
The University of Western Australia
Centre for Intelligent Information Proc. Sys (CIIPS)
Department of Electrical and Electronic Engineering
Perth, Western Australia

Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www.citr.auckland.ac.nz)

CITR-TR-58 March 2000

The EyeSim Mobile Robot Simulator

Thomas Bräunl1

Abstract

EyeSim is a 2D simulator for the EyeBot mobile robot systems. The simulator is
implemented as a library, which is linked to the robot application program. It allows the
concurrent simulation of multiple robots in the same environment. The simulator
integrates the robot console with buttons and LCD; it implements a "v-omega" (linear
and angular velocity) driving interface and models a variety of sensors: shaft encoders,
bumpers, infra-red proximity sensors, infra-red position sensors, and interfaces to a live
color camera. The simulation can be executed in a "perfect" environment or with certain
error ranges for individual sensors.

– 1 –

The EyeSim Mobile Robot Simulator

Thomas Bräunl
visiting:

The University of Western Australia The University of Auckland
Centre for Intelligent Information Proc. Sys. (CIIPS) Centre for Image Technology and Robotics (CITR)
Department of Electrical and Electronic Engineering Department of Computer Science
Perth, Western Australia Auckland, New Zealand

Abstract

EyeSim is a 2D simulator for the EyeBot mobile robot systems. The simulator is implemented
as a library, which is linked to the robot application program. It allows the concurrent simula-
tion of multiple robots in the same environment. The simulator integrates the robot console
with buttons and LCD; it implements a "v-omega" (linear and angular velocity) driving inter-
face and models a variety of sensors: shaft encoders, bumpers, infra-red proximity sensors,
infra-red position sensors, and interfaces to a live color camera. The simulation can be exe-
cuted in a "perfect" environment or with certain error ranges for individual sensors.

1. System Concept

The goal of this project was to develop a tool, which allows the construction of simulated
robot environments and the testing of mobile robot programs before they are used on the real
vehicles. A simulation environment like this is especially useful for the programming tech-
niques of neural networks and genetic algorithms. These have to gather large numbers of test
or training data, which is very difficult to obtain from the actual vehicles. Potentially harmful
collisions, e.g. due to untrained neural networks or errors, do not cause any harm in the simu-
lation environment.

The technique we used for implementing this simulation differs considerably from most exist-
ing robot simulation systems [1],[5]. While most other simulation systems run the simulation

Figure 1: EyeBot mobile robot

– 2 –

as a separate program or process, which communicates with the application by some message
passing scheme, we implemented the whole simulator as a collection of system functions,
which are liked to the application program and are called like system subroutines.

As shown in Figure 2 (top), a robot application program is compiled and linked to the RoBIOS
library, in order to be executed on a real robot system. The application program makes system
calls to individual RoBIOS library functions, e.g. for activating driving motors or reading sen-
sor input. In the simulation scenario, shown in Figure 2 (middle), the compiled program is
now linked to the EyeSim simulation library instead of the RoBIOS library. This simulation
library implements exactly the same functions, but also activates the screen displays of robot
console and robot driving environment. Two additional files are loaded at run time, a parame-
ter file and an environment file. The parameter file specifies:

• Robot name
• Robot size
• Robot maximum speed
• Robot sensors with their position and orientation relative to the robot’s center

• Infra-red distance sensors
• Infra-red proximity sensors
• Tactile bumpers

Figure 2: System concept

robot

RoBIOS
program

(user prog.)

application
library

Real World

Simulation

Multi-Robot Simulation

in
te

rf
ac

e

robot

EyeSim
program

(user prog.)

application

library

in
te

rf
ac

e parameter file

environment file

load at run time

link at compile time

link at compile time

robot

EyeSim
program

(user prog.)

application

library

in
te

rf
ac

e

link at compile time create threads at run time

Robot

– 3 –

• Error margins for sensors and actuators
• Robot start position and orientation
• Number of robots in case of multi-robot simulation
• Name of environment file

The environment file can be of either world format or maze format and specifies the robot’s
environment as a 2D graph. Environments are discussed in more detail below.

In case of a multi-robot simulation, Figure 2 (bottom), nothing changes in the compilation and
linking process to the single-robot simulation. However, during run-time, individual threads
are created to simulate each of the robots concurrently. Each thread executes the same robot
program individually on local data, but all threads share the common environment through
which they interact. Executing the same program on all robots is not a restriction. Since each
robot has a unique id-number, they can easily branch to different subroutines and thus effec-
tively execute different programs.

2. Sensor - Actuator Modeling

The EyeBot robot has two motors to maneuver it in differential steering and is equipped with a
variety of sensors. These are:

• Shaft encoders
• Tactile bumpers
• Infra-red proximity sensors
• Infra-red distance measurement sensors
• Digital grayscale or color camera

On the real robot, the RoBIOS operating system library provides access routines for each of
the sensor types. For the EyeSim simulator, exactly the same interface has been kept but with
different implementations to evaluate a particular sensor in a simulated environment as
opposed to the actual device drivers.

The shaft encoders give driving feedback on a very low level and are rarely used directly. The
same holds for the low level motor drivers, which allow the setting of a voltage level to an
individual motor. Instead, application programs use a v-omega interface, which allows speci-
fying a translational and rotational vehicle speed. The v-omega library includes a PID control-
ler and handles speed ramps. So the shaft encoder feedback is used implicitly and not retuned
to the user program. There are, however, high level routines in the v-omega interface returning
vehicle position and orientation relative to its starting point.

The simulation library, therefore, does not contain any of the low-level motor and shaft
encoder routines. Instead, all functions of the v-omega interface have been re-implemented to
constitute a driving simulator. E.g. function "VWInit" will open a second window, displaying
the robots in their simulated environment. A 2D graphics representation is shown with all sen-
sor readings being displayed below. The user can pause/continue the simulation and pick/
move individual robots. Interaction between robots and the shared environment is via
"VWDrive" function calls. Whenever a robot user program calls on of these v-omega routines,
the corresponding values are set in the simulation and a periodically called update process

– 4 –

computes all new robot positions and sensor values and updates the window display. The rou-
tines for all other sensors simply return values stored in the central simulation environment,
which are also periodically re-calculated by the update process.

The bumper sensor is simulated by computing intersections between the robot (modeled as a
circle) with any obstacle (modeled as line segments) in the environment or another robot.
Bump sensors can be configured as a certain sector range around the robot. That way several
bumpers can be used to determine the contact position.

The EyeBot uses two different kinds of infra-red sensors. One is a binary sensor ("proxy")
which is activated if the distance to an obstacle is below a certain threshold, the other is a posi-
tion sensitive device ("PSD"), which returns a distance value to the nearest obstacle. Sensors
can be freely positioned and orientated around a robot as specified in the robot parameter file.
This allows testing and comparing of the performance of different sensor placings. For the
simulation process, the distances of all infra-red sensors at their current positions and orienta-
tions towards the nearest obstacles are determined.

For the digital camera, it seemed more appropriate and more realistic to allow the input of a
real camera instead of generating a virtual camera image. The video input routines return an
image from the digital camera connected to the workstation. This way, typical applications
involving on-board vision can be tested, by "driving a camera by hand" through the robot
environment. However, an extension planned for a future version of EyeSim will use a varia-
tion of the "OpenInventor" library [7] to generate a computer-rendered camera image instead
of using an actual camera.

3. Simulation Interface

The EyeSim interface is split into two parts, a robot panel and a driving environment (Figure
3). The robot panel is a replication of each robot’s LCD and input buttons. This allows a direct
interaction with the robot by pressing buttons and displaying status messages, data values or
graphics on the screen. Each robot has an individual panel, while the all share the common
driving environment. This is a bird’s eye view (2D) of the robot driving area, with each robot
displayed as a circle with a marker indicating the robot’s front.

Simulation execution can be halted by pressing the "Pause" button and robots can be relocated
or turned by clicking and dragging. Zoom buttons allow to change the view of a larger envi-
ronment, while another button centers the display around the first (or only) robot.

Since the whole simulator is implemented as a function library, which is called in lieu of stan-
dard RoBIOS functions, the simulator can only be started by a robot application program when
RoBIOS/EyeSim functions are called. The first call to any of these library functions will initial-
ize and activate the panel display. All subsequent text or graphics outputs will be displayed in
this window. The first driving or sensor related library function call (e.g. driving initialization
or infra-red sensor initialization) will then initialize and display the driving environment win-
dow and load the simulated robot environment from a file.

– 5 –

4. Robot Environments

All environments are modeled by 2D line segments and can be loaded from text files. Possible
formats are either the world format used in the "Saphira" robot operating system [4] or the
maze format developed by us following the well known Micro Mouse Contest notation [2].

4.1 World Format

The environment is described by a text file. It specifies walls as straight line segments by their
start and end point with dimensions in millimeters. An implicit stack allows the specification
of a substructure in local coordinates, without having to translate and rotate line segments.
Comments are allowed following a semicolon until the end of a line.

The world format starts by specifying the total world size in mm, e.g.
width 4680
height 3240

Wall segments are specified as 2D lines [x1,y1, x2,y2], so four integers are required for each
line, e.g.

;rectangle
0 0 0 1440
0 0 2880 0
0 1440 2880 1440
2880 0 2880 1440

Through an implicit stack, local poses (position & orientation) can be set. This allows an eas-
ier description of an object in object coordinates, which may be offset and rotated in world
coordinates. To do so, the definition of an object (a collection of line segments) is being
enclosed within a push and a pop statement, which may be nested. Push requires the pose
parameters [x,y, phi], while pop does not have any parameters, e.g.

Figure 3: Robot panel and driving environment

– 6 –

;two lines translated to [100,100] and rotated by 45 degrees
push 100 100 45
0 0 200 0
0 0 200 200
pop

The starting position and orientation of a robot may be specified by its pose [x,y, phi], e.g.
position 180 1260 -90

4.2 Maze Format

The Maze format is a very simple input format for environments with right angles only, such
as the Micro Mouse competitions. We wanted the simulator to be able to read typical "natural"
graphics ASCII maze representations, which are available from the web, like the one below:

	_____		___		

	_ __	___	_		
	_	____________			
	___	_			
_		___		__	

S	_____	_______	_		

Each wall is specified by single characters within a line. A "|" (at odd positions in a line,
1,3,5,..) denotes a wall segment in y-direction, a "_" (at even positions in a line, 2,4,6,..) is a
wall segment in x-direction. So, each line contains in fact the horizontal walls of its coordinate
and the vertical wall segments of the line above it.

This following example defines a rectangle with two dividing walls:
 _ _ _
| _|
|_|_ _|

The following notation is identical, but avoids gaps and therefore looks nicer:

| _|
|_|___|

Extra characters may be added to a maze to indicate starting positions of one or multiple
robots. Uppercase characters assume a wall below the character, while lowercase letters do
not. The letters U (or S), D, L, R may be used at any position, indication a start orientation
upwards, down, left, or right. In the last line of the maze file, the size of a wall segment can be
specified in mm (default value 360 mm) as a single integer number.

A soccer ball can be inserted by using the symbol "o". The robots can then interact with the
ball by pushing or kicking it, e.g.

– 7 –

 | |
 | |
 | r l |
 | |
 | |
| r l |
| |
| r o l |
| |
|_ r l _|
 | |
 | |
 | r l |
 | |
 |___|
100

5. Multiple Robots

A multi-robot simulation can be initiated in two ways. The first method is starting a simulation
as a single robot simulation, then the user selects item "Add robot" from the "Robots" menu
and interactively places the new robot in the environment. For the second method the associ-
ated parameter file specifies a number of robots with their respective starting poses.

5.1 Thread Creation

Individual threads for each robot are created at run-time, either when a new robot is being
added (method 1) or for the whole set of robots (method 2). Posix threads and semaphores are
used for synchronization of the robots [6],[3], which each robot receiving a unique id-number
upon creation of its thread.

Since there is only one robot application program, which has been linked to the simulation
library, all robots threads which are new initialized will start to execute this very same pro-

Figure 4: Multi-robot environment

– 8 –

gram. However, this is not a restriction since the program can arbitrarily branch according to
its id-number, e.g. for the different roles in a robot soccer team:

void main()
{ switch (OSMachineID())
 { case ’1’: goalkeeper(); break;
 case ’2’:
 case ’3’: defender(); break;
 case ’4’:
 case ’5’: striker(); break;
 }
}

A complex task is executing all parallel threads up to the same point, while also avoiding a
recursive chain of new robot thread creations. Only the first robot thread may create new
robots. If multiple robots are defined in the parameter file, this thread will then wait at the end
of its initialization until all other robot threads have been created, commenced their execution,
and reached the same initialization subroutine call. This subroutine call is the first call of a
robot-related RoBIOS/EyeSim function, e.g. "VWInit".

5.2 Robot Interaction

A single robot interacts with its environment via its sensors and actuators (v-omega-driving
interface). Since the environment is in 2D, each line represents an obstacle of unspecified
height. Each of the robot’s distance sensors measures the free space to the nearest obstacle in
its orientation and then returns an appropriate signal value. This does not necessarily mean
that a sensor will return the correct distance value. E.g. the infra-red sensors only work within
a certain range. If a distance is above or below this range, the sensor will return out-of-bounds
values and the same behavior has been modeled for the simulation. If a robot drives into an
obstacle, it will be stopped and a warning message will be displayed in the environment win-
dow.

Whenever several robots interact in an environment, their respective threads are executed con-
currently. All robot position changes (through driving) are being made by calling a library
function of the v-omega-driving interface and can therefore be used to update the common
environment. All subsequent sensor readings are similar library calls, which now take into
account the updated robot positions (e.g. when one robot is detected as an obstacle by another
robot’s sensor). Collisions between robots are also detected and reported in the environment
window. Robots are displayed in different colors to facilitate distinguishing between them.
Also, trail markings can be activated to allow visualization of the path that each robot has trav-
elled.

Summary and Outlook

We have introduced a new model of a simulation system. Instead of a simulation process
which communicates with an application program process, our simulation system is a library
of system functions, which is linked to the application after the compilation step. This elimi-
nates the need for communication primitives, since all simulation operations are now triggered
by procedure calls. The first call to any simulation function will initialize the simulator and
open a controller window (LCD and buttons), the first call to a sensor ar actuator function will

– 9 –

initialize the simulation environment and open a window showing a 2D view of the robot in
the selected environment.

The simulation system can deal with multiple robots in the same environment. The number of
robots and their respective positions and orientations can be either set in a configuration file or
interactively by picking and placing directly in the environment window, once the first robot
has been initialized.

The simulator includes an error model, which allows to run a simulation either in a "perfect"
world, or it allows the setting of an error rate in both actuators and sensors, to allow for a more
realistic simulation. This can also be used for making a robot application program more
robust.

Currently, we are planning to extend the simulation system into a 3D system by integrating
"OpenInventor" functions as a virtual camera system, similar to the Mobs robot simulation
system [1]. This will enable us to replace the physical camera connection by a computer gen-
erated rendered image, and - most important - relax the single camera restriction. Eventually,
we will be able to simulate any number of robots concurrently in a shared environment, each
with its local sensors including a simulated camera.

The EyeSim software package is available via Internet as public domain software:

http://www.ee.uwa.edu.au/~braunl/eyebot/sim/sim.html
http://www.ee.uwa.edu.au/~braunl/eyebot/ftp/

Acknowledgments

The author would like to thank Nicholas Tay, Elliot Nichols, Ghee Ong, and Min-Tyi Chao for
contributing to the implementation of EyeSim, as well as Reinhard Klette and Jacky Baltes for
the invitation to do joint research at CITR at the University of Auckland, during which this
paper has been written.

References

[1] T. Bräunl, H. Stolz, Mobile Robot Simulation with Sonar Sensors and Cameras, Simula-
tion, vol. 69, no. 5, Nov. 1997, pp. 277-282 (6)

[2] T. Bräunl, Research Relevance of Mobile Robot Competitions, IEEE Robotics and Auto-
mation Magazine, Dec. 1999, pp. (10)

[3] IEEE, POSIX Threads Standard, 1997

[4] K. Konolige, Saphira Version 6.1 Manual, Internal Report, SRI, Stanford, 1998, http://
www.ai.sri.com/~konolige/saphira/

[5] R. Trieb, Simulation as a tool for design and optimization of autonomous mobile robots (in
German), Ph.D. thesis, Univ. Kaiserslautern, 1996

[6] T. Wagner, D. Towsley, Getting Started with POSIX Threads, internal report, Dept. of
Computer Science, Univ. of Massachusetts at Amherst, July 1995

[7] J. Wernecke, The Inventor Mentor, Addison Wesley, Reading MA, 1994

