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1 Introduction

It is well known that the Schr�odinger equations are of great importance in physics

and can be used to describe extensive physical phenomena. So a great deal of

interest has been focused on the numerical approximation of the Schr�odinger

equations. Most of these studies employ mainly �nite di�erence method [1]{[3].

In [1] a class of explicit schemes which are conditionally stable is obtained by

adding dissipative terms to the standard forward Euler scheme. However, adding

dissipative terms may mean that the problem being solved is no longer a proper

representation of the physical problem whose solution is desired. Thus the result

may not be physically realistic.

The Adomian's decomposition method has been applied to a wide class of lin-

ear and nonlinear equations [4]{ [9]. The solution obtained by using this method

is expressed as an in�nite series which converges very fast to accurate solutions.

The series developed yields an accurate approximate solution by considering a

truncated number of terms.

In this paper, the Adomian's decomposition method is used for solving the

linear Schr�odinger equation. In Section 2, the outline of the decomposition

method for the linear Schr�odinger equation is given. The solution is presented

in terms of an in�nite series, while in Section 3 we discuss some examples to

illustrate the e�ectiveness and the performance of the method. Comparing this

scheme with �nite di�erence methods shows that the present approach is highly

accurate. The conclusion and extension of the approach are given in Section 4.
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2 Outline of the method

In this paper, we consider the linear Schr�odinger equation in its standard form [3]

i
@u

@t
=

@

@x

�
a(x; t)

@u

@x

�
;�1 < x < +1; t > 0; (1)

with initial condition

u(x; 0) = f(x);�1 < x < +1: (2)

Here u(x; t) and f(x) are complex valued functions, a(x; t) is a real function,

and i =
p
�1. For simplicity, the equation (1) can be written in the form

@u

@t
= �i

@

@x

�
a
@u

@x

�
; (3)

where a = a(x; t). To apply the decomposition method, we write (3) in the

operator form

Ltu = �iLx(aLxu); (4)

where Lt and Lx are the linear di�erential operators de�ned by Lt = @

@t
and

Lx = @

@x
, respectively. It is obvious that L�1

t
is a de�nite integral from 0 to t,

i.e., L�1
t

(�) =
R
t

0
(�)dt. Applying the operator L�1

t
to both sides of (4) yields

L�1
t

Ltu = �iL�1
t

Lx(aLxu);

and using the initial condition (2) leads to

u(x; t) = f(x) � iL�1
t

Lx(aLxu): (5)

Following the decomposition method [4], we assume that the solution u can be

decomposed into the form

u =

1X
n=0

un; (6)

where the �rst term u0 is given by u0 = f(x). Substituting (6) into (5) determines

all components of u by

u0 = f(x); (7)

and

un+1 = �iL�1
t

Lx(aLxun); n � 0: (8)

Hence the complete solution u(x; t) in (6) can be formally established. The de-

composition scheme outlined above leads always to a computable, accurate and

rapidly convergent series solution, i.e., the sum
P
1

n=0
un converges [4] [10], gen-

erally quite rapidly to u.

For a numerical computation, we denote the n-term approximation to the

solution u(x; t) by �n =
P

n�1

i=0
ui. Since the series converges (limn!1 �n = u)

and does so very rapidly, the n-term approximation �n can serve as a practical

solution. In many problems, the n-term approximation �n is accurate for low

values of n.
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3 Examples

To illustrate the introduced technique, we have chosen the following two exam-

ples.

Example 1. We �rst consider a linear Schr�odinger equation

i
@u

@t
=

@

@x

��
1 + (1 + t)x2)

� @u
@x

�
;�1 < x < +1; t > 0; (9)

and

u(x; 0) = x exp(�i);�1 < x < +1: (10)

This model has been investigated numerically by the �nite di�erence method [3].

The equation (9) can be rewritten in the form

Ltu = �iLx

��
1 + (1 + t)x2

�
Lxu

�
:

To determine the components of the solution u(x; t), we use (7) and (8) to obtain

u0 = x exp(�i); (11)

and

un+1 = �iL�1
t

Lx

��
1 + (1 + t)x2

�
Lxun

�
; n � 0: (12)

It follows that

u1 = �iL�1
t

Lx

��
1 + (1 + t)x2

�
Lxu0

�
= �iL�1

t
(2(1 + t)x exp(�i))

= �ix exp(�i)
�
2t+ t2

�
;

u2 = �iL�1
t

Lx

��
1 + (1 + t)x2

�
Lxu1

�
= �iL�1

t

�
�2i exp(�i)

�
2t+ 3t2 + t3

�
x
�

= �
1

2!
x exp(�i)

�
2t+ t2

�2
;

u3 = �iL�1
t

Lx

��
1 + (1 + t)x2

�
Lxu2

�

= �iL�1
t

�
�4 exp(�i)

�
t2 + 2t3 +

5

4
t4 +

1

4
t5
�
x

�

= �i
1

3!
x exp(�i)

�
2t+ t2

�3
;

u4 = �iL�1
t

Lx

��
1 + (1 + t)x2

�
Lxu3

�

= �iL�1
t

�
2i

1

3!
x exp(�i)(1 + t)

�
2t+ t2

�3�

=
1

4!
x exp(�i)

�
2t+ t2

�4
;

u5 = �i
1

5!
x exp(�i)

�
2t+ t2

�5
;
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and so on. Consequently, we obtain

u(x; t) =

1X
n=0

un

= x exp(�i)
�
1�

1

2!

�
2t+ t2

�2
+

1

4!

�
2t+ t2

�4
� :::

�

�ix exp(�i)
��

2t+ t2
�
�

1

3!

�
2t+ t2

�3
+

1

5!

�
2t+ t2

�5
� :::

�
:

which is the approximate solution.

If we denote the approximation to n-terms by �n, we have improved approx-

imations

�1 = x exp(�i);
�2 = x exp(�i)[1 � i(2t+ t2)];

�3 = x exp(�i)
��

1�
1

2!

�
2t+ t2

�2�
� i

�
2t+ t2

��
;

�4 = x exp(�i)
��

1�
1

2!

�
2t+ t2

�2�
� i

��
2t+ t2

�
�

1

3!

�
2t+ t2

�3��
:

Hence,

u(x; t) = lim
n!1

�n

= x exp(�i)
�
cos

�
2t+ t2

�
� i sin

�
2t+ t2

��
= x exp(�i) � exp

�
�i
�
2t+ t2

��
= x exp

�
�i(1 + t)2

�

is the analytic solution which clearly satis�es the Schr�odinger equation( 9) and

the initial condition (10).

Table 1 shows the absolute errors obtained by using the approximation �6,

i.e., 6 terms only. An improved approximation is easy to achieve if 10 terms of

the decomposition are used.

x Exact solution Approximate solution Absolute error

0.0 (0.000 000, 0.000 000) (0.000 000, 0.000 000) 0.00E+0

0.2 (-0.075 890, -0.185 042) (-0.075 799, -0.185 238) 0.21E-3

0.4 (-0.151 781, -0.370 085) (-0.151 599, -0.370 047) 0.43E-3
0.6 (-0.227 671, -0.555 127) (-0.227 399, -0.555 715) 0.64E-3

0.8 (-0.303 561, -0.740 169) (-0.303 198, -0.740 953) 0.86E-3

1.0 (-0.379 452, -0.925 212) (-0.378 998, -0.926 191) 0.10E-2

Table 1. solutions to (9) at t = 0:4
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Example 2. Consider the following problems described by

@u

@t
= i

@2u

@x2
; (13)

and

u(x; 0) = exp(ikx): (14)

This linear Schr�odinger equation provides a model for the propagation of disper-

sive waves with the wave number of k. In [1] a class of explicit schemes for (13)

is obtained by adding dissipative terms to the standard forward Euler scheme.

It is worth while to mention that the decomposition technique does not require

adding dissipative terms. We can show that this linear problem may be handed

more easily, quickly and elegantly by applying the above outlined decomposition

method. Using (7) and (8) we �nd

u0 = exp(ikx);

un+1 = iL�1
t

Lxun; n � 0;

where Lx = @2=@x2. Proceeding as before, we obtain the following components:

u1 = iL�1
t

Lxu0 = �i exp(ikx)k2t;

u2 = iL�1
t

Lxu1 = � exp(ikx)
(k2t)2

2!
;

u3 = iL�1
t

Lxu2 = i exp(ikx)
(k2t)3

3!
;

u4 = iL�1
t

Lxu3 = exp(ikx)
(k2t)2

2!
;

u5 = iL�1
t

Lxu4 = �i exp(ikx)
(k2t)5

5!
;

and so on. Thus the approximate solution is

u(x; t) =

1X
n=0

un

= exp(ikx)

�
1�

(k2t)2

2!
+

(k2t)4

4!
� :::

�

�i exp(ikx)
�
k2t�

(k2t)3

3!
+

(k2t)5

5!
� :::

�
:

It immediately follows that

u(x; t) = exp(ikx)
�
cos(k2t)� i sin(k2t)

�
= exp(ikx): exp(�ik2t)
= exp

�
i(kx � k2t)

�
;

which is the analytic solution of (13)and (14).
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If a numerical computation is needed, we can use the n-term approximation

�n:

�1 = exp(ikx);

�2 = exp(ikx)
�
1� ik2t

�
;

�3 = exp(ikx)

��
1�

(k2t)2

2!

�
� ik2t

�
;

�4 = exp(ikx)

��
1�

(k2t)2

2!

�
� i

�
k2t�

(k2t)3

3!

��
:

Table 2 shows the absolute errors if 6 terms are used. It is evident that the

overall errors can be made smaller by adding new terms of the decomposition.

x Exact solution Approximate solution Absolute error

0.0 (0.921 061, -0.389 418) (0.921 067, -0.389 419) 0.57E-5

0.2 (0.980 067, -0.198 669) (0.980 072, -0.198 669) 0.57E-5

0.4 (1.000 000, 0.000 000) (1.000 010, 0.000 001) 0.57E-5
0.6 (0.980 067, 0.198 669) (0.980 071, 0.198 672) 0.57E-5

0.8 (0.921 061, 0.389 418) (0.921 065, 0.389 422) 0.57E-5

1.0 (0.825 336, 0.564 642) (0.825 339, 0.564 647) 0.57E-5

Table 2. solutions to (13) at t = 0:4; k = 1

4 Conclusion and Discussion

The decomposition method provides series solutions which converge very rapidly

in general. The method makes unnecessary the massive computations of dis-

cretization methods for solving partial di�erential equations, and it is a general

analytic technique with clear advantages over the methods that require many

restrictive assumptions in mathematics.

Numerical approximations show a high degree of accuracy and in most cases,

the n-term approximation �n is accurate for quite low values of n for quite

low values of n. The numerical results we obtained con�rm the superiority of

the method over the existing techniques. Tables 1 and 2 clearly indicate how

the decomposition methodology yields reliable results much closer to the exact

solutions.

It is clear that the extension to the more general equation:

ut = ia(x; t)uxx + b(x; t)uxc(x; t)u+ f(x; t)

is straightforward. Here the functions b(x; t); c(x; t) and f(x; t) may be complex

valued functions and a(x; t) is a real valued function. Using the techniques in [5]
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we can easily obtain the series solution to the following nonlinear Schr�odinger

equation:

iut + uxx + qjuj2u = 0;�1 < x <1; t � 0;

u(x; 0) = g(x);�1 < x <1:

where u is a complex valued function, q a real parameter and i2 = �1. In fact,

nonlinear term N (u) = juj2u can be written as an in�nite sum of the Adomian's

polynomials An by N (u) =
P
1

n=0
An, where An depends only on u0; u1; � � � ; un.

For boundary value problems, evaluating the constants of integration must be

done at each level of �n.
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