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Abstract

Regularly gridded data in Euclidean 3-space are assumed to be digitizations of regular solids with
respect to a chosen grid resolution. Gauss and Jordan introduced different digitization schemes, and the
Gauss center point scheme is used in this paper. The surface area of regular solids can be expressed
finitely in terms of standard functions for specific sets only, but it is well defined by triangulations for
any regular solid. We consider surface approximations of regularly gridded data characterized to be
polyhedrizations of boundaries of these data. The surface area of such a polyhedron is well defined, and
it is parameterized by the chosen grid resolution. A surface area measurement technique is multigrid
convergent for a class of regular solids iff it holds that for any set in this class the surface areas of
approximating polyhedra of the digitized regular solid converge towards the surface area of the regular
solid if the grid resolution goes to infinity. Multigrid convergent volume measurements have been
studied in mathematics for more than one hundred years, and surface area measurements had been
discussed for smooth surfaces. The problem of multigrid convergent surface area measurement came
with the advent of computer-based image analysis. The paper proposes a classification scheme of local
and global polyhedrization approaches which allows us to classify different surface area measurement
techniques with respect to the underlying polyhedrization scheme. It is shown that a local
polyhedrization technique such as marching cubes is not multigrid convergent towards the true value
even for elementary convex regular solids such as cubes, spheres or cylinders. The paper summarizes
work on global polyhedrization techniques with experimental results pointing towards correct multigrid
convergence. The class of general ellipsoids is suggested to be a test set for such multigrid convergence
studies.
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ABSTRACT

Regularly gridded data in Euclidean 3-space are assumed to be digitizations of regular solids with respect to a chosen

grid resolution. Gauss and Jordan introduced di�erent digitization schemes, and the Gauss center point scheme is

used in this paper. The surface area of regular solids can be expressed �nitely in terms of standard functions for

speci�c sets only, but it is well de�ned by triangulations for any regular solid. We consider surface approximations

of regularly gridded data characterized to be polyhedrizations of boundaries of these data. The surface area of such

a polyhedron is well de�ned, and it is parameterized by the chosen grid resolution. A surface area measurement

technique is multigrid convergent for a class of regular solids i� it holds that for any set in this class the surface areas

of approximating polyhedra of the digitized regular solid converge towards the surface area of the regular solid if the

grid resolution goes to in�nity. Multigrid convergent volume measurements have been studied in mathematics for

more than one hundred years, and surface area measurements had been discussed for smooth surfaces. The problem

of multigrid convergent surface area measurement came with the advent of computer-based image analysis. The

paper proposes a classi�cation scheme of local and global polyhedrization approaches which allows us to classify

di�erent surface area measurement techniques with respect to the underlying polyhedrization scheme. It is shown

that a local polyhedrization technique such as marching cubes is not multigrid convergent towards the true value

even for elementary convex regular solids such as cubes, spheres or cylinders. The paper summarizes work on global

polyhedrization techniques with experimental results pointing towards correct multigrid convergence. The class of

general ellipsoids is suggested to be a test set for such multigrid convergence studies.
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1. INTRODUCTION

The study of regularly gridded data in Euclidean 3-space E3 = (R3
; d2) is closely related to the general problem of

the topology of surfaces in 3-space. The de�nition of a surface (a special 2-manifold) and of its surface area in E3
provide an important component of theoretical fundamentals for gridding techniques.

C. Jordan12 and L.E.J. Brouwer3 studied the segmentation of an n-space by an (n� 1)-dimensional manifold. A

region is a connected open subset of a topological space. The general Jordan-Brouwer segmentation theorem states

that a compact subset C of the Euclidean space En = [Rn
; d2] cuts Rn into two regions if C is a topological image

of the (n � 1)-sphere. For example, a circular curve is a 1-sphere. A compact set C cuts Rn if Rn n C possesses at

least two components. Set A is a topological image of set B if there exists a one-to-one mapping (a homeomorphism)
between both sets which is continuous in both directions.



The Jordan-Brouwer segmentation theorem is known as Jordan curve theorem for n = 2, and as Jordan surface
theorem for n = 3. This paper deals with topological images of the 2-sphere in 3-space which possess measurable sur-

face areas. These sets are assumed to be surfaces of simply-connected solids as studied in image analysis applications

such as volume analysis (MRI, confocal microscopy, CT etc) in medical, industrial or scienti�c imaging.

A topological image of a 2-sphere possesses a measurable surface area if it allows a decomposition into a �nite

number of measurable smooth surface patches. The surface area of a measurable smooth surface patch is de�ned

via integration, and three (equivalent) formulae are cited in Section 2. A regular surface is a topological image of a

2-sphere which allows a segmentation into a �nite number of measurable smooth surface patches, see [16]. A regular

surface cuts R3 into a bounded and into an unbounded region. The topological closure of this bounded region (i.e.

the union of this region and its regular surface) de�nes a regular solid in R3. Note that such a regular solid is

simply-connected.

In image analysis, measurements are only possible when they are based on captured regularly gridded data of

a given regular solid. We assume that these discrete data are de�ned by an appropriate digitization scheme and a

chosen grid resolution. The task consists in estimating the surface area of the given regular solid based on these

available regularly gridded data only such that this estimate converges towards the surface area of the given regular

solid if the grid resolution goes to in�nity.

The paper is organized as follows: Section 2 speci�es sets in E3 being candidates for multigrid surface area

studies. These regular solids are compact, simply connected and do have a measurable surface area, i.e. a recti�able

surface. Example 1 in Section 2 cites an historic result from 1890: multigrid surface area calculation may fail to be

convergent even if the correct surface is triangulated with increasing grid resolution! Section 3 de�nes the multigrid

digitization approach and explains the problem of multigrid convergence. Section 4 speci�es an approach how to

classify polyhedrization techniques into local or global ones, allowing to classify surface area measurement strategies

based on such polyhedrizations into local or global ones as well. Section 5 mentions some of the \popular" local

techniques and shows by experimental evaluation that these techniques fail to be multigrid convergent with respect

to the surface area. Section 6 brie
y discusses proposals for global techniques. They seem to be more diÆcult with

respect to implementation, but promising to o�er multigrid convergent surface area calculations.

2. REGULAR SOLIDS

This section de�nes regular solids � to be models of \3D objects". The surface area is well de�ned for regular solids,

and this value is later on used as \ground truth" to evaluate the performance of surface area algorithms.

2.1. Smooth Surface Patches

We start with the de�nition of a general surface model for simply-connected compact sets. A surface is de�ned to

be a �nite union of faces or surface patches, and each patch is de�ned by a graph of a function.

Definition 2.1. A smooth surface patch in Euclidean 3-space is a set of points F � R3 in parametric form
F = FB(';  ; �) where B � R2 is a simply-connected compact set and ';  ; and � are three functions di�erentiable
for all positions (u; v) in B; such that

FB(';  ; �) = f(x; y; z) : x = '(u; v) ^ y =  (u; v) ^ z = �(u; v) ^ (u; v) 2 Bg ;

and for which it is assumed that each point in FB(';  ; �) is de�ned by exactly one point (u; v) 2 B; and that the
rank of the matrix of the �rst derivatives �

'u  u �u

'v  v �v

�

is equal to 2 for all positions (u; v) 2 B:
�Regular solids had been called Jordan sets in [16] recognizing the role of C. Jordan in introducing curves and surface patches as

parameterized sets. However, many mathematicians, see, e.g., [9,23,26], contributed to the de�nition of surfaces and surface area of sets
in 3-space, and a more generic notation is used therefore in this paper.



From this de�nition it follows that at each position b = (u; v) at least one of the three subdeterminants

A =

���� u �u

 v �v

���� ; B =

�����u 'u

�v 'v

���� ; and C =

����'u  u

'v  v

����
is not equal to zero. These subdeterminants can be used to de�ne the area Jarea(F) of a smooth surface patch F as

follows

Jarea(F) =

Z
B

p
A
2 + B

2 + C
2 db (1)

assuming that the surface patch F is measurable (see De�nition 2.3 and Theorem 2.4 below).

For example assume any simply-connected planar compact surface patch F incident with a plane P. Then B may

be chosen parallel to plane P, with ' (u; v) = const;  (u; v) = u; and � (u; v) = v: The rank of the corresponding

matrix �
0

0

1

0

0

1

�
is two and the equation

Jarea (F) =

Z
B

db = Jarea (B)

reduces the 3D measurement problem to a 2D measurement problem. It follows that any simply-connected planar

compact set F is a smooth surface patch according to the de�nition above, and it is measurable if its 2D projection

is measurable.

Assume a set A incident with a 2-manifold, i.e. a special two-dimensional topological subspace of En. The 2D
interior AÆ of such a set A is de�ned with respect to this topological space.

The measurability de�nition in [19] of smooth surface patches F = FB (';  ; �) is based on a triangulation of a

bounded superset B1 of B satisfying B � BÆ
1; where the �rst order derivatives of the functions ';  ; � exist and

they are continuous in BÆ
1. Formally this means that ';  ; � 2 C1 (BÆ

1) :

In No. 108 of [19] it is shown that the angles � of such triangulations (of the base sets of the resulting polyhedral

faces) have to satisfy the constraint � < 2�/3: This was independently shown by O. H�older9 in 1882, G. Peano23 in
1890, and H. A. Schwarz26 in 1890) to avoid inaccurate surface value calculations for curved surfaces. We cite an

example as discussed in [19,26].

Example 1. Assume that the lateral area L of a straight circular cylinder of radius � and of height h is cut by
(k � 1) planes, k � 2, which are parallel to the base circles and which segment the cylinder into k congruent parts.
Furthermore assume a regular n-gon, n � 3, in every cross section including both base circles, see Fig. 1 for k = 4

and n = 6. The axis of the cylinder and any vertex of such an n-gon de�nes a halfplane, which bisects an edge of the
n-gon in the neighboring cross section or base circle. Now we connect for two neighboring n-gons each edge in one
n-gon with those vertex of the other n-gon closest to this edge. This results into a triangulation Tk;n (i.e. a speci�c
polyhedrization) of the lateral area L of the cylinder into 2kn congruent triangles having a surface area equal to

Jarea(Tk;n) = 2�� � sin(�=n)
�=n

r
1
4
�
4
�
2

�
sin(�=2n)

�=2n

�4 �
k

n2

�2
+ h

2
:

If k and n go to in�nity then the length of the edges of the triangular faces of Tk;n converges to zero. However, the
surface area of Tk;n does not necessarily converge towards the surface area Jarea(L) = 2��h of the lateral area! This
is only true if k and n go to in�nity such that k=n2 converges to zero. If k=n2 converges to g > 0 then Jarea(Tk;n)

converges to

2�� � sin(�=n)
�=n

q
1
4
�
4
�
2
g
2 + h

2
:

It may even happen that k=n2 goes to in�nity, e.g. k = n
3, and then it follows that Jarea(Tk;n) goes to in�nity as

well!



Figure 1. Triangulation of the lateral area of a straight circular cylinder19,26 de�ned by (k� 1) cutting planes and

regular n-gons in cutting planes and base circles, de�ning a regular grid on the lateral area of the cylinder. If the

increase in k is at least 
(n2) then the total surface area of the triangulation does not converge towards the surface

area of the lateral area!

Definition 2.2. Let B1 � R2 be a simply-connected compact set with B � BÆ
1 and assume an angle ! with

0 < ! < �/3: Then any network Z of triangles completely covering B1 and satisfying the following two properties,

(i) all angles of triangles in Z are less or equal to � � !; and

(ii) for all triangles in Z having a non-empty intersection with B it holds that all three vertices are in B1;

is called a triangular subdivision Z of B1 with respect to B:

Let F = FB (';  ; �) be a smooth surface patch. Each triangular subdivision Z of B1 with respect to B de�nes a

polyhedral approximation F (Z) of the given smooth surface patch F = FB (';  ; �) by an orthogonal projection of

the vertices y of triangulation Z onto the smooth surface patch F, where the neighborhood relation between vertices

in Z is propagated into a neighborhood relation between these resulting vertices on the smooth surface patch F. The

surface area Jarea (F (Z)) is de�ned to be the sum of all areas of triangular faces of the polyhedral approximation

F (Z).

Definition 2.3. Let F = FB (';  ; �) be a smooth surface patch. Assume that there exists a simply-connected
compact set B1 � R2 such that B � BÆ

1; the functions ';  ; � are in C(1) (BÆ
1) ; and there exists a sequence Z1; Z2;

Z3; ... of triangular subdivisions of B1 with respect to B such that at ! 0 where at denotes the maximum length of
any side of any triangle in the subdivision Zt: This sequence de�nes an in�nite sequence of polyhedral approximations

F (Z1) ; F (Z2) ; F (Z3) ; :::

having well-de�ned surface areas

Jarea (F (Z1)) ; Jarea (F (Z2)) ; Jarea (F (Z3)) ; :::

The smooth surface patch F is measurable if it has a bounded surface area

Jarea (F) = sup
t

Jarea (F (Zt)) :

The following theorem is a historic result19 about smooth surface patches, and it allows numerical calculations

of surface areas in cases where the parameterization of involved smooth surface patches is known.

yThe resulting vertices of this polyhedral approximation are on the given smooth surface patch F, and not vertices \close" to the
smooth surface patch as in case of digitizations. If the smooth surface patch F is \unknown", as it is in image analysis applications, then

we also have no \access" to such a polyhedral approximation F (Z).



Theorem 2.4. For a measurable smooth surface patch F = FB (';  ; �),

Jarea (F) =

Z
B

p
A
2 + B

2 + C
2 db

independent of the chosen parameterization B; ';  ; where A; B and C are the subdeterminants as de�ned above.

Consider a surface patch F with rectangular Cartesian coordinates x; y; z given by an equation z = f(x; y), and

(x; y) is limited to be within a closed, bounded and measurable set B � R2, and the �rst-order partial derivatives

of f exist and are continuous within a set B1 satisfying B � BÆ
1. Then the content of the surface patch F =

f(x; y; f(x; y)) : (x; y) 2 Bg is equal to

Jarea(F) =

Z
B

q
1 + (fx (x; y))

2
+ (fy (x; y))

2
db : (2)

This follows from Theorem 2.4. Furthermore, often the values

E = '
2
u +  

2
u + �

2
u ; F = 'u'v +  u v + �u�v ; G = '

2
v +  

2
v + �

2
v

are used in the theory of curved surfaces, and due to the Lagrange identity it holds that A2 + B
2 + C

2 = EG � F
2,

and thus

Jarea(F) =

Z
B

p
EG� F

2 db : (3)

Theorem 2.4 points out that the area of a surface patch is only dependent upon its geometric structure, and Equs. (1),

(2), and (3) specify three di�erent formal ways of calculating such an area.

2.2. Regular Surfaces and Surface Area

A single smooth surface patch cannot form a surface of a non-trivial (i.e. having a non-zero volume) set in 3-

space. Because of the assumed property that each point in FB (';  ; �) is de�ned by exactly one point (u; v) 2 B

it follows that at least two smooth surface patches are necessary to obtain a closed surface of such a non-trivial set.

Furthermore, the assumed C1 property of functions ';  ; and � allows no discontinuities within a single Jordan face,

as it appears at edges of polyhedra.

Definition 2.5. A regular solid is a simply-connected compact set � � R3 where its boundary is a union of a �nite
number of measurable smooth surface patches F1; F2; ..., Fn having pairwise disjoint 2D interiors. A regular surface

S = S (�) is the boundary @� of such a regular solid �, i.e.

S = F1 [F2 [ :::[Fn;

and the surface area of � or S is de�ned as

Jarea (S) = Jarea (F1) + Jarea (F2) + :::+ Jarea (Fn) :

The region �Æ = ��@� is the 3D interior of this regular solid �. Note that a regular solid is always homeomorphic

to the 3-ball, and a regular surface is always homeomorphic to the 2-sphere, i.e. the surface of the 3-ball.

Each simple polyhedron is a regular solid, and curved sets in E3 may be classi�ed to be regular solids as well. A

smooth regular solid has a surface which possesses a uniquely de�ned tangent plane at each of its surface points. Note

that this is not necessarily the case for a union of measurable smooth surface patches. The following (well-known)

Jordan surface theorem (a conclusion of the general Brouwer-Jordan segmentation theorem) holds for smooth, and

also for non-smooth regular surfaces.

Theorem 2.6. Any surface S of a regular solid cuts R3 into two regions I; and E = R3�(S [ I) with @I = @E = S.

The region E = E (S) is the 3D exterior of the regular solid S [ I: "Going from I to E " means that we have

"to leave I " by passing through its boundary @I = S; i.e. any curve starting in I and ending in E intersects the



given surface S at least once. A regular surface speci�es a separation in Euclidean 3-space, as a Jordan curve does

in Euclidean 2-space.

Example 2. The surface area of a general ellipsoid in 3-space with semi{axes a; b; c can be expressed �nitely in terms
of incomplete elliptic integrals.22 This formula is accurate if the ellipsoid is not \nearly spheric". The representation
of the surface area may be analytically speci�ed if two radii coincide, i.e. in case of an ellipsoid of revolution. We use
a numeric solution which allows accurate calculations independent upon the parameters of the ellipsoid. We explain
the theoretical fundamentals of this general program z which allows to calculate surface areas of arbitrary ellipsoids.
This program has been used in our experiments for providing the true value which will be reported later in this paper.

Consider an ellipsoid Ea;b;c centered at the coordinate origin in 3-space, with rectangular Cartesian coordinate
axes along the semi{axes a; b; c,

x
2

a
2
+
y
2

b
2
+
z
2

c
2

= 1 :

For the case in which two axes are equal b = c, the surface is generated by rotation around the x{axis of the half{ellipse

x
2

a
2
+
y
2

b
2

= 1

with y � 0. The surface area Jarea(Ea;b;b) is equal to

4�ab

Z 1

0

p
1� qu

2 du

where u = x=a and q = 1� b2=a2. Therefore,

Jarea(Ea;b;b) =

8>><
>>:

2�b
�
a� arcsin

p
qp

q
+ b

�
if q > 0

2�b(a+ b) if q = 0

2�b
�
a� arcsinh

p
�qp�q

+ b

�
if q < 0.

The use of the truncated power series

Jarea(Ea;b;b) = 2�b
�
a

�
1 + 1

6
q + 3

40
q
2 + 5

112
q
3
�
+ b

�
is suggested for jqj � 1.

A program for calculating the surface area of a general ellipsoid Ea;b;c may follow Equ. (2) assuming equations
z = f(x; y). W.l.o.g. the coordinate axes can be named so that a � b � c. On that surface,

@f

@x

=
�c2x
a
2
z

;

@f

@y

=
�c2y
b
2
z

Consider the octant for which x; y; z are all non{negative. Then the surface area for that octant is

Z a

0

Z b

p
1�x2=a2

0

r
1 +

c
4
x
2

a
4
z
2
+
c
4
y
2

b
4
z
2
dy dx

=

Z a

0

Z b

p
1�x2=a2

0

s
z2

c2
+ c2

a2
x2

a2
+ c2

b2
y2

b2

z
2
=c

2
dy dx

=

Z
a

0

Z
b

p
1�x2=a2

0

vuut1� x2

a2
� y2

b2
+ c2

a2
x2

a2
+ c2

b2
y2

b2

1� x2

a2
� y2

b2

dy dx :

zProgram and its theoretical derivation, as reported in this example, by Garry Tee (Auckland).



The integral with respect to y is

Z
b

p
1�x2=a2

0

vuut1� �1� c2

a2

�
x2

a2
� �1� c2

b2

�
y2

b2

1� x2

a2
� y2

b2

dy

=

Z
b

p
1�x2=a2

0

s
1� �1� c2

a2

�
x2

a2

1� x2

a2

vuuuuut
1�

�
1� c

2

b
2

�
1�
�
1� c

2

a
2

�
x
2

a
2

y2

b2

1� 1�
1� x

2

a
2

� y2

b2

dy

= b

r
1� x

2

a
2

s
1� �1� c2

a2

�
x2

a2

1� x2

a2

Z 1

0

r
1�mt2
1� t2 dt

= b

s
1�

�
1� c

2

a
2

�
x
2

a
2
E(m);

where s = x=a, t = y

. �
b

p
1� s

2
�
,

m =

�
1� c

2

b2

��
1� s

2
�

1� �1� c2

a2

�
s
2

(4)

and

E(m) =

Z 1

0

r
1�mt2
1� t

2
dt

is Legendre's complete elliptical integral E(m) of the second kind, see Milne-Thomson's notation in chapter 17 of.1

Hence, the surface area of the ellipsoid is

Jarea(Ea;b;c) = 8b

Z a

0

s
1�

�
1� c

2

a
2

�
x
2

a
2
E(m) dx

= 8ab

Z 1

0

s
1�

�
1� c

2

a
2

�
s
2
E(m) ds :

That integral expression for Jarea(Ea;b;c) can be evaluated numerically. However, Archimedes showed that, for a =

b = c, the integrand is constant at �=2. But, as c=a & 0 , the integrand converges to
p
1� s

2 =
p
(1� s)(1 + s),

which has a singular derivative at s = 1. To get a smoother integrand, substitute u2 = 1� s, which gives

Jarea(Ea;b;c) = 16ab

Z 1

0

s
1�

�
1� c

2

a
2

�
s
2
E(m) u du; (5)

where s = 1�u2, and the parameter m, 0 � m � 1, is given in Equ. (4). The integral E(m) decreases from �=2 to 1
as m increases. The Arithmetic-Geometric Mean of Gauss is very eÆcient for evaluating both E(m) and Legendre's
complete elliptical integral K(m) of the �rst kind,

K(m) =

Z 1

0

dtp
(1� t

2)(1 �mt2)

see Milne-Thomson, Section 17.6 in [1]. But if m is very close to 1, then the power series in m1 = 1�m [5] should
be used to evaluate K(m) for m < 1, and to evaluate E(m) for m � 1.



The integrand with respect to u in Equ. (5) is smooth enough for the integral to be evaluated by Romberg integration,
for c > 0. As c=a & 0 the ellipsoid converges to a 2{sided elliptical lamina, with surface area 2�ab. Hence, for
c=a� 1, the area should be evaluated as 2�ab, plus some terms in c=a.

For our experimental studies of multigrid convergence, di�erent ellipsoids are used to illustrate multigrid conver-

gence. For surface area approaches which are not multigrid-convergent, it will be shown that they fail already for

very elementary regular solids such as a cube or a sphere.

3. DIGITIZATION AND MULTIGRID CONVERGENCE

The problem of gridding based volume estimation was studied by C. Jordan13 in 1892. Any grid point (i; j; k) 2 E3
is assumed to be the center point of a cube with faces parallel to the coordinate planes and with edges of length

1. The boundary is part of this cube. Let � be a regular solid, i.e. it is contained in �nitely many of such cubes.

Dilate the set � with respect to an arbitrary point p 2 E3 in a ratio r : 1. This transforms � into �p

r
. Let lp

r
(�) be

the number of all cubes completely contained in the interior of �p

r
, and let up

r
(�) be the number of all cubes having

a non-empty intersection with �p
r
. Then it holds13 that r�3 � lp

r
(�) and r�3 � up

r
(�) always converge to limit values

L(�) and U (�), respectively, for r to in�nity, independent upon the chosen point p. Jordan called L(�) the inner
volume and U (�) the outer volume of set �, or the volume vol(�) of � if L(�) = U (�). Volume de�nition based on

gridding techniques was studied, e.g., in [21,27].

The problem of area estimation of a set by the number of grid points contained in the considered set has an

extensive history in number theory. It has already been studied by C.F.Gauss (1777{1855) for disks. C.F.Gauss
and P.Dirichlet (1805{1859) knew already that the number of grid points inside of a planar convex curve 
 estimates

the area of the set bounded by this curve within an order of O(l), where l is the length of curve 
. The situation

when 
 is a circle is studied most carefully. M.N.Huxley's result11 from 1990 is recently the best known result for

3-smooth planar convex curves.

These two gridding approaches use di�erent digitization models. Often we prefer Gauss' center-point digitization

model: if a grid point (i; j; k) 2 E3 belongs to �, being a center point of cube c then c is contained in the digital

image of �. However, there might be cases where Jordan's scheme is more adequate, and the used scheme has to be

named from case to case.

3.1. Multigrid Digitization

We assume an orthogonal grid with grid constant 0 < # � 1 in n-space En, n � 1, i.e. # is the uniform spacing

between grid points parallel to one of the coordinate axes. Furthermore, let r � 1 be the grid resolution de�ned as

being the number of grid points per unit, i.e. any grid edge is of length # = 1=r.

In this paper we discuss the three-dimensional case only. We consider r-grid points gr
i;j;k

= (# � i; # � j; # � k) in E3
for integers i; j; k and # = 1=r. For r = 1 we simply speak about grid points (i; j; k) in E3.
Definition 3.1. For a set � in E3 its digitization Dr(�) is de�ned to be the set of all r-grid points contained in
the given set �, i.e.

Dr(�) = fgri;j;k : gri;j;k = (i=r; j=r; k=r) 2 �g :
In the case r = 1 the digitization is denoted by D(�).

This is the model of Gauss center-point digitization. Let us de�ne an r-cube Cr

i;j;k
as an isothetic cube, i.e. having

faces only parallel to one of the coordinate planes, whose edges have length 1=r where the centroid of the cube is the

r-grid point (i; j; k). Then Jordan digitization is de�ned as follows.

Definition 3.2. For a set � in E3 its inner and outer digitizations are de�ned by

Ir(�) = fgri;j;k : gri;j;k = (i=r; j=r; k=r) 2 Ir(�)g

and
Or(�) = fgri;j;k : gri;j;k = (i=r; j=r; k=r) 2 Or(�)g;

respectively, where Ir(�) is the union of all cubes Cr

i;j;k
such that Cr

i;j;k
� �0 and Or(�) is the union of all cubes

C
r

i;j;k
such that Cr

i;j;k
\� 6= ;.



The sets D(�) and Dr(�) (res. Ir(�) and Or(�)) are also called digital sets, and the set Dr(�) de�ned by the

union of all cubes Cr

i;j;k
such that (i; j; k) 2 Dr(�) (res. Ir(�) and Or(�)) are isothetic polyhedra.

The dilation of a set � � E3 by a factor r � 1 is de�ned to be

r �� = f(r � x; r � y; r � z) : (x; y; z) 2 �g :

Following Jordan13 this is a dilation with respect to the origin (0; 0; 0), and other points in E3 could be chosen to be

the �xpoint as well. Sometimes it may be more adequate to consider sets of the form r �� (the preferred approach,

e.g., by Jordan and Minkowski) digitized in the orthogonal grid with unit grid length, instead of sets � digitized in

r-grids with 1=r grid length. The study of r ! 1 corresponds to the increase in grid resolution, and this may be

either a study of repeatedly dilated sets r � � in the grid with unit grid length, or of a given set � in repeatedly

re�ned grids. This is a general duality principle for multigrid studies.

3.2. Multigrid Convergence

Multigrid convergence x is one option for model-based evaluations of image analysis algorithms in general. This

criterion is in common use in numerical mathematics. In general, algorithms may be judged according to criteria,

such as methodological complexity of underlying theory, expected time for implementation, or run-time behavior

and storage requirements of the implemented algorithm. Accuracy is an important criterion as well, and this can be

modeled as convergence towards the true value for grid based calculations.

Definition 3.3. Let F be a family of sets S, and digr(S) a digital image of set S, de�ned by a digitization mapping
digr. Assume that a feature F , such as area, perimeter, or a moment, is de�ned for all sets in family F . An
estimator M is multigrid convergent for this family F and this digitization model digr i� there is a grid resolution
rS > 0 for any set S 2 F such that the estimator value M (digr(S)) is de�ned for any grid resolution r � rS, and
jM (digr(S)�F (S)j< f(r) for a function f de�ned for real numbers, having positive real values only, and converging
towards 0 if r!1. The function f speci�es the convergence speed.

We do not discuss convergence speed in this paper. The function f(r) = r
�1 would specify linear convergence,

and the function f(r) = r
�2 de�nes quadratic convergence - just to name two examples.

A surface area measurement technique is multigrid convergent for a class of regular solids i� it holds that for any

set in this class the surface areas of approximating polyhedra of the digitized regular solid converge towards the true

surface area of the regular solid if the grid resolution goes to in�nity. In general it holds that the convergence of a

gridding technique with respect to the Hausdor�-Chebyshev distance d1{ between the given surface patch A and

the approximated surface patch Br does not imply multigrid convergence of surface areas of Br towards the surface

area of A.

Classical results can be cited for multigrid convergent volume measurement, see, e.g. [27]. The convergence

of these measurements towards the true value is illustrated in Fig. 2. We digitized a cube for di�erent rotational

positions, for r !1: For consecutive grid constants 1=r we calculate the volume of the resulting isothetic polyhedron

as number of r-cubes contained in this isothetic polyhedron times the volume 1=r3 of a single r-cube.

4. CLASSIFICATION OF POLYHEDRIZATION TECHNIQUES

Assume a regular solid � and a grid resolution r, we obtainDr(�) or Ir(�) as the digitization of �. A polyhedrization

technique is supposed to construct a polyhedron Pr approximating the surface of any regular solid � from a given

digitization of this set, such as set Dr(�) or set Ir(�). W.l.o.G. let us select Dr(�) for the following discussion.

The surface of a regular solid � is a Jordan surface. We assume that the resolution r is suÆciently high so that Pr

xThis is also calledmultiresolution convergence in other work. We prefer \multigrid" due to the pure geometric nature of the approach,
compared to a traditional signal-theoretical interpretation of the word \resolution".

{The Hausdor�-Chebyshev metric d1 is de�ned for sets of points A, B using the point metric d1 as introduced in [7] as generator,

d1 (A;B) = max

�
sup
p2A

inf
q2B

d1 (p; q) ; sup
p2B

inf
q2A

d1 (p; q)

�
;

where d1 (p; q) = maxfjx1 � y1j ; jx2 � y2j ; jx3 � y3jg, for p = (x1; x2; x3) and q = (y1; y2; y3).



Figure 2. Convergence of measured volumes (1+ d)v of isothetic polyhedra towards the true volume v of the given

cube, de�ning a deviation d or a relative error jdj.

becomes a simple polyhedron. The constructed polyhedron Pr is de�ned by polygons (faces), edges and vertices.

For each polygon G of Pr, there is a subset of Dr(�) such that only grid points in this subset have in
uence on the

speci�cation of polygon G. This subset de�nes by inclusion a smallest ball B(G) with radius �, i.e. B(G) contains

all the points in Dr(�) which have any impact on the position, orientation and size of G. In other words, B(G)

might be called the ball of in
uence for constructing the polygon labeled by G. Assume a digitization Dr(�) being

the input for the polyhedrization. Due to the �nite number of calculated polygons, there is a maximum value R(r;�)

of all radii � de�ned by balls of in
uence B(G), for any polygon G of the resulting polyhedrization Pr.

Definition 4.1. A polyhedrization technique is called to be local if there exists a constant � such that R(r;�) � �=r,
for any regular solid � and any grid resolution r. If a polyhedrization method is not local then it is called global.

We give several examples for local and global polyhedrization techniques as follows:

� local polyhedrization technique � � � the surface detection algorithm of voxel-based objects,2 the march-

ing cubes algorithm,18 the marching tetrahedra algorithm,6,24 the dividing cubes algorithm,25 the discretized

marching cubes algorithm,20 and the algorithm for generation of discrete combinatorial polyhedra14;

� global polyhedrization technique � � � minimum surface area polyhedra,28 convex hull of Dr(�), discrete

standard polyhedra.8

In the sequel we call a surface area calculation method local or global, depending upon the underlying poly-

hedrization technique assuming that the surface area calculation technique is de�ned by taking the surface area of

the resulting polyhedra as its approximation value.

5. LOCAL TECHNIQUES

Let us consider the surface area of a resulting isothetic polyhedron Dr(�) (see Fig. 3) using the algorithm published

in [2] for tracing all faces on the surface (note: surface area measurement was not a subject in [2]). The �gure signals

convergence in all cases. However, the measured surface area values depend upon the given rotation of the cube,

and the deviation d can be equal to 0 if the cube was in isothetic position, and about 0:90 (i.e. 90% error!) if it was

rotated about 45Æ with respect to X; Y; and Z axes. These values are inappropriate for estimating a surface area of

a cube if the rotation angle is unknown. A surface area measurement based on counts of faces on the surface of such

isothetic polyhedra is not related to the true surface area, just to exclude this as a way of surface area estimation.

A \classical" example is shown in Fig. 4) illustrating again that such a \staircase approach" fails if surface area

measurement is concerned.

The use of a marching cubes algorithm18 is one of the options of local approximations. Each local con�guration

of eight r-grid points, forming a cube, is treated according to a look-up table for de�ning triangular or planar surface



Figure 3. Each curve suggests \obvious convergence" of the measured surface areas of the isothetic polyhedra for

a given rotational position of the cube towards a value (1 + d)s, where s denotes the true surface area of this cube.

patches within this cube. We may assume that a surface intersects such a local con�guration in 28 di�erent ways

(i.e. no multiple intersections of grid edges), and these can be represented as fourteen major cases with respect to

rotational symmetry. Alternatively a method developed by [31] calculates \contour chains" immediately without

using a look-up table of all 28 di�erent cases. The fourteen basic con�gurations originally suggested by [18] are

topologically \incomplete". Occasionally they generate surfaces with holes. Such ambiguities of the marching cube

look-up tables are discussed in [30]. See [28] for local situations of marching cubes con�gurations where at least two

di�erent topological interpretations are possible. Additional marching cubes con�gurations are also suggested in [15]

from the viewpoint of combinatorial topology; all possible connectivities between any vertices of a marching cube

are considered and additional con�gurations of marching cubes are proposed. More important, the calculated values

of surface areas do not converge towards the true value as illustrated in Fig. 5. The total surface area is calculated

based on a sum of all surface areas for the generated local (triangular) surface patches.

There are other techniques similar to the marching cubes algorithm. A dividing cubes algorithm25,29was proposed

to improve the performance of the marching cubes algorithm by making use of hierarchical data structures such as

octrees; the constructed polyhedra are equivalent to those by the marching cubes algorithm. A marching tetrahedra

algorithm was suggested in [24]. By this algorithm, triangular surface patches are constructed referring to a look-up

table for each local con�guration of four r-grid points forming a tetrahedron instead of eight r-grid points forming

a cube. Any tetrahedron is obtained by dividing a cube. Further studies on marching tetrahedra are reported in

[6]. This algorithm generates more triangles than the marching cubes algorithm in general. On the other hand, a

discretized marching cubes algorithm20 was proposed for reducing the number of triangular surface patches. While

the classical marching cubes algorithm determines every vertex of any triangular patch by interpolation on an edge

Figure 4. Assume a regular solid having a surface patch being a rectangle with slope (45Æ; 45Æ; 0Æ) approximated

by its digitization which forms a regular staircase for any grid resolution r. The total surface area of this staircase

remains constant, i.e. it is always the same false value.



Figure 5. These curves indicate convergence of the measured surface areas towards values (1+d)s where a marching

cubes algorithm was applied to two cubes in di�erent rotational positions, to a sphere and a cylinder

of a marching cube, this algorithm always sets such vertex to be the midpoint of an edge. Similarly, an algorithm

for generation of discrete combinatorial polyhedra whose vertices are set to be only at r-grid points was proposed

in.14 This is based on the approach of combinatorial topology and there is a proof that any constructed polyhedra

have no topological ambiguity.

For any technique, the constant � is not more than
p
3
2
. This is because we use a cube or a tetrahedron which is

smaller than a cube to look up triangular surface patches and a cube is clearly included in a ball B(G) with radiip
3

2r
.

Error analysis of surface area calculation is studied when isothetic polyhedra are used for surface approximation

in [17]; for a plane surface, the calculated surface area may be from 1 to
p
3 times the true value. This implies that

deviation of calculated surface area from true values does not depend on the grid resolution r at all and is constant

for a plane surface. In other words, the surface area errors between calculated values and true values are caused by

the position and orientation of a plane surface and are not caused by the grid resolution r. For instance, if a plane

has the normal vector (1; 1; 1) and passes through an r-grid point, the calculated surface area becomes
p
3S where

S is the true value.

The similar analysis can be employed for the other local polyhedrization techniques such as the marching cubes

algorithm. Because constructed surface patches are di�erent between local polyhedrization techniques, the ratios

between calculated surface area values and true values will be di�erent for each polyhedrization technique. However,

it is also true for the other local polyhedrization techniques that the surface area errors between calculated values

and true values are caused by the position and orientation of a plane surface and are not caused by the grid resolution

r. Actually, the number of normal vectors of triangular patches of a marching cubes algorithm is larger than that of

an isothetic polyhedra generation. Thus, we expect that the surface area errors of a marching cube algorithm will

be smaller than those of an isothetic polyhedron generation.

Because a cube is de�ned by six plane surfaces, we can extend our discussion of surface area errors for a plane

surface to a cube. There are always errors around the corner of a cube and such errors depend on the grid resolution

r.

6. GLOBAL TECHNIQUES

Local techniques exist in di�erent implementations, and they are eÆcient with respect to computing time behavior.

The crucial drawback as brie
y discussed above is that they are not multigrid convergent to the true surface area

value. There are also a few proposals on global techniques. But to our knowledge there are no theoretical results

available about multigrid convergence, no eÆcient implementations (besides eÆcient convex hull algorithms), and



even no experimental studies on multigrid behavior at all. For example, a global technique including experimental

results (i.e. showing a few approximated surfaces, but not with respect to surface area) is contained in [8].

6.1. Minimum Surface Area Polyhedra

The surface area measurement approach introduced in [28] is a special approach towards global surface approxima-

tions. The Jordan digitization model is used in this case. Assume that both the inner interior Ir(�) and the outer

interior Or(�) of a given 3D object � are simply connected sets with respect to the given grid constant r. The set

� remains constant in the sequel and we omit it from the formulas. Assume Ir 6= ;: Let @Ir be the surface of the

inner interior Ir(�), and @Or be the surface of the isothetic polyhedron Or. Then it holds that

; � Ir � OÆ
r and @Ir \ @Or = ;;

and Or n IÆr is an isothetic polyhedron homomorphic with the torus, and for the Hausdor�-Chebyshev metric d1 it

follows that

d1(@Ir ; @Or) � 1=r:

Under the given assumptions it is possible to dilate Ir and to erode Or (informally speaking, by adding or subtracting

r-cubes) such that �nally

d1(@Ir ; @Or) = 1=r:

Note that these resulting sets Ir and Or are not uniquely de�ned in general. However, the resulting r-boundary of

�,

Br(�) = Or n IÆr
is a simple closed two-dimensional grid continuum as de�ned in [28]. We denote it by Br(�) = [S1; S2], where

S1 = @Ir , and S2 = @Or. It follows that @Br(�) = S1 [ S2.
In analogy to the MLP technique in two dimensions it seems to be straightforward that the surface area of such a

simple closed two-dimensional grid continuum [S1; S2] in R3 should be de�ned to be the surface area of a minimum

area polyhedral simple closed Jordan surface in [S1; S2] containing S1: Note that a proper inclusion ; � Ir had

been assumed. Thus an r-boundary is de�ned and there exist polyhedral simple closed Jordan surfaces in [S1; S2]

containing S1: Let P be the set of all these polyhedral simple closed Jordan surfaces in [S1; S2] containing S1: The

question arises whether the constraint of having a minimum surface area speci�es one Jordan surface in P uniquely

or not. Simple examples of con�gurations [S1; S2] illustrate that the allowance of non-grid point vertices may reduce

the surface area of polyhedra. Thus a limitation of the numbers of vertices, or a limitation on allowing r-grid point

vertices only is required to stop a process of repeated \re�nements" for reducing the surface area. However, this

has impacts on the proof whether such a minimum-area polyhedron is uniquely de�ned or not. Furthermore, work

on minimum-length polygons in 3D has shown that optimization seems to be unavoidable for vertex calculation4 if

non-r-grid points are allowed.

Figure 6. Visualization of a calculated convex hull of one of the rotated and digitized ellipsoid.



Figure 7. The relative errors of approximated surface area values of ellipsoids of di�erent sizes, all rotated by 45

degrees about z- and y-axis. The grid value denotes the number of grid points within an interval de�ned by the

maximum-value radius of the given ellipsoid.

6.2. Convex Hulls

We consider the calculation of the convex hull of a digitized ellipsoid, see Fig. 6. The calculated planar patches of

the approximating convex polyhedron are not limited in size. The convex hull calculation is a global technique with

respect to our de�nition given above.

The surface area of a convex polyhedra is well de�ned. We use these values for the estimation of the surface

area of a given ellipsoid based on gridding techniques. Figure 7 shows the relative errors, i.e. the absolute di�erence

between true surface area calculated based on the method described in Example 2, and the surface area of the convex

hull of the digitized ellipsoid assuming a selected grid resolution and the Gauss center-point digitization scheme,

normalized by dividing this di�erence by the true surface area value. These relative errors go to zero, see Fig. 7.

Note that our experiments using marching-cube based surface area estimations produced relative errors above the

2% mark. Convex-hull based estimations passed the 1% threshold at grid resolutions close to 50 grid points.

Our experiments also allowed to study the behavior of convergence if the shape of the ellipsoid varies, e.g. if the

minimum radius value (de�ning the thickness of the ellipsoid) is stepwise reduced increasing the curvature of the

generated ellipsoids. See Fig. 8 for the resulting relative errors for four di�erent grid values. These studies show that

Figure 8. Ellipsoids of size 20 � 20 � a are digitized, with a = 1; 2; :::;20 and grid resolutions r = 10; 30; 50; 100.

The resulting relative errors show that the measured convergence is slightly faster if the ellipsoid is closer to being a

sphere, i.e. if the curvature of the surface reduces.



the convergence to the true value is slightly slower for increased surface curvature. The convex hull calculation may

be seen as a special case of DPS polyhedrization approaches de�ning global techniques.

7. CONCLUSIONS

Our hypothesis is that there is no local technique which allows multigrid-convergent surface area estimations just

for the family of all convex sets in 3D Euclidean space. Local approximation techniques, such as marching cubes

algorithms, also generate very large numbers of triangles what restricts their practical use for high resolution data,

such as, e.g., in computer assisted radiology.

Global techniques should be studied with respect to the surface area estimation problem. We suggest the acronym

DPS for digital planar segment, and a basic idea may be to design DPS polyhedrization methods which follow the

ideas of DSS segmentations (DSS as an acronym of digital straight segment) of curves in the plane10: specify initial

\surface voxels", merge \surface voxels" to obtain a maximum-size DPS (according to a chosen de�nition of digital

planes, and following a chosen search strategy). A �rst example of a (global) DPS polyhedrization method is [8].

The convex hull calculation may also be seen as a special case of a DPS polyhedrization approach.

Convergence with respect to the Hausdor�-Chebyshev metric is not suÆcient for surface area multigrid conver-

gence. Most important, we need convergence theorems clarifying cases of multigrid convergence to the true value, for

example for the family of all convex regular solids � being r-compact, i.e. having simply 4-connected sets Dr(�) for

all r � r�. Experimental studies may help to evaluate the di�erent polyhedrization techniques based on measures

such as relative error, statistical deviation for r = 0; 1; 2; 3; :::, or a product measure of relative error times number

of generated faces. The ellipsoids might be very useful for such experimental studies.
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