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ABSTRACT

Digital moments approximate real moments where the accuracy depends upon grid resolution. There are theoretical
results about the speed of convergence. However, there is a lack of more detailed studies with respect to selected
shapes of regions, or with respect to experimental data about convergence. This paper discusses moments for speci�c
shapes of regions, and provides some initial experimental data about measured convergence of digital moments.
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1. INTRODUCTION

Assume a planar set S and a Cartesian xy-coordinate system in the Euclidean plane. The (p; q)-moments of set S
are de�ned by

mp;q(S) =

Z
S

Z
xpyq dx dy ;

for integers p; q � 0. We say that the moment mp;q(S) has the order p+ q.

As an example of such an integration, assume that set S is a unit square with vertices (0; 0); (1; 0); (1; 1); (0;1) :
Then we have

mp;q(S) =
1

(p+ 1)(q + 1)
:

Note that this square S is not in a centred position where the centroid would be assumed to coincide with the origin
of our xy-coordinate system. The calculation of the integration is not diÆcult in this case. However, there are not
many sets allowing such a simple and straightforward evaluation of moment integrals. We need such true moment
values for experimental evaluations.

In image analysis and pattern recognition we have to deal with situations where real objects are given as digital
sets D(S) only, and the set S itself is unknown.13 For a set S, in this paper its digitization is de�ned to be the set of
all grid points with integer xy-coordinates which belong to the region occupied by the given set S. This corresponds
to the model used in number theory, see, e.g., the studies initiated by Gauss about the number of grid points within
a circular region. For our studies we are interested to discuss such sets S in the Euclidean plane which allow to
calculate the real moments, and these values will act in our experiments as true values to be compared with digital
approximations of these real moments.



The exact value of a momentmp;q(S) remains unknown in image analysis where the set S is \visible" via a given
digital image only. The moment value is approximated by the discrete moment �p;q(S) where

�p;q(S) =
X

(i;j)2D(S)

ip � jq =
X

i;j are integers

(i;j)2S

ip � jq

assuming an ideal digitization of a set S. We model this process by considering set S in the Euclidean plane and ideal
(i.e. error-free) digitization. The di�erence between the real moment and the discrete moment is the digitization
error which is in
uenced by the chosen grid resolution used for digitizing the given set S. For modeling di�erent grid
resolutions we may chose one of the following approaches:

(i) We could assume that the set S remains �xed, and consider positive reals r, where 1=r is the distance between
two neighboring grid points parallel to one of the coordinate axes, i.e. r would be the number of grid points per unit.
Then a convergence of r !1 is the way to specify increasing grid resolution by having more and more grid points
per unit. That's the way as used, e.g., in [8,16] for studying multigrid convergence problems.

(ii) Another way is to dilate set S by a factor r, r > 0, and to assume that the used grid in the Euclidean plane
remains always the same, i.e. grid points are all points (x; y) having integer coordinates. For example, this way was
been chosen by C. Jordan7 for studying the important problem of 3D volume estimation based on gridding techniques.
Let r � S be the dilation of set S by factor r, i.e.

r � S = f(r � x; r � y) : (x; y) 2 S g :

Then a convergence of r !1 is the way to specify increasing grid resolution by having larger and larger sets but a
constant grid in the plane. Of course, for proper comparisons the values of the enlarged sets r �S have to be \scaled
down" to the proper dimension.

We use approach (ii) in this paper. We reported in [9] on digitization errors for moments of order less than or
equal to two. In [10] a more general result is reported for arbitrary orders p; q 2 f0; 1; 2; : : :g and a general family
Ff(r) of sets speci�ed by a an increasing function f which maps non-negative reals r into non-negative reals f(r),
and the following axioms: a bounded set S belongs to the family Ff(r) i�

� FR1: set S is a planar convex set translated in the xy-coordinate system such that all points of S have
nonnegative coordinates,

� FR2: set S has a boundary having a continuous third derivative at every point (C3-boundary), and

� FR3: the set S satis�es
jr2 �m0;0(S) � �0;0(r � S)j = O(f(r));

for r > 0.

Then it holds for sets S of such a family Ff(r) de�ned by function f(r) that

jmp;q(r � S) � �p;q(r � S)j = jrp+q+2 �mp;q(S) � �p;q(r � S)j = O
�
f(r) � rp+q

�
(1)

where r �S denotes the dilation of S by factor r, and rp+q+2 is the scaling factor to be used for comparing the discrete
moments of a dilated set r � S with the real moments of the original set S.

As an illustration, let us mention here that the family of all convex bounded sets with C3 boundary having at
least one straight section on its boundary is contained in the family Frde�ned by function f(r) = r. This implies
that the error term in the estimation of real moments from the corresponding discrete moments is O

�
r�1
�
, see [10].

In view of our example in Subsection 2.1 below it holds that this estimate is the best possible for the family of all
convex bounded sets with C3 boundary having at least one straight section on its boundary

As another example, consider the family of all bounded sets with an C3 boundary and positive curvature at any
boundary point. This family of sets is contained in Ff(r) with

f(r) = r7=11 � (log r)47=22 � r7=11+" ;



see M.N.Huxley,4 and it is unknown whether this is the best possible upper bound in Equ. (1) for the family of all
bounded sets with an C3 boundary and positive curvature at any boundary point. As a consequence we know that
the error term for moment estimations of bounded sets with an C3 boundary and positive curvature at any boundary
point, is upper bounded by O

�
r�15=11+"

�
, but a smaller upper bound might be valid as well.

Generally speaking, the number-theoretic function f(r) describes the impact of the grid resolution on the precision
in real moment estimation based on corresponding discrete moments. Namely, Equ. (1) speci�es that

1

rp+q+2
� �p;q(r � S)

approximates mp;q(S) within an error in O
�
f(r) � r�2

�
.

This paper addresses the issue of a more detailed study of multigrid convergence of moment estimates with
respect to selected shapes of sets S, and with respect to experimental multigrid studies in general. Publications on
disrete moments in image analysis normally focus on computation aspects, see [2,6,14,17,21,22]. We believe that the
accuracy aspect, see [9,10,12,14], needs similar attention especially in cases of \complicated" shapes not yet studied
in this paper, e.g. \curve-like" planar sets or sets with \high-curvature" boundaries.

2. TRUE AND ESTIMATED VALUES

We discuss four di�erent sets for experimental evaluations of error bounds. The sets have to allow that real moments
may be calculated, and the sets have also been chosen with respect of having a diversity in geometric shapes.

2.1. Square

We start with a centred set, i.e. having a centroid which coincides with the origin of our xy-coordinate system. In
that case moments mp;q(S) are zero for all odd values of p if the given set is symmetric with respect to the x-axis,
and zero for all odd values of q if the given set is symmetric with respect to the y-axis.

Assume real a > 0 and an 2a� 2a square S(a) which is centred and parallel to the coordinate axes, see Fig. 1.
Then we have

mp;q(S(a)) =

Z +a

�a

Z +a

�a
xpyqdxdy

=
(1 � (�1)p+1) � (1� (�1)q+1)

(p+ 1) � (q + 1)
� ap+q+2

x x

y y

2a

2a

r
AB

C D

Figure 1. Square and circle in centred position.



Figure 2. Relative errors for the square and zero-order moment estimation.

for p; q � 0. Note that mp;q(S(a)) = 0 for odd p or q, as mentioned above for the general case. It follows that
m0;0(S(a)) = 4a2, m0;1(S(a)) = m1;0(S(a)) = m1;1(S(a)) = 0, m0;2(S(a)) = m2;0(S(a)) = (4=3)a4, etc.

In the case of such a centred square it holds that the di�erence for the zero-order moment, i.e. between true and
estimated contents of set S,

m0;0(S(a)) � �0;0(S(a)) = a2 �m0;0(S(1)) � �0;0(S(a)) ;

varies between �(4a+1) and (4a+1), for a = dae� " and a = bac+ " respectively, and " small enough. That implies
for arbitrary orders p; q � 0 that the real number

jmp;q(S(a)) � �p;q(S(a))j = jap+q+2 �mp;q(S(1)) � �p;q(S(a))j

belongs to the interval [0; g(a)] where g(a) = O(ap+q+1), see Equ. (1). We illustrate the behavior of the error function
in Fig. 2 for the zero-order case.

2.2. Circle

We consider at �rst the quarter circle A as illustrated in Fig. 1, and moment m0;q(A). Furthermore let q be odd,
with q = 2t� 1. In this case the integration is simple, we have

m0;q(A) =

Z
r

0

 Z p
r2�x2

0

yqdy

!
dx

=
1

q + 1

rZ
0

�
r2 � x2

�t
dx

for odd q � 0 and q = 2t� 1. For example, it follows

m0;1(A) =
1

2

rZ
0

�
r2 � x2

�
dx =

1

3
r3 ;

m0;3(A) =
1

2

rZ
0

�
r2 � x2

�2
dx =

4

15
r5 ;

etc. These values for set A can now be used to calculate values for sets B, C and D, see Fig. 1, as well. For q odd
we have m0;q(B) = m0;q(A) and m0;q(C) = m0;q(D) = �m0;q(A).



For example, for the half-circle A [ B we have m0;1(A [ B) = (2=3)r3 and m0;3(A [B) = (8=15)r5. Of course,
due to symmetries we have m0;q(A [D) = 0 for the half-circle A [D, if q is odd, and m0;q(S) = 0 for the full circle
S = A [B [C [D, if q is odd.

The di�erence between the zero order discrete moment and the zero order moment (i.e. the contents) of a centred
circle, or of a circle with a center at grid point position, with radius r is upper bounded by

r
131
208 ;

as communicated in [5]. This (unpublished yet) result improves r
46
73+" which was previously the best known upper

bound.

By using the same proof technique as was used in the proof of the Lemma 20 of [10], it can be shown that the
di�erences

jmp;0(C1) � �p;0(C1)j and jm0;p(C1)� �0;p(C1)j

are upper bounded by
O(rp+

131
208 ) ;

for a circle C1 having radius r and a centre (a; b), where a and b are integers greater or equal to r. That is the
reason why the numerical values in Tab. 1 are chosen in such a way that the centre of the estimated circle has integer
coordinates, i.e., r is chosen to be an integer. So far we do not have a similar theoretical result for the more general
di�erence jmp;q(C1) � �p;q(C1)j. However, in our experiments we compared the error term with r�

285
208 .

p q r mp;q(S) �
�p;q(r � S)

rp+q+2
r�

285
208

10 { 0.018407346 0.0426391
50 +0.0039926536 0.00469985

1
100 { 0.000007346 0.00181809
500 +0.000200065359 0.000200397

0
10 { 0.033609183 0.0426391
50 +0.005779617 0.00469985

2
100 { 0.000062583013 0.00181809
500 +0.00029891708 0.000200397

10 { 0.028407346 0.0426391
50 +0.0035926536 0.00469985

1
100 { 0.00010734641 0.00181809
500 +0.00019665359 0.0002000397

1
10 { 0.043609183 0.0426391
50 +0.005379617 0.00469985

2
100 { 0.00016258301 0.00181809
500 +0.00029491708 0.000200397

10 { 0.12981161 0.0426391
50 +0.0099040164 0.00469985

3
100 { 0.0012241628 0.00181809
500 +0.0006085407 0.000200397

2
10 { 0.22555667 0.0426391
50 +0.016346123 0.00469985

4
100 { 0.0021931319 0.00181809
500 +0.0010141273 0.000200397

Table 1. Errors in approximating real moments mp;q(S) by r�(p+q+2) ��p;q(r �S) , for di�erent resolutions r. The
set S is the disc (x� 1)2 + (y � 1)2 � 1.



The exact values of the real moments of a disc (x� 1)2 + (y � 1)2 � 1 are (rounded to eight signi�cant �gures):

m0;1(S) = 3:1415927 m0;2(S) = 3:9269908

m1;1(S) = 3:1415927 m1;2(S) = 3:9269908

m2;3(S) = 6:6758844 m2;4(S) = 9:8665644

These exact values are compared to discrete moments calculated for the digitized disc, see Tab. 1.

Figure 3. The isometric quartic boundary in the unit square.

2.3. Isometric Quartic Boundary Segments

We consider a more complex shape than the circle, de�ned by four isometric boundary segments, see Fig. 3. This
set is de�ned as being the closed bounded region whose boundary consists of four segments of the following curve
r � 
, for di�erent values of r. The algebraic curve 
 of order 4 is de�ned as


 :

�
y �

1

2

�2

=

�
1

2
�
p
1� j2x� 1j � jx�

1

2
j

�2

:

The curve 
 consists of four isometric quartic arcs, and it is also of number-theoretic interest, for example for the
following two reasons:

(1) Let us consider such a convex lattice polygon Pm with vertices belonging to an Zm = [0;m]� [0;m] integer
grid, de�ned by having a number of vertices which is the maximum of numbers of vertices of all convex lattice

Figure 4. Example of a polygon P8.



p q r mp;q(S) �
�p;q(r � S)

rp+q+2
r�

15
11

1 +0.83333333 1
2 { 0.41666667 0.38860157

0
100 +0.0016333333 0.0018738174

100 � +0.00013884389 0.00039336492
0

1 +0.416666667 1
5 +0.096666667 0.1113933

1
30 � +0.00013212696 0.0020314779
300 +0.00039444444 0.00041889713

2 { 0.104167 0.38860157
e +0.0434492583 0.25572916

1
70 +0.0011394558 0.0030475948
350 +0.000086394558 0.00033948165

1
5 +0.0358452 0.1113933
10 +0.00429524 0.0043287613

2
121 +0.000266155 0.0014449011
400 +0.0000715236 0.00028296738

7 +0.00899713 0.070403392
14.5 { 0.00163832 0.026080527

3
93.3 { 0.000170758 0.0020596705
444 +0.000047717 0.00024543264

2
12 +0.00463474 0.033758972
27 +0.00178829 0.011172242

4
121.22 { 0.000148198 0.0014113264

500 +0.0000186481 0.00020873071

Table 2. Errors in approximating real moments mp;q(S) by r�(p+q+2) ��p;q(r � S) for di�erent resolutions r. The
bounded set S is bounded by four segments of the curve 
.

polygons having vertices in the [0;m]� [0;m] integer grid. The number of vertices of Pm is a function in m, and
the determination of this function has been studied for many years, see, for example [20,21]. An example of such a
polygon Pm is shown in Fig. 4, for m = 8. The de�ned function is equal to

3
3
p
4�2

�m
2
3 + O(m

1
3 � logm) ;

see [1]. It turns out, see [23], that such polygons Pm, m > 0, converge to curve 
 with respect to the Hausdor�
metrics d for planar sets in the Euclidean plane, i.e.

lim
m!1

d(
1

m
� Pm; 
) = 0:

(2) A rather stronger result by A.M.Vershik (see [19], and also [3]) is as follows. The polygons Pm are special
examples of Zm-lattice polygons de�ned by having a width and height of m. As m ! 1 it holds that almost
all convex Zm-lattice polygons, scaled by factor m�1 and (thus) lying in the square [0; 1]2, are \very close" (in the
Hausdor� metric sense) to this curve 
 as de�ned above. The related central limit theorem is proved in [15].

Some numerical results for the estimation of moments of this bounded set having four segments of 
 as its
boundary, are given in Tab. 2. The exact values of the real moments of this set are (rounded to eight signi�cant
�gures):

m0;0(S) = 0:83333333 m0;1(S) = 0:41666667



m1;1(S) = 0:20833333 m1;2(S) = 0:13184500

m2;3(S) = 0:05772680 m2;4(S) = 0:04330830

2.4. Parametrized Quartic Boundary Segments

We consider a family of parameterized sets. Any positive value of parameter m de�nes a bounded planar region
de�ned by segments of the curve y2 � (mx2 �m)2, see Fig. 5. This curve consists of four quartic arcs.

The curve is chosen again due to some number-theoretic background (besides the principal interest in having
another geometric example for testing moment estimates). As mentioned above, the di�erence

f(r) = jm0;0(r � S) � �0;0(r � S)j

is upper bounded by O(r) also for cases where straight sections are allowed on the boundary of set S. It holds that
the error term f(r) can be smaller under additional assumptions about the boundary of S, see, for example, Huxley's
result in [4]. Furthermore it is well-known11 that, if we express f(r) in the form f(r) = O(r�), then the statement
jm0;0(rS) � �0;0(rS)j = O(r�) is false for � < 0:5. The quartic arc y =

p
x where x 2 [1; r] is an example of a curve

whose length has the order of magnitude r and which passes trough exactly br0:5c grid points.

We give numerical examples for sets de�ned by m = 1 and m = 4. The values given in Tables 3 and 4 correspond
to the translated sets having points with positive coordinates only. The exact values of the real moments of the set
in case m = 1 are (rounded to eight signi�cant �gures):

m0;0(S) = 2:6666667 m0;1(S) = 5:3333333

m1;1(S) = 10:666667 m1;2(S) = 22:552381

m2;3(S) = 104:63492 m2;4(S) = 240:54452

The exact values of the real moments of the set in case m = 4 are (rounded to seven signi�cant �gures):

m0;0(S) = 10:666667 m0;1(S) = 53:333333

m1;1(S) = 106:66667 m1;2(S) = 611:35238

m2;3(S) = 8005:5873 m2;4(S) = 53289:629

The values in both tables are produced for the same choices of r in order to illustrate the following:

Figure 5. Four quartic boundary segments, example for m = 2.



p q r mp;q(S) �
�p;q(r � S)

rp+q+2
r�

15
11

10 { 0.02333333 0.043287613
100 { 0.00023333 0.0018738174

0
200 +0.00084166667 0.00072816839
800 +0.00019010417 0.00010996157

0
20 +0.002833333 0.016821634
80 +0.010520833 0.0025402549

1
160 +0.0045052083 0.00098714703
320 +0.00017513021 0.00038360688

30 +0.03111111 0.0096770669
90 +0.00014814815 0.0021633354

1
270 +0.0017009602 0.00048361967
540 +0.0014677641 0.00018793536

1
25 { 0.15065137 0.012408468
75 +0.011268443 0.0027739478

2
225 { 0.0023672246 0.00062012378
450 { 0.00059127473 0.00024098107

40 +0.53012504 0.0065369135
160 +0.10820738 0.00098714703

3
320 +0.04206529 0.00038360688
640 +0.01614505 0.00014907024

2
50 +0.51789184 0.0048219502
200 +0.10489098 0.00072816839

4
400 +0.038664549 0.00028296738
1000 +0.014139002 0.000081113083

Table 3. Errors in approximating real moments mp;q(S) by r�(p+q+2) � �p;q(r � S) for di�erent resolutions r,
where S is the bounded region whose boundary are four segments of the quartic curve (y � 2)2 = ((x � 2)2 � 1)2.)

1) The impact of the size of real moments to be estimated: Namely, as it can be seen from the Tab. 4, if the real
moments to be estimated have (relatively) big values then the required precision is not reached for small values
of r as it happened in the previous examples. Of course, due to theoretical results any required precision can
be reached, but higher resolutions r have to be used. It is perhaps more suitable that the relative error is used
in such situations. Let us mention that if the usual relative error de�nition is used, and Equ. 1 is applied to
such regions having no straight section on their boundary, then we have

���� �p;q(r � S)mp;q(r � S)
� 1

���� = j�p;q(r � S) �mp;q(r � S)j

rp+q+2 �mp;q(S)
= O

 
1

r
15
11�" �mp;q(S)

!
:

2) The impact of the elongation of the considered regions (for example, m = 5 corresponds to a higher elongation
than m = 2): There are no related theoretical results yet. But it seems that an increase in elongations leads
to an increase in errors in the \worst case" sense.

It could also be of interest to calculate errors in moment estimations for di�erent values of m in such a way that
both m and r tend to \in�nity", for example, combined cases such as m = log r, m =

p
r, m = r2, e.t.c.



p q r mp;q(S) �
�p;q(r � S)

rp+q+2
r�

15
11

10 { 0.023333333 0.043287613
100 { 0.0038333333 0.0018738174

0
200 { 0.0009583333 0.00072816839
800 +0.00021510417 0.00010996157

0
20 { 0.079166667 0.016821634
80 +0.020052083 0.0025402549

1
160 +0.01438821 0.00098714703
320 +0.0067220052 0.00038360688

30 +0.01222222 0.0096770669
90 +0.0037037037 0.0021633354

1
270 +0.0058984911 0.00048361967
540 +0.0043552812 0.00018793536

1
25 { 0.94018097 0.012408468
75 +0.10267252 0.0027739478

2
225 { 0.01543446 0.00062012378
450 { 0.020359072 0.00024098107

40 { 4.7117093 0.0065369135
160 +3.0550335 0.00098714703

3
320 +1.4338876 0.00038360688
640 +0.60974317 0.00014907024

2
50 { 65.552138 0.0048219502
200 { 8.3047868 0.00072816839

4
400 { 0.38911548 0.00028296738
1000 +0.33176634 0.000081113083

Table 4. Errors in approximating real moments mp;q(S) by r�(p+q+2) � �p;q(r � S) for di�erent resolutions r,
where S is the bounded region whose boundary are four segments of the quartic curve (y � 5)2 = (4(x� 2)2 � 4)2.

3. CONCLUSION

This paper gave some examples in order to illustrate the error analysis in the estimation of real moments mp;q(S)
by r�(p+q+2) � �p;q(r � S). A few speci�c sets had been chosen. The error values are compared with a theoretical
upper bound. This bound has been obtained for the error in such estimations10 where sets are assumed having a C3

boundary and which are translated such that their points have positive coordinates only.

Our experimental results emphasize that probably a smaller error term than

r�
15
11+"

can be obtained, but there are no theoretical results so far to support this hypothesis, except in case of the moments
m0;p(C) and mp;0(C), where C is disk: in this case the error term is improved to

r�
285
208

A basic mathematical tool for the theoretical derivation of these error terms has been Huxley's results in [4] and his
comments in [5].

The result from [18] suggests that the error term in Huxley's result can be r
3
5 or even smaller. Our experiments

support this hypothesis.

It seems to be natural that there are some impacts of the position of the studied regions in the Euclidean plane
on the precision of the estimation. We leave that as a problem for future research. Of course there is an in
uence of



the size of p and q to the precision in estimating real moments mp;q(S) estimation, see [12], but we have not yet
considered this in our experiments so far.
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