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Abstract

This paper compares two techniques for measuring
the length of a digital curve. Both techniques (digital
straight segment approximation, minimum length poly-
gon) are known to be convergent estimators. Theore-
tical convergence results are cited. The main focus is
on experimental evaluation: several measures are de-
fined, applied and discussed. Test sets are digitized for
consecutive resolutions.

1. Two methods for length estimation

This paper presents an evaluation and comparison
of two methods for estimating the length of a digital
curve. The DSS method is based on a partition into
digital straight segments [3, 6], and the MLP method is
characterized by the calculation of the minimum-length
polygon [7], assuming a given digital curve as input in
both cases.

Let » > 1 be the grid resolution defined as being
the number of grid points per unit. We consider r-
grid points gj ; = (i/r, j/r) in the euclidean plane, for
integers ¢,j. Any r-grid point is assumed to be the
center point of an r-square with r-edges of length 1/r
parallel to the coordinate axes, and r-vertices. Cells are
either r-squares, r-edges or r-vertices. The intersection
of two cells is either empty or a joint side of both cells.
We consider a non-empty finite set K of cells such that
for any cell in K it holds that any side of this cell is
also in K. Such a set K is a special finite euclidean
complex [5], and thus an abstract cellular complex [1,
5] including straightforward definitions of a bounding
relation for pairs of cells, and dimensions of cells.

Digital curves g are defined for n > 1: (1) An edge-
curve ¢ = (vg, €g, V1, €1, ..., Un, €5) is a sequence of ver-
tices v; and edges e;, for 0 < ¢ < n, such that vertices
v; and wv;4q1 are sides of edge e;, for 0 < ¢ < n and

Unt1 = vo. It is simple iff each edge of ¢ has exactly
two bounding vertices in g. (i) A square-curve is a
sequence g = (eg, So, €1, 81, ..., €n, S) of r-edges ¢; and
r-squares s;, for 0 <7 < n, such that edges e; and e;41
are sides of square s;, for 0 < i < n and e 41 = eq.
It is semple iff each square of ¢ has exactly two bound-
ing edges in g. The union of all squares contained in a
simple square-curve is called its tube.

We have to specify digitization models for our eva-
luation of the DSS and MLP method. Let S be a set in
the euclidean plane, called real preimage. The set I,.(.S)
is defined to be the union of all those r-squares com-
pletely contained in the interior of S. The set O,(S)
is the union of all those r-squares having a non-empty
intersection with set S. Finally, let C,.(.S) be the union
of all those r-squares whose center point ¢; ; is in S
(see Fig. 1).

The boundary dC,. (S) is the r-frontier of S, and this
notion corresponds to the definition of simple edge-
The set (0,(S) \ I;(S)) U I.(S) is the r-

boundary of S, and this notion corresponds to the defi-

curves.

nition of simple square-curves. The Hausdorff distance
doo between 00, (S) and 91,(S) is not always 1/r.
The DSS method calculates a sequence of consecu-
tive maximum-length digital straight segments for a
simple edge-curve, and its result depends upon starting

r -frontier r -boundary

Figure 1. Digital curves and real preimage.
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Figure 2. DSS approximation and MLP.

point and orientation of the traversal [1, 3]. The MLP
method calculates a minimum-length polygon within
the tube of a simple square-curve, where this polygon
is required to have a non-empty intersection with any
r-square contained in this simple digital curve [7]. The
MLP method leads to a uniquely specified result, the
minimum-length polygon [7]. See Fig. 2 for examples
of such approximating polygons. The DSS or the MLP
length estimator of the length of a digital curve is de-
fined to be the total length of the calculated polygonal
chain. Algorithms for calculating a DSS approximation
or the MLP are detailed in [1], and the experimental
evaluation reported in this paper is based on these al-
gorithms (implemented in C++ on a PC).

2. Convergence Theorems

For both techniques it is known that the measured
length of a digital curve converges towards the true
value if a bounded, convex, polygonal or smooth (ie.
boundary is C'!) subset of the euclidean plane is digi-
tized with increasing grid resolution [2, 4, 7].

In the following theorem, value epgs(r) > 0 is an
algorithm-dependent approximation threshold speci-
fying the maximum Hausdorff distance ds between the
r-frontier 9C,(S) and a DSS polygon. TIts ‘classical’
value is 1/r, see [6].

Theorem 1 (Kovalevsky/Fuchs 1992) S be a bounded,
convex, smooth or polygonal set. Then there exists a
grid resolution ro such that for all r > rqy it holds that
any DSS approzimation of the r-frontier 0C,(S) is a
connected polygon with perimeter l. and

1
|Perimeter(S) —1I,| < 2& <5DSS(7~) + E) .

This theorem and its proof may be found in [2] but the
proof was actually fully based on material given in [4].
The following theorem is basically a citation from [7]
and specifies the asymptotic constant for MLP perime-
ter estimates. In [7] only powers of two have been

considered as grid resolution r. However, it may be
concluded from the material given in [7] (eg. Theorem
4.15 and Lemma 4.3) that the following theorem may
actually be stated for arbitrary grid resolutions r > 1.

Theorem 2 (Sloboda et al. 1998) Let S be a bounded
conver set such that its boundary s contained in the
r-boundary of S, for r > 1. Then it holds that the
MLP approximation of the r-boundary is a connected
polygonal curve with length 1. and

I, < Perimeter(S) <l + 8 )
s

Let epss(r) = 1/r . Tt follows that the upper error
bound for DSS approximations is characterized by

27T+ 2w ~4.5
r2 r2 T

and the upper error bound for MLP approximation is
characterized by 8/r. This theoretical ratio of about
1:2 coincides with our experimental studies, see next
section.

3. Experiments

We report about experiments using six sets S as
shown in Fig. 3: the function graph of the sinc function
y = sin(16m - x)/(647r - ) within a bounded interval
symmetric to the y-axis, a square rotated by 45° a
square rotated by 22.5°, a halfmoon generated by two
overlapping circles of identical size, a circle, and the
yin-part in the Chinese yinyang symbol. All sets have
been digitized for (at least) all grid resolutions from
r = 32 to r = 1024. In this section we abstain from
parameter r to simplify the notations.

A grid square is contained in C'(S) iff its midpoint is
in S. The frontier dC(S) is used as input for the DSS
algorithm. We use an approximative scheme for 7(S):
a square is contained in I(S) iff all of its four vertices
are in S (“four-vertex scheme”). The MLP algorithm
[1] only requires that 91(S) is available as input.

Figure 3. Sets within an area of 1 unit  x 1 unit.



Size 256x256 512x512 1024x1024 | 2048x2048
Nes) 474 954 1922 3838
Npss 46 74 121 187
Nri(s) 474 946 1906 3834
Ny p 80 124 199 330
Epss 3.061 2.466 1.605 1.432
Eymrp 6.006 4.390 3.037 2.018
fpss 140.80 182.49 194.18 267.76
Onvrp 480.45 544 .42 604.27 666.00
Tyvrp 2.048 4.199 8.398 17.206
Tpss 4.710 9.421 19.254 38.099

Table 1. Yin curve of the Yinyang symbol.

Size 256x256 512x512 1024x1024 2048x2048
NC(S) 860 1732 3468 6940
Npss 4 4 4 4
NI(S) 852 1724 3460 6932
Ny p 8 8 8 8
FEpss 0.559 0.102 0.102 0.103
Eyrp 1.102 0.372 0.238 0.170
Opss 2.24 0.41 0.41 0.41
Onirp 8.82 2.98 1.90 1.36
Tyvrp 2.048 4.199 8.398 16.387
Tpss 5.274 10.548 21.098 42.196

Table 2. Square rotated 45 degrees.

For the resulting isothetic (ie. edges parallel to coor-
dinate axes) polygons the DSS partition and the MLP
were calculated allowing to compute the DSS estimate
and the MLP estimate of the perimeter of region S with
respect to grid resolution r. Of course, dC'(S) may also
be used as input for the MLP algorithm, and we call
the result the MLP_C perimeter estimate.

Let N¢(sy be the number of vertices of C(S) (the
input sequence of the DSS algorithm), let Ny(gy be the
number of vertices of 9I(S) (the input sequence of the
MLP algorithm), let Npgg be the number of vertices of
the calculated DSS polygon, and let Nasz p be the num-
ber of vertices of the calculated MLP. The errors Epss
and Epyrpp are the length errors in percent compared to
the true perimeter of set S (length of the curve defining
the boundary of S). The effectiveness of the approxi-
mation (as defined in [7]) is Opss = Epss - Npss or
Oymrp = Eyrop - Nypp, which specifies an interesting
trade-off measure: this product of error times number
of segments informs about the efficiency of the con-
vergence. If this product decreases faster or increases
slower for algorithm A in comparison to a second algo-
rithm B then algorithm A is more efficient in achieving
reduced errors without generating too many new seg-
ments. ! Finally, we also measure the computing time
Tpss and Tarzp. In our tables time is specified in mul-

ISmaller values of this measure characterize a “more efficient”
approximation, ie. the name “inverse effectiveness measure”
might be more appropriate. However, we follow [7] because the
given name is also reasonable.

Size 68x68 69x69 70x70 71x71 72x72

No=) 80 80 38 92 38
Npss 20 18 17 18 18
Ni(s) 68 72 76 31 76
NuLp 26 30 31 32 32

Epss 0.744 2.112 1.442 2.301 0.877
Eymrp 6.564 6.729 5.932 7.798 9.216
fpss 14.89 38.02 24.52 41.41 15.79
Onvrp 170.67 | 201.86 201.67 | 249.55 294.92
Tpss 0.313 0.345 0.350 0.383 0.360
Tyvrp 1.088 1.090 1.106 1.122 1.138

Table 3. Sinc function.

tiples of 1073 seconds. Tables 1 and 2 show selected
results (for a few values of r) for two curves. In these
tables, the values in row Size correspond to the resolu-
tion r, le. size is equal to r X r.

Table 3 illustrates by a few numerical values that
measurements such as errors will not decrease mono-
tonously with an increase in resolution. This is also
illustrated in Fig. 4 for the resulting errors in case of
the circle, and in Fig 5 for the resulting effectiveness
values of the approximation, also in case of the circle.
This shows that tables such as Tables 1 and 2 showing
a few isolated measurements only may be absolutely
misleading! They may only provide a “first idea’” about
the behavior of the algorithms. Generalizations require
statistical evaluations. Due to the inhomogeneous in-
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Figure 4. DSS and MLP errors (circle).
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Figure 5. DSS and MLP trade-off (circle).
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Figure 6. DSS and MLP time (circle).

crease in error and effectiveness values we use sliding
means for graphical representations of results. These
means are the arithmetic averages of 64 values, 32 val-
ues on the left of the recent position, the value at the
recent position, and 31 values on the right of the recent
position. In Fig. 4 and Fig. 5 these sliding means form
curves.

Figures 4 and 5 also show results for the MLP_C
estimates where the input polygons 7(S) have been re-
placed by the larger input polygons C'(S). This is just
a minor increase of the input polygons but it illustrates
the sensitivity of the MLP algorithm. Similar results
have been obtained if the input C'(S) of the DSS algo-
rithm is replaced by I(S) or O(S). The errors of the
DSS_I estimate are slightly larger than the errors of
the MLP_C estimate in case of the circle. However, for
the halfmoon boundary the MLP_C estimates are bet-
ter than the MLP estimates. The computing time (see
Fig. 6) is more regular in its behavior. The computing
time of the MLP_C algorithm is about the same as in
the MLP case.

Figure 7 summarizes our experiments. It shows the
averaged sliding means of error values Epss or Eypp,
and of sliding means of effectiveness values fpgg and
farrp, where each value at resolution r is generated by
averaging the results for the six examples of sets at this
resolution r. The tangential geometric convergence of
the yin curve has a special impact on slowing down nu-
merical convergence to the true value. For that reason
curves only averaging five sets (without yin curve) are
also included in Fig. 7.

4. Conclusions

Typically the DSS errors in estimating the true
perimeter have been at 0.1% or lower for grid resolu-
tions of 600 or higher, also for non-convex sets such as
the halfmoon or the sinc-curve. The errors were slightly
larger for the yin-part of the Yinyang symbol. The DSS
algorithm shows in general faster convergence and a
better efficiency with respect to our trade-off measure.

error (in %)

10
1 MLP all
DsS all
0.1 MLP w/o Yinyang
DSS w o Yinyang
0.01
32 512 1024
trade-off
200 MLP
150 _-___—‘._______’______...-——-—"‘"‘
100
50 DSss
0
32 512 1024
resolution

Figure 7. Errors and effectiveness.

In our implementation, the DSS algorithm needs about
2-3 times more computing time compared to the MLP
algorithm, and this is about the same for the differ-
ent test sets. The times for generating the input data,
ie. frontiers of C(S) or I(S), are not counted in this
time comparison. The four-vertex scheme might be
a reason that MLP ‘“typically’ approximates the curve
length from below but DSS results ‘typically’ oscillate
(i.e. there are both positive and negative differences)
around the true value. — The authors acknowledge the
collaboration with V.Kovalevsky (Berlin).
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