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Abstract

The simplest free boundary in a 3-dimensional space is a moving plane. For the
numerical analyses of such simple free boundary problems, it is necessary to express
moving planesin agrid space. A simple example of 3-dimensional grid spacesis a set
of 3-dimensional lattice points whose coordinates are all integers. In this paper,
therefore, we study geometric and topological properties of planes in such a 3-
dimensional integer |attice space.
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Abstract. The simplest free boundary in a 3-dimensional space is a moving plane. For
the numerical analyses of such simple free boundary problems, it is necessary to express
moving planes is a grid space. A simple example of 3-dimensional grid spaces is a set of
3-dimensional lattice points whose coordinates are all integers. In this paper, therefore,
we study geometric and topological properties of planes in such a 3-dimensional integer

lattice space.

1 Introduction

The simplest free boundary in a 3-dimensional space is a moving plane. For the numerical
analyses of such simple free boundary problems, it is necessary to express moving planes is
a grid space. A simple example of 3-dimensional grid spaces is a set of 3-dimensional lattice
points whose coordinates are all integers. In this paper, therefore, we study geometric
and topological properties of planes in such a 3-dimensional integer lattice space.

In the context of digital geometry for computer imagery, French research group has
proposed the theory of naive planes using algebraic properties of a lattice space and
examined the algebraic properties of naive planes [1,2,3,4]. Their treatment of digital
objects defined in an integer lattice space is based on the theory of the geometry of
numbers, which has the long history from H. Minkowski (1864-1909) [5].

On the other hand, we have proposed a combinatorial approach for expression and
extraction of boundaries of digital objects [6]. In this paper, we apply our boundary
extraction algorithm for digitization of planes, and construct discrete planar surfaces

which are planes in an integer lattice space. Because of the equivalence between our



discrete planar surfaces and naive planes, we derive the combinatorial properties of our

discrete planar surfaces from the geometric properties of naive planes.

2 Definition of Discrete Combinatorial Surfaces

In this section, we introduce the definition of surfaces in a 3-dimensional integer lattice
space based on the approach of combinatorial topology [7]. Let Z be the set of all integers;
Z3 denotes the set of lattice points, whose coordinates are all integers. In Z* we define

three different neighborhoods of a lattice point & = (i, j, k) as follows:

Np(@) = {(p.q,7) € Z* : (i=p)*+(j = q) + (k—1)* < t}, (1)

where m = 6,18,26 corresponding to ¢t = 1,2,3. They are called 6-, 18- and 26-
neighborhoods, respectively. Depending on each neighborhood, we define elements of
1-dimensional curves and 2-dimensional surfaces in Z®. These elements are called 1- and
2-dimensional discrete simplexes and abbreviated as 1- and 2-simplexes, respectively. Sup-
pose we define O-dimensional discrete simplexes, which are called 0-simplexes, as isolated
points in Z3. Let R be the set of real numbers; R? denotes the 3-dimensional Euclidean

space. Then 1- and 2-simplexes are defined recursively as follows.
Definition 1 An n-simplez for n = 1,2 is defined as a set of k points in Z3,

[w17m27"'7mk] :{m17w27"'amk}7 (2)

so that the closed convex hull of 1, xs, ..., % is one of n-dimensional minimum nonzero

regions in R® which are bounded by the closed convex hulls of (n — 1)-simplezes.

According to Definition 1, a 1-simplex is defined as a set of two points in Z3, so that
those two points are the endpoints of a line segment which has a minimum nonzero length
in R3. In other words, a 1-simplex consists of two neighboring points in Z*. The config-
urations of those two neighboring points depend on the neighborhood systems. The first
line of Table 1 shows that there are one, two and three different 1-simplexes for the 6-, 18-
and 26-neighborhood systems, respectively. Similarly, a 2-simplex is defined as a set of
points whose closed convex hull is bound by a set of the closed convex hulls of 1-simplexes.
In addition, the closed convex hull of a 2-simplex holds a 2-dimensional minimum nonzero
area. Consequently, one four-point 2-simplex is defined for the 6-neighborhood system,
two three-point and one four-point 2-simplexes are defined for the 18-neighborhood sys-
tem, and three three-point 2-simplexes are defined for the 26-neighborhood system as

shown in the second line of Table 1. Note that the congruent 1- and 2-simplexes that
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Table 1: 1- and 2-simplexes which are respectively regarded as 1- and 2-dimensional elements

in Z3 for the 6-, 18- and 26-neighborhood systems. All discrete simplexes in Z> are obtained by

rotation and translation of those in the table.

differ from those in Table 1 by rotation and translation are omitted in the table. The
constructive definitions of 1- and 2-simplexes are presented in [6].

If an n;-simplex is a subset of an ny-simplex where n; < ng, the ni-simplex is called a
face of the ny-simplex; it is also called an n;-face because of the dimension. For instance,
a 2-simplex for the 26-neighborhood system has three 0-faces and three 1-faces. A set of
all faces included in a discrete simplex [a] = [@1, @, . .., x| is denoted by face(]a]). Let
the closed convex hull of k£ points, @1, s, ..., xx, be denoted by CH([zy, xo, ..., zk|).
The embedded discrete simplex is defined as

Jall = CH(a) \ (,_u  CH(#) ®)
for any n-simplex [a]. If [a] is an n-simplex, ||a|| is called the embedded n-simplex of
[a]. An n-simplex and the embedded n-simplex are clearly different since [a] and ||al| are

defined as sets of points in Z3 and R?, respectively.

Definition 2 A finite set K of discrete simplexes is called a discrete complex if the fol-

lowing conditions are satisfied;
1. if [a] € K, face([a]) C K;

2. if [a],[b] € K and ||a|| N ||b]| # O, then [a] = [b].

The dimension of K is equal to the maximum dimension of discrete simplexes which
belong to K. Hereafter, we abbreviate n-dimensional discrete complexes to n-complexes as
well as n-simplexes. Suppose that K is an n-complex. If there exist at least one n-simplex
[a] € K for every s-simplex [b] € K such that [b] € face([a]) and s < n, K is called pure.
In addition, if we can find a chain of discrete simplexes between two arbitrary elements
lc],[d] € K, [e1] = [¢], [ea], - - -, [ck] = [d], such that [¢;] and [¢;41], i =1,2,...,k— 1, has a
common face in K, K is called connected.



Definition 3 If a 2-compler K 1is pure and connected, K is a discrete combinatorial

surface.
More discussion on discrete combinatorial surfaces in the sense of combinatorial topol-
ogy is given in [6].
3 Construction of Discrete Planar Surfaces
Let X be a closed subset of R? of the form
X={(z,9,2) eER® : L <z <ly,m; <y<my,n <2z<ny}, (4)
where [;, m; and n; are integers for i = 1,2. Let P be a plane in X such as
P={(z,y,2) € X : ax+by+cz+d=0}, (5)

where a, b, ¢, d are real numbers. Then the following two regions are separated by P:

H—:{(x,y,z)ex:aa;—|—by+cz+d§0}; (6)
H" = {(z,y,2) €X : ax +by+cz+d>0}. (7)
Obviously, we have
H NH'=P. (8)
Now we put
Y=XnZ. (9)
From (4),
Y ={(z,9,2) €Z® : 1<z <lp,m <y<my,m <z<ny}. (10)

We can consider that Y is a space of a 3-dimensional digital image whose size is [l1, l2] X
[m1, mg] X [n1,n9]. Just as H™ and H* in X, there are two regions in Y, which are

separated by P as follows:
I"={(z,y,2) €Y : ax +by+cz+d<0}, (11)

I"={(z,9,2) €Y : ax +by+cz+d>0}. (12)

We say that I~ and I are the digitization of H~ and H™*, respectively. Clearly we have
I"NI*t=PNY. (13)

If there is no lattice point on P, P N'Y is empty, and hence I NI is also empty.
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Table 2: Eight possible configurations of black and white points in a Cy (4, j, k) such that
both black and white points exist in Cy (i, j, k). An example of P is also illustrated for
each configuration. Note that we ignore the congruent configurations that differ from

those eight configurations by rotation and translation.

For both I~ and I*, we can construct the boundaries which are discrete combinatorial
surfaces with the m-neighborhood system for m = 6,18,26, denoted by I, and 0L},
using the similar algorithm for boundary extraction [6]. Both 01, and 9L are considered
to be the digitization of P and called discrete planar surfaces with respect to P. In this
section, we henceforth present how to generate JI_, from I~. The same procedure can
be applied to generate Ot if I™ and 01, are replaced by I and OI, respectively. A

discrete combinatorial surface I, is obtained in the following two stages:

1. for each cubic region of eight points in Y such as
Cy(i,j,k) ={(z,9,2) €Y : i<z <i+1,j<y<j+1Lk<z<k+1}, (14)

01 (i, 4, k) is obtained as a set of 2-simplexes and their faces by referring to a table;
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Table 3: A set 01, (i, j, k) for each configuration of black and white points in Cy (i, j, k)
corresponding to the configurations in Table 2, m = 6,18,26. The configurations within
parentheses are ignored for the construction of 01 because black points in such Cy (3, j, k)
are regarded as 0- or 1-faces of 2-simplexes in the adjacent cubes of Cy (3, j, k).

2. then, we obtain
o, = U 0L, (i,j,k) (15)

(i,4,k)€Y

as a discrete combinatorial surface.

In the first stage, we assign every point in Y either a black point or a white point. In
this case, all points in I~ and the complement (I7)" =Y \ I~ are assigned black and white
points, respectively. In any Cy (4, j, k) such that Cy(4,5,k) NI~ # @ and Cy(s,5,k) N
(I7)" # 0, the black and white points has either of eight different configurations as shown
in Table 2, if 0 < a < b < ¢ and ¢ > 0. For each of these eight configurations, an
example of possible P is also illustrated in Table 2. For each configuration of Cy (i, j, k)
in Table 2, 01 (i, 7, k) is determined so that all O-simplexes in I (i, j, k) are black points



sootguaten]  Ne | Nig and No2g
PJ1 Cv(i1, j1, k1) CY(izyll'z, k2)
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Table 4: The configurations of black points at Cy (i1, j1, k1) N Cy (is, Jo, k2) such that
Cy (i1, j1, k1) N Cy (42, jo, ko) consists of four lattice points. We ignore the congruent

configurations that differ from those three configurations by rotation and translation.

and every embedded 2-simplexes in 01 (i, 7, k) is located as close as possible to P in
X, as shown in Table 3; for more details of how to generate Table 3, see in [6]. If no
2-simplex exists in Cy (i, 7, k), we simply set 0L (i, 7, k) = 0. For instance, configurations
P1 and P2 in Table 2 have no 2-simplex since there are only one and two black points in
Cvy (i, j, k), respectively; these black points constitute 0- and 1-faces of 2-simplexes in the
adjacent cubes of Cy(i,7, k). Similarly, configurations P3 and P4b are ignored for the
6-neighborhood system since black points constitute two and three 1-faces of 2-simplexes
in the adjacent cubes of Cy (i, j, k), respectively.

In the second stage, we make a union 0I_ of all 01 (4,7, k) which are obtained by
referring to Table 3. In order to prove that JI_ is a discrete combinatorial surface, we
consider two adjacent unit cubes Cy (i1, j1, k1) and Cy (is, jo, k2) such that Cy (i1, j1, k1)N
Cy (42, j2, ko) consists of four lattice points, and 01, (i1, j1, k1) and 01, (i, j2, ko). Each
of four lattice points at Cy (i1, j1,k1) N Cy(ig, j2, ko) is either a black or white point.
Table 4 shows that there are three different configurations of black and white points
at Cy (11,71, k1) N Cy (i2, J2, ko) such that Cy (i1, 71, k1) N Cy(iz, Jo, ko) NI7 # 0. Tt
is also illustrated, in Table 4, that black points at such Cy (i1, j1,k1) N Cy (2, j2, k2)
constitutes the common faces of 2-simplexes of 01, (i1, j1,k1) and OI (i, jo, k2). For
instance, a black point of configuration PJ1 in Table 4 is a O-face and a pair of black
points of configuration PJ2 is a 1-face. For configuration PJ3, a set of three black points
at Cy (i1, J1, k1) N Cy(iz, j2, ko) is regarded differently depending on the neighborhood
systems and the location of P. For the 6-neighborhood system two 1-faces are seen at
Cy (i1, j1, k1) N Cy (ia, Jo, k2) in PJ3 of Table 4. For the 18- and 26-neighborhood systems
either a 1-face or a 2-simplex is seen depending on the location of P. Thus, given a P



and an neighborhood system, we can make a union of 0I_ (i1, j1, k1) and OI_ (is, jo, k2)
satisfying the conditions in Definition 2. Therefore, we can obtain 0I_ as a discrete
combinatorial surface, and OI! as well. Since P is a plane in X and 9I_ (resp. JL)
is a discrete combinatorial surface as digitization of P in Y, I (resp. 0L} ) is called a

discrete planar surface of P.

4 Topological Properties of Discrete Planar Surfaces

For 01, and 0L}, the following proposition is derived from their digitization scheme in

section 3; the proof is given in [6].

Proposition 1 For any plane P in X, 01 and 0L} are uniquely determined in Y for
each m = 6,18, 26.

Now, embedding discrete simplexes which are included in 01, and 0I} into X, we

respectively obtain

P,= U [d (16)
[a]€dl,,
and
P = U . 17
n= Y lal (7)

For any set A, we denote by A’ the complement of A and by A the closure of A. Then,
just as H™ and H* are determined by P, two regions H,, and H in X are determined

by P, and P respectively, such that

H CH™, (18)
H, CH', (19)
H, n(H,) =P, (20)
H, N (HL) = P}, (21)

for each m = 6,18,26. Figure 1 illustrates the relation between H~ and H™ and that
between H, and H;. The following proposition gives the relations between a triplet of
H_ (resp. H'), m = 6,18,26, and H™ (resp. H"); the proof is given in [6].

m

Proposition 2 For any plane P, the inclusion relations

H; C Hj, CHy CH- (22)
and
H{ C Hi, C Hj, C H' (23)

hold.



(a) (b)

Figure 1: The relation between H™ and H* in X (a), and the relation of H;, and H;}, in
X (b). In the figure (b), we assume m = 6.

According to Table 3, Hyz and Hy (resp. Hfy and Hjy) are different only if config-
uration P5 appears in Y. In other words, Hiz and Hyy (resp. Hiy and Hi;) are nearly
equivalent; if configuration P5 does not appear in the digitization process of P, then Hig
and Hy; (resp. H{y and Hi;) are completely equivalent. From Proposition 2, we see that
0I5 is the outermost boundary of I” in Y and and P is the closest to P in X.

Let B, and B, be the sets of all lattice points included in I and OI for m =
6,18, 26, respectively, such that

B,= U [d (24)
[a]€0l,,
and
Bt = U [d] (25)
[a]edL},

Then, the following theorem is derived.

Theorem 1 For any plane P, the inclusion and equality relations

Bs 2 By = By (26)
and

Bg 2 BILS = B;—(i (27)
hold.

Proof. Using Cy (i, 7, k) of (14), for each m, we define
B..(i,7,k) = B, N Cy(i, j, k) (28)

which is a subset of B, . Let us compare a triplet of B_ (7, j, k), m = 6,18, 26 for every
Cy(i,7,k) in Y. If we make a comparison between By (i, j, k) and Bi3(¢, 7, k) in Table 3,
we see

Bg (i,, k) 2 Bg(1, 5, k) (29)



for configurations P4b, P5, P6 and P7, otherwise we obtain

Between Big(i, 7, k) and By(4, j, k), we see that there is no difference for any configu-
ration in Table 3; even if 0I3;(4, j, k) and 0Ix(%, j, k) are different for P5, B3;(i,7,k) =
B(4, j, k). Thus, we obtain

Bis(i,J, k) = Byg(i, j, k) (31)

for any (4,7,k) € Y. From (29), (30) and (31), we see that (26) always hold. Similarly,
(27) is also derived. O

5 Naive Planes as Discrete Planar Surfaces
The naive plane [1] is defined with respect to P of (5) by
NP = {(z,y,2) €Z® : 0<ax +by+cz+d < w} (32)

where w = max{|al, |b], |c|}. The properties of local configurations of points in NP have
been already obtained in [1,2,3,4]. In this section, we first show the equivalence between
NP and B, and derive combinatorial properties of discrete simplexes in 01 from the

properties of NP. In order to prove the next theorem, we refer to Lemma 1 in Appendix
A.

Theorem 2 For any P,
NP = B, (33)

holds.

Proof. Let us consider P such that 0 < a < b < ¢, ¢> 0. In this case w = ¢. From
(32) we obtain

b d b d
NP = {(z,y,2) €Z° : o —y-"<z<-2o-2y-"41}). (34)
C C C C C C

For every point & = (x,y, z) in NP, if we define a point ¢ € P such that

a b d

e=(oy oy, (3)

then we see that
0<|z—c|<1 (36)



from (34). Thus, to prove this theorem, we will show that every & € B3y satisfies (36).
Let us consider a cubic region Cy (i, j, k) of (14). Table 2 gives all configurations of points
in T~ and (I") for a Cy(4, 4, k). Since we focus on B3 instead of B3 in the theorem, we
need to consider that black and white points in Table 2 are points in I and (I)’ instead
of I- and (I7)’, respectively. Any black point x in Table 2 which satisfies (36) is colored
black or gray in Table 5; black points in Table 2 which do not satisfy (36) are colored
white in Table 5. All black points in Table 5 apparently satisfy (36). For each gray point

g = (s,t,u), if we consider two points in P such as

a c d
_ e 2,2 37
and b p
a
= t —_—c — _t —_ _
Cg (57 ) CS c C) ) (38)
we obtain
|g — bg| > [g — cg] (39)

since |[g — bg| : |[g —cg| = 1/b: 1/c from Lemma 1 and 0 < b < c¢. Let us consider
Cy (i, ],k + 1) such that at least one gray point g exists in Cy (4, j, k + 1). If the configu-
ration of Cy (4, j, k) is P4b or P5 in Table 5, then the configuration of Cy (3, j, k+1) will be
P1. Similarly, if the configuration of Cy (3, j, k) is P6, the configuration of Cy (4, 7,k + 1)
will be P2. We then see that all g satisfy (36). Since white points in Table 5 do not
satisfy (36) obviously, from a comparison between a set of black and gray points in Table
5 and a set of points of Bj; in Table 3, we have (33). [

If we define a naive plane such that
NP ={(z,y,2)€Z® : —~w<azx+by+cz+d<0} (40)
instead of NP, then the following corollary is derived.

Corollary 1 For any P,
NP~ =By (41)

holds.
In the rest of this section, we discuss the local configurations of discrete simplexes

in Ol (resp. Oly). First, the following proposition is automatically derived from the
definition of 9l (resp. Oly).

Proposition 3 Any 2-simplex included in 013 (resp. Oly) is classified into either of
three types illustrated in Table 1.
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Table 5: The classification of all points in I into two types with respect to each config-
uration of Table 2: points of B3z and other.

From Theorem 2 and the properties of NP [1,2,3,4], we can derive the following
combinatorial properties of dI3; (resp. 0l,;) which are summarized in Propositions 4 to
8. Let us consider the configurations of discrete simplexes in the parts of I3 (resp. 0ly)

which project on the coordinate plane z = 0 as a rectangle whose sizes are A X .

Proposition 4 In the case of A = u = 2, there exist five different configurations of
discrete simplezes as shown in Figure 2 for 0l (resp. 0ly) with respect to any P such
that 0 <a<b<¢ c>0.

Proposition 5 At most four different configurations of discrete simplexes for A = p = 2
are contained in a 0Ly (resp. Olyg).

Proposition 6 In the case of A\ = u = 3, there exist 40 different configurations of
discrete simplezes as shown in Figure 8 for 0l (resp. Oly) with respect to any P such
that 0 <a<b<e¢ c>0.
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Figure 2: All five configurations of discrete simplexes in 913 (resp. 015) whose projections

on plane z = 0 lie on the 2 x 2 square grids.

Proposition 7 At most nine different configurations of discrete simplexes for A= p =3

are contained in a 0ljg (resp. Oy ).

Propositions 4 and 5 give the coexistence of two adjacent 2-simplexes in a 913 (resp.
0l). For each O-simplex [z] € 015 or 0L, we can define the star such that

o([z] : 913) = {[a] € 013 : [x] € face([a])} (42)

o([x] : Olys) = {[a] € 0Ly : [x] € face([a])} . (43)

The projection of o([z] : d13) (resp. o([z] : OIy)) on the coordinate plane z = 0 is in a
square whose size is 3 X 3if 0 < a < b < c and ¢ > 0. From this fact, we also derive the

following proposition.

Proposition 8 Any 013 (resp. 0ly) is a discrete combinatorial surface with the bound-
ary which consists of 2-simplexes and their faces, such that every 0-simplex [x] € 01
(resp. 0lys) has one of the stars whose configurations are illustrated in Figure 3 for

x=(x,y,2) where ly <z <ly, m1 <y < mg, ny <z < ny.

We see that the equivalent simplicial configurations of a star can appear in different
simplicial configurations each of which projects on the coordinate plane z =0 as a 3 x 3
square in Figure 3. Thus, the total number of different configurations of discrete simplexes
of a star will be less than 40.

Finally, we examine the configurations of discrete simplexes in a 0135 (resp. 9Iy). Let
us consider P of (5) which has the coefficients such that a, b and ¢ are all positive integers
and PNY # (. Let L be the least common multiple of a, b and ¢, and

L
A=— 44
=3 (14)
L
B== 4
= (45)
and I
C=—. (46)
c
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Figure 3: All 40 configurations of discrete simplexes in 01
as discrete simplexes with diagonal lines in the figure.



(p.9.1)
P (p,g+B,r-C)

7 A

(p+A,q,r-C)

(p+A,q+B,r-2C)

Figure 4: If a lattice point (p,q,7) € P NY exists, a plane P such that a, b and ¢ are

positive integers can be decomposed into two types of the triangles o and 3.

Theorem 3 For any P such that a, b and ¢ are positive integers and there exist (p,q,r) €
PNY, 0l (resp. 0ly) is decomposed into triangular pieces of discrete combinatorial

surfaces, which are classified into two types.

Proof. From Lemma 1 in Appendix A, we obtain (51) as illustrated in Figure 5 and
then we have 11

—:—:==A:B:C 47

a b c (47)

from (44), (45) and (46). Since A, B and C are relative primes, there is no triangular

piece on P whose vertices are all in Z* and which is smaller than the triangle of type «

or 3;

e type «: a triangle whose vertices are (p,q,7), (p+ A4,¢,7r—C) and (p,q+ B,r —C);

e type (: a triangle whose vertices are (p + A,q,7 — C), (p,q+ B,r — C) and (p +
A,qg+ B,r —20C).

In Figure 4 we see that P is decomposed into two types of triangles  and . For each
triangular region of P, we can uniquely obtain a discrete planar surface from Proposition
1. O

6 Conclusions

This paper is devoted for the study of topological and geometric properties of 015, and
O1;. Since we constructed discrete planar surfaces from a set of lattice points, we de-
scribed the combinatorial properties by using the configurations of discrete simplexes
instead of those of lattice points. In this paper, we have proven the equivalence between
BJs (resp. Byg) and NP (resp. NP ) which are defined by using algebraic approach.
From the equivalence, we obtained the combinatorial properties of 9l (resp. 0l5), such

as the coexistence of adjacent 2-simplexes and the configuration of discrete simplexes of



a star in a 0Ij; (resp. dIy). Similar results for Iy and 9I (resp. 0l and 0I5 ) are in

preparation.

Acknowledgments

The first author expresses much thanks for the thoughtful comments of Professor Dr.
Reinhard Klette at CITR, the university of Auckland. This work was done during her
staying in Auckland, which was supported by Yazaki Memorial Foundation for Science &
Technology and the JAIST Foundation.

References

Y

1. J. P. Reveilles, “Combinatorial Pieces in Digital Lines and Planes,’
of SPIE, Vol. 2573; Vision Geometry III, pp. 23-34, Spie, 1995.

in Proceedings

2. J. Francgon, “Sur la topologie d’un plan arithmétique,” Theoretical Computer Sci-
ence, Vol. 156, pp. 159-176, 1996.

3. J. Francon, J. M. Schramm and M. Tajine, “Recognizing arithmetic straight lines
and planes,” in LNCS 1176; Discrete Geometry for Computer Imagery, S. Miguet, A.
Montanvert and S. Ubéda(Eds.), pp. 141-150, Springer-Verlag, Berlin, Heidelberg,
1996.

4. 1. Debled-Renesson, Etude et reconnaissance des droites et plans discrets, PhD the-
sis, University of Louis Pasteur, 1995.

5. H. Minkowski, Geometrie der Zahlen, Leipzig, 1896.

6. Y. Kenmochi, Discrete Combinatorial Polyhedra: Theory and Application, Doctoral
thesis, Chiba University, 1998.

7. P. S. Aleksandrov, Combinatorial Topology, volume 1. Graylock Press, Rochester,
New York, 1956.

A Lemma 1

Let us consider P of (5) such that a,b,c > 0. For each point p € I \ P such that

p = (s,t,u), we set three planes such as

S={(r,y,2) €R® : =5}, (48)



Figure 5: Three points a, b and ¢ defined for a plane P and a point p which is not in P.

T={(z,y,2) eR® : y=t} (49)

and
U={(r,y,2) €R® : z=u}. (50)

Let a, b and ¢ be the intersection points of P, T and U, P, S and U, and P, S and T,

respectively, as illustrated in Figure 5. Then the next lemma is derived.

Lemma 1 For any p € I™ \ P, we obtain

p—al:lp—bl:lp—cl=":y (1)
where a,b,c > 0.
Proof. The equation of the line which is the intersection of P and U is given by
ax+by+cu+d=0. (52)
Thus, the slope of the line in U is given by
—-b a
i )

Similarly, the slopes of the intersection lines between P and T, and P and S, are respec-

tively given by

p—c| b
= - 54
p—bl ¢ (54
and ‘ ‘
p—a c
—_— 55
p—c| a (55)

Thus, we obtain (51). O
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