 
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Fourthly, the solutions of DA have good coverage. They cover the entire range of efficient 287 

solutions from the minimum-cost solution to maximum-benefit solution in this case; while 288 

the solutions of NSGA II only cover a small range of feasible solutions. The coverage 289 

becomes worse for bigger problems. In Fig. 4, the solutions of NSGA II cover around 50% of 290 

the coverage of the solutions of DA for Case 1 and only around 20% of DA for Case 3.  291 

Fifthly, in all cases, DA identifies sufficiently enough efficient solutions (Column (4) in 292 

Table 1). As shown in Fig. 4, solutions identified by DA are enough to show a clear efficient 293 

frontier and the relationship of objectives.  294 

Sixthly, the computation time of DA is shorter than that of NSGA II. According to Columns 295 

(6) and (7) in Table 1, as the optimization problem grows bigger, the computation time of DA 296 

also grows from 19.98 to 206.35 and 475.86 seconds, which are less than the computation 297 

time of NSGA II. NSGA II spends less time if fewer iterations are proceed. However, fewer 298 

iterations probably lead to worse solutions. Comparing with NSGA II, DA identifies better 299 

solutions in less time in all cases. The computation time of DA is also affected by the number 300 

of solutions. When too many solutions exist, the computation time may be long.  301 

Finally, the application of DA is easy. No parameter needs to be calibrated by the decision 302 

maker. However, when applying NSGA II, the stopping criterion/criteria, population and 303 

parent size and mutation rate should be properly calibrated by the decision maker based on 304 

the addressed case. Therefore, the application of DA is easier and problem-independent. 305 

Overall, DA can solve the optimization problems of the maintenance decision making and 306 

identify efficient solutions. Comparing with NSGA II, DA identifies better solutions in less 307 

computation time. 308 

After identifying the efficient solutions, the decision maker only needs to analyze the 309 

outcomes of these efficient solutions. Taking Case 2 as an example, 105 efficient solutions 310 

are identified. All these solutions satisfy the annual budget and condition constraint; thus the 311 
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annual budget and condition do not need to be considered. However, if the condition is a 312 

consideration of trade-offs, the average PPI of the entire network of an efficient solution can 313 

be calculated. Moreover, as efficient solutions, all the identified solutions achieve objectives 314 

in best possible manner. With the alternative strategies, this decision making case needs at 315 

least 24138 dollar PV cost to keep its network into the acceptable condition, and generates at 316 

most 8956 dollar PV benefit under annual budget. The relationship of PV benefit and PV cost 317 

is described by the trend of the efficient solution as shown in Fig. 4. The decision maker can 318 

estimate the scarification and return based on this relationship, and then determines the trade-319 

off. After the trade-off is determined, an efficient solution that satisfies this trade-off could be 320 

selected or adjusted. Then the strategies selected by the solutions are implemented, such as 321 

the implementation method introduced by Chinowsky and Rojas (2003). However, no matter 322 

which efficient solution is selected, no other solution is better than the selected one 323 

measuring by objectives and constraints. 324 

6 Discussion  325 

This section discusses some issues related with DA such as how to control the number of 326 

identified solutions, the fact that DA cannot obtain all efficient solutions, and the application 327 

of DA to problems with three or more objectives. 328 

6.1 Controlling numbers of identified solutions 329 

In practice, MOO problems of maintenance decision making may have too many efficient 330 

solutions. Some of the solutions may have similar outcomes. These similar solutions are not 331 

useful when analyzing trade-offs. However, obtaining and analyzing these solutions needs 332 

much time. For example, in Case 2 the distances between pairs of consecutive solutions (d) is 333 

shown in Fig. 5, where 75% of the identified solutions are close (d ≤ 200).  334 
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Fig. 5 Summary of the Distance d between Pairs of Consecutive Identified Solutions 

In this paper, a filter, defined as the acceptable minimum distance, is added into the classic 335 

DA to control the number of identified solutions. If the distance between a new solution and 336 

its consecutive solution is greater than the filter size, the new solution is accepted and this 337 

new solution and its consecutive solution will be used for further analysis; otherwise, the new 338 

solution is inserted into the efficient solution pool but will not be used for further analysis. 339 

The three cases in Section 5.1 are studied again with the filter, and the results are shown in 340 

Table 2. Comparing with the previous results (Column (3)), after determining the filter size 341 

(Column (2)), solutions that are too close (closer than the required filter size) are not 342 

identified; therefore the number of identified solutions (Column (4)) is largely reduced and 343 

the computation time (Column (5)) is also reduced by at least 79.69%. The quality and 344 

coverage of the identified solutions are still good. Fig. 6 compares the previous solutions and 345 

the solutions with filter for Case 2. According to this figure, the identified solutions are also 346 

efficient and cover the entire range of efficient solutions. Hence, the effectiveness of the 347 

algorithm is improved. 348 

 349 
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Fig. 7 illustrates the number of efficient solutions identified with different filter sizes for Case 350 

2. With the growth of the filter size, the number of identified solutions decreases from 105 to 351 

2 (the minimum number is 2) while the constraints remain unchanged. A decision maker can 352 

control the number of identified solutions by assigning a proper filter size. 353 

Table 2 Results of the Tests with Filter 

Case 

Index 
Filter 

Number of efficient solutions 
Computation time

*
 

(s) 

Time reduced by 

(%) 
Previous Identified 

(1) (2) (3) (4) (5) (6) 

1 50 47 18 4.06 79.69 

2 200 105 27 23.19 88.76 

3 2000 136 21 70.55 85.17 

 

 

* Computation time is the CUP time only for the optimization. 

 

Fig. 6 Comparison of Previous and Identified Solutions for Case 2 
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6.2 Non-supported solutions 354 

DA cannot identify all efficient solutions. It only identifies supported solutions located on the 355 

boundary of the convex hull of feasible objective vectors such as solutions A, C and E in Fig. 356 

8, but cannot find non-supported solutions located in the interior of the convex hull such as 357 

solutions B and D in Fig. 8 (Ehrgott 2005).  358 

 

Fig. 8 Example of Supported And Nonsupported Solutions. 

When supported solutions are not sufficient enough to show a clear relationship of objectives, 359 

an improved DA with extra constraints (Equations 13 and 14) can identify the non-supported 360 

solutions to fill the gap between the supported solutions in the efficient frontier. The idea of 361 

this method is similar with epsilon-constraint method (Changkong and Haimes 1983). 362 

 

Fig. 7 Relationship of the Filter And the Number of Identified Solutions. 
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However, the computation time is longer than the classic DA. Heuristic methods can also be 363 

used to identify non-supported solutions (Chen et al. 2013). 364 

       ( )     (  ( 
 )   ( 

   ))    Equation 13 

   ( )     (  ( 
 )   ( 

   ))    Equation 14 

where   is a small constant  

6.3 Decision making with three or more objectives 365 

The classic DA only solves bi-objective optimization problems. When three or more 366 

objectives are pursued, a different weighting method transferring a MOO problem into SOO 367 

counterparts should be used. For a  -objective decision making optimization problem, the 368 

weights can be calculated by the method introduced by Przybylski et al. (2010) in order to 369 

integrate objectives and identify new solutions. Once a new solution is identified, it is 370 

inserted into the solution pool to identify more solutions in the next iteration, which is similar 371 

with the classic DA. However, the effectiveness of DA when dealing with three or more 372 

objectives is not as good as the classic DA when dealing with two objectives.  373 

7 Conclusion 374 

This paper introduces the application of MOO to maintenance decision making and the 375 

importance of efficient solutions. Efficient solutions not only are the best options of the 376 

maintenance decision, but also simplify decision making process and show the relationship of 377 

objectives. Hence, they are necessary for decision making and trade-offs. To identify efficient 378 

solutions, a deterministic optimization method, DA, is proposed to support multi-objective 379 

maintenance decision making in IAM and tested with a practical case. According to the case 380 

study, DA shows great abilities when dealing with bi-objective optimization problems of 381 

maintenance decision making.  382 
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 DA guarantees to identify efficient solutions, all of which are supported. Comparing 383 

with NSGA II, DA identifies solutions with better quality, stability and coverage, 384 

especially when the problem is big.  385 

 The computation time of DA is fast even for large problems. When many efficient 386 

solutions exist, the computation time may be long. Decision makers can control the 387 

number of identified solutions in order to improve the efficiency of DA.  388 

 The application of DA is straight-forward. No parameter needs to be calibrated by the 389 

decision maker.  390 

 This paper also discusses other issues, including controlling the number of identified 391 

solutions, the identification of non-supported solutions, and decision making 392 

problems with three or more objectives. 393 

Despite being a great supporter for decision making, DA also has some weaknesses. Firstly, 394 

even the optimization for three- or more- objective problems is discussed in Section 6.3, the 395 

effectiveness of the algorithm is reducing when more objectives are analyzed. More 396 

researches are needed to effectively handle decision making problems with three or more 397 

objectives. Secondly, when a road network has many segments and alternative strategies; the 398 

computation time is a vital factor especially for large problems. How to identify efficient 399 

solution in less time is another critical research area. We present a solution to this by 400 

proposing a proper filter size to reduce the number of identified efficient solutions and 401 

computation time. Other methods that improve the efficiency of DA are also needed.  402 
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