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Abstract. This paper informs about estimates of worst-case bounds

for quantization errors in calculating features such as moments, moment
based features, or perimeters in image analysis, and about probability-

theoretical estimates of error bounds (eg. standard deviations) for such

digital approximations. New estimates (with proofs) and a review of
previousely known results are provided.

1 Introduction

Representations of sets in euclidean spaces En by corresponding digital sets

cause an inherent loss of information. There are in�nitely many di�erent sets

in an euclidean space with an identical corresponding digital set. This paper

studies resulting accuracy limitations of reconstructions of original sets, and of

their features such as moments (eg. the area), perimeters and features derived

from moments (eg. the centroid or the orientation).

1.1 History

The problem of area estimation of a set by the number of grid points contained

in the considered set has an extensive history in number theory. It has already

been studied by C.F.Gauss for disks. C.F.Gauss (1777{1855) and P.Dirichlet

(1805{1859) knew already that the number of grid points inside of a planar

convex curve 
 estimates the area of the set bounded by this curve within an

order of O(l), where l is the length of curve 
. The situation when 
 is a circle is

studied most carefully. M.N.Huxley's result [7] from 1990 is a very good result

for 3-smooth planar convex curves and improves even the best known worst-case

error bound [9] previousely known for circles. Huxley's theorem is critical for all

moment related results reported in this paper.

The important problem of volume estimation was studied by C.Jordan [11]

based on gridding techniques. Any grid point (i; j; k) 2 E3 is assumed to be

the centre point of a cube with faces parallel to the coordinate planes and with

edges of length 1. The boundary is part of this cube. Let S be a set contained in

�nitely many of such cubes. Dilate the set S with respect to an arbitrary point

p 2 E3 in a ratio r : 1. This transforms S into Spr . Let l
p
r (S) be the number



of all cubes completely contained in the interior of Spr , and let upr(S) be the

number of all cubes having a non-empty intersection with Spr . Then it holds

[11] that r�3 � lpr (S) and r�3 � upr(S) always converge to limit values L(S) and

U (S), respectively, for r to in�nity, independent upon the chosen point p. Jordan

called L(S) the inner volume and U (S) the outer volume of set S, or the volume

vol(S) of S if L(S) = U (S). Volume de�nition based on gridding techniques was

studied, eg., in [19, 22]. This paper will not focus on sets in 3D space, but the

volume de�nition of 3D sets is used in proofs.

The problems of measuring the length of a curve or the perimeter of a 2D

set, or the area of a closed or open surface of a 3D set based on gridding tech-

niques have been studied in the context of digital image analysis, see, eg., [24]

for the curve length problem and [14] for the surface area problem. However,

H.Minkowski [19] proposed already solutions for both problems in his pioneer-

ing work on morphological operations. This paper discusses the convergence of

one technique for grid-point based estimations of the length of a curve.

1.2 Multigrid digitization

We assume an orthogonal grid with grid constant 0 < # � 1 in n-dimensional

euclidean space En, n � 1, ie. # is the uniform spacing between grid points par-

allel to one of the coordinate axes. Furthermore, let r � 1 be the grid resolution

de�ned as being the number of grid points per unit, ie. any grid edge is of length

# = 1=r.

In this paper we discuss the two-dimensional case only. We consider r-grid

points gri;j = (# � i; # � j) in the euclidean plane, for integers i; j and # = 1=r. For

r = 1 we simply speak about grid points (i; j) in the euclidean plane E2.

De�nition1. For a set S in the euclidean plane its digitization Dr(S) is de�ned

to be the set of all r-grid points contained in the given set S, ie.

Dr(S) = fgri;j : gri;j = (i=r; j=r) 2 Sg :
In the case r = 1 the digitization is denoted by D(S).

The sets D(S) andDr(S) are also called digital sets. The dilation of a set S � E2

by a factor r � 1 is de�ned to be

r � S = f(r � x; r � y) : (x; y) 2 Sg :
Following Jordan [11] this is a dilation with respect to the origin (0; 0), and other

points in E2 could be chosen to be the �xpoint as well. Sometimes it may be

more adequate to consider sets of the form r �S (the preferred approach, eg., by

Jordan and Minkowski) digitized in the orthogonal grid with unit grid length,

instead of sets S digitized in r-grids with 1=r grid length. The study of r !1
corresponds to the increase in grid resolution, and this may be either a study

of repeatedly dilated sets r � S in the grid with unit grid length, or of a given

set S in repeatedly re�ned grids. This is a general duality principle for multigrid

studies.



1.3 Features

Assume a planar set S in the euclidean plane and a Cartesian xy-coordinate

system in this plane. The (p; q)-moments of set S are de�ned by

mp;q(S) =

Z
S

Z
xpyq dx dy ;

for integers p; q � 0. The moment mp;q(S) has the order p+ q.

In image analysis, the exact values of moments mp;q(S) remain unknown.

They are estimated by discrete moments �p;q(S) where

�p;q(S) =
X

(i;j)2D(S)

ip � jq

which can be calculated from the corresponding digitized set D(S) of set S.

The grid constant # has to be used as scaling factor if the approach involves

repeatedly re�ned grids. The moment-concept has been introduced into image

analysis by M.Hu [5].

We are interested in analyzing the accuracy of estimates of the following

features of a set S. Note that # has always to be used for scaling if the re�ned

grid approach is taken, otherwise r � S replaces S if the dilation approach is

prefered:

1. The area A(S) of a planar set S, ie. the moment m0;0(S) of order zero, is

estimated by the number of grid points in D(S), ie. by the discrete moment

�0;0(S).

2. The perimeter of S may be estimated by the perimeter value calculated by a

maximum-length digital straight segment approximation procedure, see, eg.,

[15] and Fig.1 for an example. Another choice may be the minimum-length

polygon approximation as discussed in [24, 25]. Both techniques have been

compared in [15]. In this paper we discuss the digital straight segment (DSS)

approximation technique. A complete discussion of multigrid behavior of the

minimum-length polygon (MLP) approximation technique may be found in

[24].

Each r-grid point in Dr(S) is a mid-point of an r-grid square. The digi-

tal boundary Br(S) is the boundary of the union of all those closed r-grid

squares where the mid point is in S. A maximum-length digital straight

segment approximation procedure [18, 20] calculates a sequence of DSS's

connecting vertices of the digital boundary. Its result may vary with the al-

lowed maximum Hausdor� distance 1 between the digital boundary Br(S)

1 The Hausdor� distance for sets of points A, B,

d2 (A;B) = max

�
max
p2A

inf
q2B

d2 (p; q) ;max
p2B

inf
q2A

d2 (p; q)

�
;

generalizes the euclidean distance d2 between points to a metric between sets of

points.



digital set D(S)  (a set of grid points)

end point of a DSS (a vertex of a grid square)

analog preimage S
(a set in the euclidean
plane)

Fig. 1. [15] A simply-connected set S in the real plane, its digitization D(S) and

a (clockwise, starting at the uppermost-leftmost vertex) DSS approximation of its
digital boundary which is used for perimeter estimation, and which consists of DSS's

connecting vertices of grid squares.

and the calculated polygonal curve (in the \classical" paper [20] the thresh-

old 1=r, ie. the grid constant, has been used), the used orientation (clockwise

or counter-clockwise), and the chosen inital vertex.

If the digital boundary Br(S) is not split into several poygonal curves (eg.,

in Fig. 3 there is a split into two polygonal curves) then the resulting DSS

approximation is also a single (connected) polygonal curve. Its total length

is used as an estimate of the perimeter of S.

3. For the center of gravity of a set S,�
m1;0(S)

m0;0(S)
;
m0;1(S)

m0;0(S)

�

the estimate �
�1;0(S)

�0;0(S)
;
�0;1(S)

�0;0(S)

�

is calculated from its digital set D(S).

4. The orientation of a set S can be described by its axis of the least second

moment. That is the line for which the integral of the squares of the distances

to points in the digital set D(S) is a minimum. That integral is

I(S; '; �) =

Z
S

Z
r2(x; y; '; �)dxdy ;



where r(x; y; '; �) is the perpendicular distance from the point (x; y) to the

line given in the form

x � cos' � y � sin' = � :

We are looking for the value of ' for which I(S; '; �) takes its minimum,

and by this angle we de�ne the orientation of the set S. This '-value will be

denoted by or(S), i.e.

min
';�

I(S; '; �) = I(S; or(S); �); for some value of � :

Again, this feature is estimated by replacing integration and set S by a

discrete addition and a digital set D(S), respectively. With respect to ap-

plications note that this feature requires sets with "a main orientation", ie.

m2;0(S) 6= m0;2(S). For (\noisy") circular sets it would be distributed within

the full 360 degree range.

5. The elongation of S (see [10, 31]) in direction ' is the ratio of maximum and

minimum values of I(S; '; �), i.e.

E(S) =

max
'; �

I(S; '; �)

min
'; �

I(S; '; �)
:

It will be estimated by digital approximations of the I-function values as in

case of the orientation of set S.

The feature perimeter is not de�ned by moments, and we list it here because of

its general importance. It is known that the de�ned perimeter estimate converges

towards the true value if a convex polygonal set is digitized with increasing grid

resolution [18], see Theorem 12 below. This theorem comprises the theoretical

fundamental for the given perimeter de�nition.

Central moments are also of common use in image analysis. Let

(�xc (S) ; �yc (S)) =

�
m1;0(S)

m0;0(S)
;
m0;1(S)

m0;0(S)

�
and

(�xd (S) ; �yd (S)) =

�
�1;0(S)

�0;0(S)
;
�0;1(S)

�0;0(S)

�

be the centroids of S and D(S), respectively. Then,

mp;q(S) =

Z
S

Z
(x� xc(S))

p(y � yc(S))
q dx dy

are the central (p; q)-moments of order p+ q, and

�p;q(S) =
X

(i;j)2D(S)

(i � xd(S))
p � (j � yd(S))

q

are the discrete central (p; q)-moments of order p + q. The central moments of

order 1 are equal to zero.



1.4 Convergence of calculated features

Let F be a family of sets S in the euclidean plane, such as the family of all

convex set, or the family of all straight line segments. Assume that feature M is

de�ned for all sets in F.

De�nition2. We call an estimator M̂ of M convergent on F i�

M (S) = lim
r!1

M̂ (Dr (S)) ;

for all sets S 2 F also meaning that M̂ is de�ned on any digital set Dr(S) if

S 2 F, for all r � rS where rS may exclude a �nite range of r-values smaller

than rS .

This multigrid convergence approach has been used by di�erent authors, see,

eg., [12, 14, 18, 24, 27] for related work and references. Note that there is an

equivalent de�nition for the dilation-based multigrid technique. Analyzing the

accuracy of estimators means that the convergence (towards the true value, see

Fig. 2 for a trivial convergence of the length of a curve towards a false value)

needs to be satis�ed, and that the speed of convergence may be analyzed by

specifying the worst-case or probability-theoretical error bounds. Considerations

with respect to statistical values require a probability model of the digitization

process for the given family of sets.

The determination of worst-case error bounds is a problem typically studied

in number theory. Assume that the complexity size of a problem is characterized

by a non-negative real number. In the studies in this paper this number is the

grid resolution r. Depending upon variable r a function f(r) � 0 may specify

one important aspect of the problem such as a worst-case error de�ned for this

grid resolution.

Fig. 2. The zig-zag curve approximates the straight line segment with respect to the

Hausdor� distance. However, the length of the zig-zag curve remains constant and

equal to twice the length of the approximated straight line segment assuming that we

started with an equilateral triangle.



De�nition3. The function f(r) � 0 is in the asymptotic complexity class

O(g(r)) (we write f(r) = O(g(r))) i� there exist a constant c � 0 and a constant

r0 � 1 such that f(r) � c � g(r), for all r � r0. In this case we say that function

f(r) has the worst-case bound or upper bound g(r).

The constant c is called the asymptotic constant of the given worst-case bound,

and r0 is its validity parameter. The values of the asymptotic constant and

the validity parameter are of practical importance and its speci�cation is often

desirable, but unimportant for asymptotic characterizations. If f is an error

measure then g speci�es a worst-case error bound.

1.5 Organisation of the paper

The paper informs about new and previously published results in the area

of multigrid feature calculations including number-theoretical, geometrical and

probability-theoretical studies.

Besides the two-dimensional case we are also interested in one-dimensional

digitizations (eg. straight line segments on a one-dimensional grid) and in digi-

tizations of higher-dimensional sets such as volumes in 3D euclidean space. In

the three-dimensional case the surface area speci�es another interesting feature

to be analyzed, see [19, 14]. The volume value may be estimated by �0;0;0(S), ie.

the number of grid points contained in the given 3D set [11, 22]. However, this

paper is limited to 1D and 2D problems.

The paper is organized as follows: Section 2 discusses number-theoretical

worst-case, or upper error bounds for estimates of moments, and estimates of

moment based features. The approach taken allows to cover di�erent classes of

sets, and the given (new) results specify sharp error bounds for moments of

any order. Section 3 discusses the perimeter estimation problem and speci�es

an upper error bound for convex sets. This section is very much based on [18],

but informs about an improved error bound compared to [18]. Section 4 �nally

informs on probability-theoretical error bounds based on work reported in [3].

Here, the contribution is that this previousely published work is formulated in

the formal context of this paper. Finally, Section 5 concludes with a list of open

problems.

2 Worst-case Error Bounds for Moment Estimates

In this section we consider worst-case error bounds in estimating real moments

of sets S � E2 from corresponding discrete moments.

De�nition4. A planar n-smooth convex set is a convex set in the euclidean

plane whose boundary consists of a �nite number of Cn arcs (ie., having contin-

uous nth order derivatives) with positive curvature at every point on these arcs

except arc endpoints, for n � 0.



Note that the claimed positive curvature excludes straight boundary segments.

Let FnSC be the family of all planar n-smooth convex sets, for n � 0. Through-

out this Section 2 we assume that S is a planar 3-smooth convex set, or one

obtained from planar 3-smooth convex sets by a �nite number of intersections,

set di�erences, or unions.

2.1 Huxley's theorem

Planar 3-smooth convex sets have been analyzed in [16, 17] for moments up

to second order. A recent result [7] in number theory could be used as the

basic mathematical tool in these studies. M.N.Huxley's theorem [7] is a strong

mathematical result, related to the number of grid points inside of a 3-smooth

convex set of the form r � S, where r is a positive real number.

Theorem5. (Huxley 1990) If S is a convex set in the euclidean plane with an

C3 boundary and a positive curvature at every point of the boundary, then the

number of grid points belonging to r � S is

�0;0(r � S) = r2 �A(S) + O
�
r

7
11 � (log r) 4722

�
:

This theorem improves the previously best known upper bound of the error term

even for the famous \circle problem", i.e. when S is the unit disk [9].

The precondition of Huxley's theorem can be relaxed. Actually it is su�cent

to assume that S 2 F3SC holds, ie. S may have a �nite number of \corners".

This follows from the proof method used in [7]. This generalisation allows in

consequence that the theorem can be applied, eg., to intersections of two planar

3-smooth convex sets or to di�erence sets of two planar 3-smooth convex sets.

Note that the theorem also holds for (not necessarily connected) unions of a

�nite number of planar 3-smooth convex sets. Altogether this allows a generic

de�nition of families Ff(n) of sets given in the next subsection.

In [16, 17] actually a weaker result (a conclusion of Huxley's theorem)

�0;0(r � S) = r2 �A(S) + O
�
r

7
11

+�
�
; for every " > 0

has been used for deriving upper error bounds for moments up to second order.

Theorem6. (Klette/�Zuni�c 1999) If a set S 2 F3SC is digitized in a grid with

grid resolution r = 1=#, then the absolute value of the di�erence

mp;q(S) � 1
rp+q+2

� �p;q(r � S) ; for p+ q � 2 ;

has a worst-case bound of

O
�

1

r
15
11
�"

�
� O

�
1

r1:363636:::

�
:



The same upper error bound holds for central and discrete central moments up

to order 2, see [17], and this result can also be extended to sets in the closure

cl(F3SC) which may be obtained from planar 3-smooth convex sets by �nite ap-

plications of unions, intersections or set di�erences. The worst-case error bound

remains the same which converges to zero with an increase in grid resolution r

towards in�nity.

So far it has been known that discrete moments or discrete central moments

up to order 2 are convergent estimators of moments or central moments up to

order 2 on the class cl(F3SC) of sets, respectively. This paper provides a more

elegant and general proof for families Ff(r) of sets and moments of arbitrary

order.

2.2 Families of sets de�ned by zero-order moments

The main result of this Section 2 is an upper error bound for estimating real

moments (of an arbitrary order) based on corresponding discrete moments, for

families Ff(r) of sets. These families are de�ned by di�erences between real and

discrete moments of order zero.

De�nition7. Let a function f(r) � 0 be given, for r � 0. Then a class C of sets

is a closed subclass of family Ff(r) i� it satis�es the following conditions:

(i) C is nonempty;

(ii) if S 2 C then it satis�es

�0;0(r � S) � r2 �A(S) = O (f(r)) ; (1)

(iii) if a set S belongs to C then any isometric transformation of S belongs to C
as well;

(iv) any set which can be represented by a �nite number of unions, intersections

and set-di�erences of sets from C also belongs to C.
We give some comments on conditions (ii), (iii) and (iv). In (ii) we consider the

di�erence between the area of r � S and the number of grid points inside of r � S
when r tends to in�nity, for an arbitrary set S from a subclass C of Ff(r). We

assume that O(f(r)) is a common upper bound for such di�erences of all sets in

Ff(r). It will enable the calculation of a common upper error bound for moment

estimations of sets in Ff(r).

Condition (iii) re
ects a standard assumption in image analysis that a real set

and the used digitization grid can be in arbitrary positions, i.e., translation, rota-

tion or a di�erent orientation of the grid axes are equivalent to the application of

suitable chosen translations, rotations or re
ection operations to the considered

set. Formally speaking, C is closed with respect to isometric transformations.

Condition (iv) re
ects situations in common image analysis where objects

of interest are overlapping, grouping etc., which implies that their intersections,

unions and consequently set di�erences should be allowed. Formally speaking, C
is closed with respect to the applications of a �nite number of unions, intersec-

tions and set-di�erences, ie. cl(C) = C.



The role of function f(r) is actually to describe the impact of the applied

grid resolution onto the worst-case error in real moment estimations. It will turn

out that the precision in the reconstruction of moments is bounded above by

O(r�1) for a set having a straight section on its boundary, and by

O
 
(log r)

47
22

r
15
11

!
� O

�
r�

15
11
+"
�

for all sets in cl(F3SC).

Throughout this Section 2 it can be assumed that the order of magnitude

of f(r) is between r1=2 and r: Namely, our derivations are based on asymptotic

estimations of the di�erences between the number of grid points inside of a

convex set S (bounded by a curve 
) belonging to some speci�ed class, and the

area A(S) of set S, see Equ. (1). Gauss and Dirichlet knew already that the area

of a convex set bounded by curve 
 estimates this number within an order O(l),
where l is the length of the curve 
. That gives f(r) = O(r) as upper bound.

Under additional assumptions about the boundary of S the error term in

Equ. (1) can be smaller. The curvature of the boundary plays an important

role. If f(r) is going to be expressed as f(r) = O (r�) then � decrease if some

additional smoothness conditions are assumed. It has been proved that Equ. (1)

would be false for � < 0:5, see [6, 13]. Huxley's theorem bounds the error term

in Equ. (1) by

O
�
r

7
11 � (log r) 4722

�
for a set S in the class F3SC .

We conclude this subsection with some examples. The closure cl(F3SC) of

the class F3SC with respect to �nite numbers of unions, intersections or set-

di�erences is a closed subclass of the family

F
r
7
11 �(log r) 4722

because the conditions (i) ... (iv) are obviously satis�ed.

A class of sets containing convex sets whose boundary consists of a �nite

number of C3-arcs, also allowing straight line segments (ie. arcs with zero curva-

ture), and which is closed with respect to �nite numbers of unions, intersections

or set-di�erences, is a closed subclass of the family Fr . For details see [7]. Note

that just one straight boundary segment makes already a di�erence compared

to 3-smooth convex sets. Particularly, the class cl(P) containing all convex poly-
gons, and being closed with respect to �nite numbers of unions, intersections or

set-di�erences, is a closed subclass of the family Fr .

2.3 Convergence theorems

The following theorems and the lemata in the Appendix are formulated for sets

in familiesFf(r). This was done for several reasons. It enables us to deal with two

absolutely di�erent situations (either there is at least one straight section on the



boundary of the considered set or not) in a uniform way. Furthermore, it would

support an immediate application of any possible theoretical improvement in the

error bound in Equ. 1, ie. a better estimation of f(r) will contribute to improved

error bounds for estimations of moments of arbitrary order. As an illustration,

Swinnerton-Dayer's result [26] suggests that the exponent � in the error term

f(r) = r� of Equ. 1 should be 3
5 or less, under the assumption that the boundary

of set S consists of a �nite number of C3 arcs. If this can be shown then it would

imply an improvement of the upper error bound for moment estimations. Finally

this approach of using familiesFf(r) has been chosen to enable direct applications

of further results (from number theory) related to speci�c (closed) subclasses C
of a family Ff(r).

The next two theorems are the main (new) results in this section which

characterise the e�ciency of estimations of real moments. As mentioned before,

the curvature of the boundary of the considered set plays an important role.

It makes an essential di�erence whether at least one straight section on the

boundary is allowed (Theorem 8) or not (Theorem 9).

Theorem8. Let S be a convex set whose boundary consists of a �nite number

of C3 arcs. Then mp;q(S) can be estimated by

1

rp+q+2
� �p;q(r � S) within an error of O

�
1

r

�
:

This error term is the best possible.

Proof. The upper bound is a direct consequence of Lemma 23 (in the Appendix)

and the fact that a straight section on the boundary is allowed. In this case we

have f(r) = r [7] and

max
n
f(r); r

7
11 � (log r) 4722

o
= O(r) :

The following example shows that the established upper bound is the best pos-

sible. Let S be the unit square with vertices (0; 0); (1; 0); (1;1); (0;1) : Then we

have

mp;q(S) =
1

(p+ 1)(q + 1)
:

For a given resolution r, the square Sr with vertices

(0; 0); (1 +
1

2r
; 0); (1 +

1

2r
; 1 +

1

2r
); (0; 1 +

1

2r
) ;

has the same digitization as S, i.e., Dr(S) = Dr(Sr) . But, the di�erence

mp;q(S) �mp;q(Sr) is equal to

mp;q(S) �mp;q(Sr) =

Z 1

0

xpdx

Z 1+ 1
2r

1

yqdy +

Z 1+ 1
2r

1

xpdx

Z 1+ 1
2r

0

yqdy

=
p + q + 2

2 � (q + 1) � (p+ 1)
� 1
r
+O

�
1

r2

�
:



In other words, for any choice of resolution r there exists a real square Sr such

that the digitization of r � Sr coincides with the digitization of r � S, while the
real moments mp;q(Sr) di�er from mp;q(S) by

p+ q + 2

2 � (q + 1) � (p+ 1)
� 1
r
+ O

�
1

r2

�
:

So, the error term O(1
r
) is the best possible. ut

However, if S is 3-smooth and convex, ie. the boundary does not possess

any straight segment, then the application of Huxley's theorem �nally leads to

a reduced upper error bound.

Theorem9. Let a planar 3-smooth convex set S be given. Then mp;q(S) can

be estimated by

1

rp+q+2
� �p;q(r � S) within an error of O

 
(log r)

47
22 )

r
15
11

!
� O

�
1

r1:3636:::

�
:

Proof. The statement follows because of

S 2 F
r
7
11 �(log r)

47
22

and Lemma 23 (in the Appendix). ut

Remark. While in the case when at least one straight section is allowed on the

boundary of S the error bound derived here is the best possible, in the case when

the considered set is 3-smooth there is no guaranty whether the error bounds in

Huxley's Theorem, and consequently in Theorem 9 are the best possible or not.

An improvement is expected to be characterised by an estimation of function

f(r) for a speci�c class of sets S.

Even in the case of the most frequently studied sets, the circles, an exact

order of magnitude of f(r) is unknown up to now. The best known upper bound

is given by

O
�
r
46
73
+"
�

see [8] in the case when S is (before dilation) a unit circle with a midpoint at

grid point location. On the other hand, in the case of such circles it is known

that f(r) has an order of magnitude described by the lower bound



�
r
1
2

�
:

Just as a reminder, g(r) = 
(h(r)) implies that

lim
r!1

g(r)

h(r)
6= 0 :



Let us consider the discrete moment �1;0(r � S) where S is a circle with a center

having integer coordinates. Then �1;0(r �S) is equal to the number of grid points

belonging to the 3D set

f (x; y; z) : (x; y) 2 r � S ^ x � z g :
This number is half of the number of grid points belonging to the 3D set

f (x; y; z) : (x; y) 2 r � S ^ z � r � (xmin + xmax)g :
Consequently,

�1;0(r �S) = r � (xmin + xmax)

2
�
�
r2 �A(S) +


�
r
1
2

��
= r3 �m1;0(S) +


�
r
3
2

�
:

In other words O(r� 3
2 ) is a lower bound for the error in reconstructing m1;0(S)

when S is a circle having a center with integer coordinates. For any circle in

general position due to Huxley's Theorem an upper error bound in moment

estimation is given by

O
 
(log r)

47
22 )

r
15
11

!
� O

�
1

r1:3636:::

�

as shown in [32].

2.4 Moment-based features

Let S be a set in F3SC. With respect to the listed features in Section 1 and

Theorems 5 and 6 we may state the following upper error bounds for feature

estimations (see also [17]):

1. An upper error bound for area estimates 1
r2

�0;0 (r � S) is directly given by

Huxley's theorem, ie.

��A (S) � 1
r2
�0;0 (r � S)

�� = O
�

1

r

15
11�"

�
:

2. The same upper error bound holds for the estimates

1

r
� �1;0 (r � S)
�0;0 (r � S) and

1

r
� �0;1 (r � S)
�0;0 (r � S)

of the coordinates
m1;0 (S)

m0;0 (S)
and

m0;1 (S)

m0;0 (S)

of the center of gravity.

3. For the estimate of the orientation only sets S with m2;0(S) 6= m0;2(S) are

relevant. Then S's orientation or(S) can be recovered within an worst-case

error of O(r� 15
11

+"), by using the estimate [17]

tan(2 � or(S)) � 2 � �1;1(r � S)
�2;0(r � S) � �0;2(r � S)

:



4. The elongation of a 3-smooth convex set S can be estimated by E(r � S)
where

E(r � S) = t1(r � S) +
p
t2(r � S)

t1(r � S) �
p
t2(r � S)

;

where
t1(A) = �2;0(A) + �0;2(A)

and
t2(A) = 4 � (�1;1(A))2 + (�2;0(A) � �0;2(r � S))2 ;

for a planar set A. The error in the approximation E(S) � E(r � S) has an

upper error bound in O
�
r�

15
11
+"
�
, see [17].

Theorems 8 and 9 may be used to derive error bounds for sets with straight

boundary segments, or for features de�ned by moments of higher order than

just up to order two.

3 Worst-case Error Bounds for Perimeter Estimates

In this section we study the problem of estimating the perimeter of a convex

polygonal set. In general a DSS approximation may be a set of polygonal curves

calculated with respect to the digital boundary Br(S), see Fig. 3. For all r � r0,

a convex set S generates exactly one polygonal curve 
r as DSS approximation

being the boundary of a convex polygon. For these connected DSS approxi-

mations 
r there exists a positive real "DSS such that the Hausdor� distance

between Br(S) and 
r does not exceed "DSS=r,

d2(Br(S); 
r) � "DSS

r
: (2)

The value of "DSS is a general approximation constant, and the \classical" value

is 1, see [20].

For the proof of the following theorem we cite two lemata as given and

proved in [18]. The �rst lemma shows that the perimeter decreases if a convex,

not necessarily polygonal set is eroded into a smaller convex polygonal set. Note

that the assumption of convexity of set S is essential for proving this lemma.

Lemma10. Assume that a convex polygonal set S is contained in a convex set

C of the euclidean plane, S � C. Then it follows that the perimeter of S is less

or equal to the perimeter of C.

An "-sausage of a curve 
 (as originally discussed in [19]) is the set of all

points p whose Hausdor� distance d2 (fpg; 
) is less or equal to ". The border

of any "-sausage which is homeomorphic to the annulus splits into two curves,

the shorter inner boundary and the longer outer boundary assuming that the

boundary is recti�able (ie. \shorter" and \longer" is de�ned in this case). The

following second lemma from [18] shows how the perimeter of a convex polygonal

set increases if the set is dilated towards the outer boundary of the "-sausage of

its boundary.



Fig. 3. A given polygonal convex set S and its digital boundary Br(S) which splits

into two simple polygonal curves.

Lemma11. The length of the outer boundary of the "-sausage of the boundary

of a convex planar polygonal set S is equal to Perimeter(S) + 2�".

Now we are prepared to state the following theorem about multigrid conver-

gence of the estimated perimeter. Note that this theorem provides not only an

asymptotic worst-case bound but even an explicit speci�cation of the asymptotic

constant. This theorem and most of its proof is basically a citation of work done

by V.Kovalevsky and S. Fuchs reported in [18]. However, the theorem as stated

below may not be found in [18]. Therefore we provide a proof in this paper. With

respect to the given proof of this theorem the mentioned DSS approximation in

this theorem needs to be such that it circumscribes a convex (!) polygonal set.

This aspect was not explicitely mentioned in [18].

Theorem12. (Kovalevsky/Fuchs 1992) Let S be a convex polygonal set in the

euclidean plane. Then there exists a grid constant r0 such that for all r � r0 it

holds that the DSS approximation of Br(S) is connected and its length and the

perimeter of S do not di�er by more than

2�
r

�
"DSS + 1=

p
2
�
:

Proof. At �rst note that there exists a grid constant r0 such that for all r � r0
it holds that the DSS approximation of Br(S) is connected. This connected DSS

approximation will be denoted by 
r .

Let Bd(S) be the boundary of set S. For Br(S) it holds that

d2(Bd(S); Br (S)) � 1

r � p2 ; (3)

for all r � r0. For proving this inequality assume that this Hausdor� distance

would be greater than (r � p2)�1. Then there exists at least one point p on

Br(S) whose minimum euclidean distance to Bd(S) is greater than (r � p2)�1.
Therefore the circle with centre p and radius (r � p2)�1 would not contain any

point of Bd(S), ie. this circle is disjoint to set S.



Now assume that p is on the boundary of an r-grid square with mid-point

grij. Then the r-grid point grij would be inside of this circle around point p with

radius (r � p2)�1 ie., it cannot be in the set S, ie. the r-grid point grij is not

in Dr(S). It follows that p cannot be a point on Br(S) which contradicts our

assumption. Therefore such a point p does not exist and the distance must be

always smaller than (r � p2)�1. This concludes the proof of inequality (3).
This inequality (3), the inequality (2), and the general triangular inequality

of a metric, satis�ed by the Hausdor� distance, leads to the conclusion that

d2(Bd(S); 
r ) � "DSS

r
+

1

r � p2 :

Let " = "DSS=r + 1=(r � p2). Then it follows that the perimeter of S and the

length of 
r di�er by 2�" at most. For showing this we assume that 
r is the

boundary of a convex (polygonal) set C, ie. it holds

d2(Bd(S); Bd(C)) � " : (4)

We show that
jPerimeter(S) � Perimeter(C)j � 2�" ; (5)

and this concludes the proof of the theorem.

According to the speci�ed Hausdor� distance it follows that the boundary

Bd(C) lies in the "-sausage of the boundary Bd(S) of set S. Let Bd"(S) be the

outer boundary of the "-sausage of Bd(S). By Lemma 10 it follows that

Perimeter(C) � jBd"(S)j :
By Lemma 11 it follows that

jBd"(S)j = Perimeter(S) + 2�" :

Therefore
Perimeter(C) � Perimeter(S) + 2�" : (6)

The Hausdor� distance is a metric and thus symmetric, ie. the boundary Bd(S)

lies also in the "-sausage of the boundary Bd(C). Let Bd"(C) be the outer

boundary of the "-sausage of Bd(C). By Lemma 10 it follows that

Perimeter(S) � jBd"(C)j :
By Lemma 11 it follows that

jBd"(C)j = Perimeter(C) + 2�" :

Therefore
Perimeter(S) � 2�" � Perimeter(C) : (7)

From inequalities (6) and (7) it follows that

Perimeter(S) � 2�" � Perimeter(C) � Perimeter(S) + 2�" ;

what proves Equ. (5) and thus the theorem. ut
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Fig. 4. Digitization of a line segment of length l in a one-dimensional grid of grid

resolution r = 1=#.

If the set S is assumed to be more general than just polygonal convex then

we may also conclude that

d2(Bd(S); 
r ) � "DSS

r
+

1

r � p2 :

However, Equ. (5) is only valid for polygonal convex sets S and C, ie. the �nal

conclusion about di�erences of perimeters cannot be drawn if S is not known to

be polygonal convex (and thus C as well).

4 Probability-theoretical Error Bounds

The determination of probability-theoretical error bounds such as standard de-

viations or expected errors, is a problem in probability theory [2] or integral

geometry [21]. A probability model is required for specifying the distribution of

input data. In our case, the probability model has to specify how the digitiza-

tion process performs on the chosen family of sets. For example, the standard

deviation, ie. the square root of the variance, requires an analysis of the mean

as well, and variance and mean are de�ned by the underlying probability model.

4.1 Digital straight line segments

Digital sets of speci�c shape (�nite unions of digitized line segments) may be

analysed based on results obtained for line digitizations. Digitization e�ects for

measuring the area of a set have been studied in [28, 29, 30] utilizing this ap-

proach. The stochastic analysis of positional variations has also been discussed

in Section 20.2 in [3]. Their analysis follows [4] who also studied digitizations

of a line segment in a one-dimensional grid. Following the De�nition 1, a grid

point is in the digital set of a line segment if it is on the line segment (see Fig.4).

Consider a line segment of length l going from x0 to x0 + l, see Fig.4. Let e

be the integer denoting the rightmost grid point in the digitization of the given



line segment, and let b be the integer denoting the leftmost grid point in the

digitization of the given line segment.

The following digitization model has been used in [3]: For a uniform random

variable q, 0 � q � 1, let x0 + l = # � (e� � 0:5 + q), where e� =
�
x0+l
#

� 0:5
�
is

an integer. The assumed quantization model

e =

�
e� with probability q

e� � 1 with probability 1� q
(8)

speci�es the relationship between e and e�. For the line's left endpoint x0 assume

the representation x0 = # � (b� + 0:5� s), where s is a uniform random variable

with 0 � s � 1, and b� =
�
x0
#
+ 0:5

�
is an integer. The assumed quantization

model is

b =

�
b� with probability s

b� + 1 with probability 1� s :
(9)

This digitization model leads to the following theorem. This theorem may not be

found exactly in this formulation in [3] but all the relevant material is speci�ed

there.

Theorem13. (Haralick/Shapiro 1993) Assume that line segments are digitized

according to Equ. (8) and Equ. (9). Then ê = # � (e+ 0:5) is an unbiased estima-

tor for the position x0 + l, and b̂ = # � (b� 0:5) is an unbiased estimator for the

position x0. The standard deviation of the estimated length of the line segment

is given by

S(ê � b̂) = #p
3
= 1

r
p
3

and the standard deviation of the estimated centroid of the line segment is

S( b̂+ê2 ) = #p
12

= 1
r�
p
12

:

Proof. (Sketch only, see [3] for details) From Equ. (8) it follows that e has the

mean E(e) = x0+l
#

�0:5 and the variance V (e) = 1
6 what means that V (ê) = #2

6 .

From Equ. (9) it follows that b has the mean E(b) = x0
#
+ 0:5 and the variance

V (b) = 1
6 .

It follows that ê � b̂ (ê and b̂ as de�ned in the theorem) is an unbiased

estimator for the length of the line segment, E(ê � b̂) = E(ê) � E(b̂) = (x0 +

l) � x0 = l. The variance of this estimator is V (ê � b̂) = V (ê) + V (b̂) = #2

3 .

For the centroid of the line it follows that the mean is equal to E( b̂+ê2 ) = b+e
2

and the variance is V ( b̂+ê2 ) = #2

12 . ut

4.2 Digital sets composed of parallel lines

Now assume a set S in the real plane which may be digitized by digitizing

N � 1 line segments in di�erent one-dimensional subgrids of a two-dimensonal

orthogonal grid, all parallel to the x-coordinate axis. Line n begins at xn and

ends at yn = xn + ln with respect to the x-coordinate axis. The digitization of



all of these line segments forms a digital set D(S). Note that this set does not

need to be connected.

We assume that there is no systematic alignment of the digitized line seg-

ments with the row and colum axes of the given orthogonal grid. Theorem 13

allows to derive error bounds for features of digital sets D(S) composed of a set

of N lines as speci�ed as shown in [3]. This section brie
y informs about what

has been done there.

The (discrete) column centroid of such a set S is de�ned to be equal to

�c(S) =

NP
n=1

(yn � xn)
�
yn+xn

2

�
NP
n=1

(yn � xn)

=

NP
n=1

ln �
�
yn+xn

2

�
NP
n=1

ln

:

This is considered to be an approximation of the moment m1;0(S) or of the

discrete moment �1;0(S). A (discrete) row centroid �r(S) could be de�ned in a

similar way for connected runs of grid points.

The chosen de�nition of a column centroid suggests the estimator

ĉ(S) =

NP
n=1

(ŷn � x̂n)
�
ŷn+x̂n

2

�
NP
n=1

(ŷn � x̂n)

:

It follows E (ĉ(S)) �= �c(S) for the mean and

V (ĉ(S)) =

#2

3

NP
n=1

h�
yn+xn

2 � �c(S)
�2

+
(yn�xn)2

4

i
�

NP
n=1

(yn � xn)

�2

=

NP
n=1

h�
yn+xn

2 � �c(S)
�2

+
l2
n

4

i

3r2
�

NP
n=1

ln

�2

(10)

for the variance. The standard deviation of the column centroid of set S follows

as being the square root of this variance. This result of [3] simpli�es for speci�c

sets.

Example 1. (Haralick/Shapiro 1993) Assume a digital setD(S) that is symmetric

about a vertical axis running through its column centroid. Then it follows that
yn+xn

2 = �c(S), for n = 1; :::; N , and

V (ĉ(S)) =

#2

12

NP
n=1

(yn � xn)
2

�
NP
n=1

(yn � xn)

�2 =

NP
n=1

l2n

12r2
�

NP
n=1

ln

�2 :



As a further example, consider a disk S with diameter # �N , ie. N is the number

of rows it takes to cover the disk. This leads to

V (ĉ(S)) =
0:09 � #2

N
=

0:09

r2 �N
as a �rst-order approximation of the variance of the column centroid with stan-

dard deviation

S (ĉ(S)) =
0:3 � #p

N
=

0:3

r � pN ;

and a similar result

S (r̂(S)) =
0:3 � #p

Q
=

0:3

r � pQ
holds for the estimated row centroid r̂(S) where Q is the number of colums it

takes to cover the disk. If the disk is in symmetric position with respect to the

grid then N = Q. In [3] also a rectangle oriented parallel to the rows of an image

has been discussed as a further speci�c example.

5 Conclusions

For most of the given upper bounds it is not yet known whether they are optimum

or not. The situation is sketched in Table 1. The upper error bounds for straight

line segments are trivial. The analysis of standard deviations seems to be an

open problem for the discussed 2D features in general. Of course, trivial bounds

may be stated, eg. the given upper error bounds.

The curvature of the boundary is important for moment estimations. Let us

just consider Lemma 16 in the Appendix. It is proved that the di�erence between

the area of (r � S)(k) and the number of grid points inside of it is equal to half

of the number of integer points on the vertical line x = k plus an error term

O(f(r)). So, the considered di�erence is at least half of the number of integer

points on the line x = k, ie. it has an order of magnitude equal to the grid

resolution r. On the other hand, (r � S)(k) has only one straight section on its

boundary. Another example which reaches the upper error bound O(r) was given
in the proof of Theorem 8 for an example of a polygonal region (only straight

boundary sections).

Note that the given error bounds in Table 1 are always related to one speci�c

convergent estimator. It is also of interest whether there are better estimators

supporting faster convergence. For example, if the perimeter R of a circle C :

(x� a)2 + (y � b)2 � R2 is estimated by

2

r � �0;0(rC) �
q
�2;0(rC) � �0;0(rC)� (�1;0(rC))2

then the error in the perimeter estimation is O(r� 11
15

+"), see [33].



Table 1. Multigrid error bounds: the feature estimates are de�ned as speci�ed in this
paper.

SET TYPE FEATURE UPPER BOUND STAND.DEV.

straight line segment length 1
r

1
r�
p
3

straight line segment centroid 1
2�r

1
r�
p
12

simple polygon moment (any order) O
�
1
r

�
unknown

convex polygon perimeter 2�
r

�
"DSS + 1=

p
2
�

unknown

3-smooth convex area O
�
r

7
11 � (log r)

47
22

�
unknown

3-smooth convex moment of any order O
�

1

r
15
11
�"

�
unknown

3-smooth convex center of gravity O
�

1

r
15
11
�"

�
unknown

3-smooth convex orientation O
�

1

r
15
11
�"

�
unknown

3-smooth convex elongation O
�

1

r
15
11
�"

�
unknown
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Appendix: Lemata for Subsection 2.3

This appendix contains a few lemata which are used for proving the convergence

theorems in Subsection 2.3. We use the following de�nitions.

De�nition14. For a planar set S, a given integer k and a real number r, the

set (r � S)(k) is de�ned to be

(r � S)(k) = f(x; y) : (x; y) 2 (r � S) ^ x � kg :

Consequently, D((r � S)(k)) is the set of grid points in the digitization of r � S
lying in the closed half plane determined by x � k.

De�nition15. For a planar set S, a given integer k and a real number r, the

grid point set L(r � S; k) is de�ned to be

L(r � S; k) = f(k; j) : (k; j) 2 D(r � S)g :

In other words, L(r � S; k) is the set of grid points in the digitization of r � S
which belongs to the vertical line x = k.

Lemma16. For a planar convex set S from a closed subclass C of a family

Ff(r), and for a given integer k, the discrete (0; 0)-moment of set (r � S)(k) can
be expressed as

�0;0((r � S)(k)) = A((r � S)(k)) +
1

2
� �0;0(L(r � S; k)) + O(f(r)) :

Proof. Let r � S be the set symmetrical to r � S, with respect to the line x = k.

It follows that the convex set r � S \ r � S belongs to the closed subclass C. So,
the number of grid points belonging to r � S \ r � S can be determined as

�0;0(r � S \ r � S) = A(r � S \ r � S) + O (f(r))

The statement of the lemma follows because the set r � S \ r � S is symmetrical

with respect to the line x = k : ut

Obviously, the moments �p;0(r �S) and �0;q(r �S), because of symmetry, can

be derived in an identical way, while the estimation of �p;q(r � S) where p > 0

and q > 0 needs some modi�cations. The following de�nitions of 3D-sets Wi

and W 0
i are used in the sequel:

De�nition17. For a planar convex set r � S and an integer i from the set

fdr � xmine; dr � xmine + 1; : : : ; br � xmaxc � 1g, we de�ne 3D sets (see Fig. 5)

Wi = f(x; y; z) : (x; y) 2 r � S ^ x � i ^ ip < z � (i + 1)pg
and

W 0
i = f(x; y; z) : (x; y) 2 r � S ^ x � i ^ xp < z � (i + 1)pg :



What follows is the calculation of discrete moments �p;0(r �S) : As a reminder,

the function vol denotes the volume of a 3D set.

Lemma18. Let S be a convex set having a boundary consisting of a �nite num-

ber of C3 arcs. Then it holds that

br�xmaxc�1X
dr�xmine

vol(W 0
i ) =

br�xmaxc�1X
dr�xmine

L(r � S; i)
�
(i+ 1)p � ip � p

2
� ip�1

�
+O (rp) :

Proof. The boundary of r �S can be divided into two arcs of the form y = y1(x)

and y = y2(x), such that y1(x) � y2(x). Then it holds that

br�xmaxc�1X
i=dr�xmine

vol(W 0
i ) =

br�xmaxc�1X
i=dr�xmine

Z i+1

i

dx

Z (i+1)p

xp
dz

Z y2(x)

y1(x)

dy

=

br�xmaxc�1X
i=dr�xmine

Z i+1

i

dx

Z (i+1)p

xp
dz

 Z y1(i)

y1(x)

dy +

Z dy1(i)e

y1(i)

dy +

Z by2(i)c

dy1(i)e
dy

+

Z y2(i)

by2(i)c
dy +

Z y2(x)

y2(i)

dy

!

Fig. 5. Illustration of the decomposition for moment calculations with p = 2. For the

general case exponent 2 needs to be replaced by exponent p.



=

br�xmaxc�1X
i=dr�xmine

Z i+1

i

dx

Z (i+1)p

xp
dz

 Z by2(i)c

dy1(i)e
dy + O(1)

!

0
B@note that

y1(i)Z
y1(x)

dy = O(1) and

y2(x)Z
y2(i)

dy = O(1)

because y1(x) and y2(x) have a continuous �rst derivative)

=

br�xmaxc�1X
i=dr�xmine

Z i+1

i

(by2(i)c � dy1(i)e) � ((i + 1)p � xp)dx + O(rp)

=

br�xmaxc�1X
i=dr�xmine

(by2(i)c � dy1(i)e) �
�
(i+ 1)p � ip � p

2
� ip�1 +O �ip�2�� + O(rp)

=

br�xmaxc�1X
i=dr�xmine

L(r � S; i) �
�
(i + 1)p � ip � p

2
� ip�1

�
+ O(rp) ut

The discrete moments �p;0(r �S) and �0;q(r �S) are evaluated by Lemma 19,

while Lemma 21 evaluates �p;q(r � S) ; where p; q > 0.

Lemma19. Let S be a convex planar set in Ff(r) . Then the following (equiv-

alent) asymptotic expressions are satis�ed:

�p;0(r � S) =
X

(i;j)2D(r�S)
ip =

Z
r�S

Z
xpdxdy + O (f(r) � rp)

and

�0;q(r � S) =
X

(i;j)2D(r�S)
jq =

Z
r�S

Z
yqdxdy + O (f(r) � rq) :

Proof. Let us notice that �p;0(r � S) is equal to the number of grid points be-

longing to the 3D set B given by

B = f(x; y; z) : (x; y) 2 r � S ^ 0 < z � xpg = B0 [ B00

where B0 and B00 are de�ned as follows:

B0 = f(x; y; z) : (x; y) 2 r � S ^ 0 < z � dr � xminepg

and

B00 = f(x; y; z) : (x; y) 2 r � S ^ dr � xminep < z � xpg ;



where xmin is de�ned to be

xmin = minf x : (x; y) 2 S g :
Analogously, xmax is de�ned to be

xmax = maxf x : (x; y) 2 S g :
First, consider the number of grid points belonging to B0. It follows that

�0;0;0(B
0) = dr � xminep � (A(r � S) + O (f(r)))

= vol(B0) + O (f(r) � rp) :
Now we calculate the number of grid points belonging to B00. According to

De�nition 17 of the 3D setsWi andW
0
i , and by usingO(rp) as a trivial estimation

for the volume of the 3D set de�ned by

f (x; y; z) : (x; y) 2 r � S ^ x � br � xmaxc ^ z � xp g ;
it follows that

vol(B00) =

br�xmaxc�1X
i=dr�xmine

(vol(Wi)� vol(W 0
i )) +O(rp)

=

br�xmaxc�1X
i=dr�xmine

vol(Wi) �
br�xmaxc�1X
i=dr�xmine

vol(W 0
i ) + O(rp)

=

br�xmaxc�1X
i=dr�xmine

((i + 1)p � ip) �A((r � S)(i)) �
br�xmaxc�1X
i=dr�xmine

vol(W 0
i ) +O(rp)

(by using Lemata 16 and 18, it follows)

=

br�xmaxc�1X
i=dr�xmine

((i + 1)p � ip) � (�0;0((r � S)(i))

�1

2
� �0;0(L(r � S; i)) + O (f(r))

�

�
br�xmaxc�1X
i=dr�xmine

�0;0(L(r � S; i)) �
�
(i+ 1)p � ip � p

2
� ip�1

�
+ O(rp)

=

br�xmaxc�1X
i=dr�xmine

((i + 1)p � ip) � (�0;0((r � S)(i)) � �0;0(L(r � S; i)) +O (f(r)))



�
br�xmaxc�1X
i=dr�xmine

1

2
� �0;0(L(r � S; i)) �

�
(i+ 1)p � ip � p � ip�1�+ O (rp)

=

br�xmaxc�1X
i=dr�xmine

((i + 1)p � ip) � (�0;0((r � S)(i)) � �0;0(L(r � S; i)))

+O (f(r)) �
br�xmaxc�1X
i=dr�xmine

�
p � ip�1 +O(ip�2)�

�
br�xmaxc�1X
i=dr�xmine

1

2
� �0;0(L(r � S; i)) � O

�
rp�2

�
+O (rp)

= �0;0;0(B
00) + O (rp � f(r))

Note that for a �xed integer i, with r � xmin � i � r � xmax, it holds that

((i + 1)p � ip) � (�0;0((r � S)(i) � �0;0(L(r � S; i)))

equals the number of grid points belonging to Wi, and consequently

br�xmaxc�1X
i=dr�xmine

((i + 1)p � ip) � (�0;0((r � S)(i) � �0;0(�0;0(L(r � S; i))))

equals the number of grid points inside of B00.
The sum of �0;0;0(B

0) and �0;0;0(B
00) is the number of grid points in B.

Together with the already derived expression for �0;0;0(B
0) ; we have

�p;0(r � S) = �0;0;0(B) = �0;0;0(B
0) + �0;0;0(B

00)

= vol(B0) + O (rp � f(r)) + vol(B00) + O(rp � f(r))

= vol(B) + O (rp � f(r)) = mp;0(r � S) + O (rp � f(r)) : ut

It remains to estimate �p;q(r � S) ; where p; q > 0 : The next de�nition and

lemma are some analogons to De�nition 14 and Lemma 16, respectively.

De�nition20. For a planar set S, given integers k; p; q; and a real number

r, the set (r � S)(k; p; q) is de�ned to be

(r � S)(k; p; q) = f(x; y) : (x; y) 2 (r � S) ^ xp � yq � kg :

Consequently, D((r � S)(k; p; q)) is the set of grid points in the digitization of

r � S lying in the closed part of the plane determined by xp � yq � k.



Lemma21. For a planar convex set S in a closed subclass C of family Ff(r) ;

and for given integers k; p; q; the discrete (0; 0)-moment of the set (r �S)(k; p; q)
can be expressed as

�0;0((r � S)(p; q; k)) = A((r � S)(p; q; k)) + O
�
max

n
f(r); r

7
11 � (log r) 4722

o�
:

Proof. Since the boundary of (r �S)(p; q; k) consists of a �nite number of C3-arcs

the statement follows. Namely, if there is a straight section on the boundary of S

then f(r) = O(r) = max
n
f(r); r

7
11 � (log r) 4722

o
, else, the strongest result which

can be used (up to now) is

O
�
max

n
f(r); r

7
11 � (log r) 4722

o�
= O

�
r

7
11 � (log r) 4722

�
: ut

Lemma22. Let S be a convex set in Ff(r). Then the following asymptotical

expression holds,

�p;q(r � S) =
Z
r�S

Z
xp � yqdxdy +O

�
rp+q �

�
max

n
f(r); r

7
11 � (log r) 4722

o��
:

Proof. Note that �p;q(r � S) is equal to the number of grid points belonging to

the 3D set E given by

E = f(x; y; z) : (x; y) 2 r � S ^ 0 < z � xp � yqg = E0 [ E00

where E0 and E00 are de�ned as follows:

E0 = f(x; y; z) : (x; y) 2 r � S ^ 0 < z < rp+q � zming
and

E00 = f(x; y; z) : (x; y) 2 r � S ^ rp+q � zmin � z � xp � yqg ;
where zmin is de�ned to be

zmin = minf z : z = xp � yq ^ (x; y) 2 S g :
Analogously, zmax is de�ned to be

zmax = maxf z : z = xp � yq ^ (x; y) 2 S g :
First, consider the number of grid points belonging to the set E0. From Equ. (1)

it follows that

�0;0;0(E
0) = (drp+q � zmine � 1) � (A(r � S) + O (f(r)))

= vol(E0)� rp+q � zmin �A(r � S)

+(drp+q � zmine � 1) � (A(r � S) + O (f(r)))

= vol(E0) + A(r � S) � �drp+q � zmine � rp+q � zmin

�
+O �rp+q � f(r)� :



A(r � S) = O(r2) and p + q � 2 have been used in this derivation. Now,

let us calculate the number of grid points belonging to set E00. What follows is

a de�nition of 3D-sets !i and !0i , for i = drp+q � xmine; drp+q � xmine +
1; : : : ; brp+q � xmaxc :

!i = f (x; y; z) : (x; y) 2 r � S ^ xp � yq � i ^ i < z < minfxp � yq ; i+ 1g g

and

!0i = f (x; y; z) : (x; y) 2 r � S ^ i < xp � yq � i+ 1 ^ xp � yq < z < i + 1 g :

Now, we can estimate the volume of E00. By using O(r2) as a trivial upper

bound for the volume of

f(x; y; z) : (x; y) 2 r �S ^ xp �yq � drp+q � zmine ^ xp � yq � z � drp+q � zmineg

it holds that

vol(E00)

=

brp+q �zmaxcX
i=drp+q �zmine

vol(!i) +
�drp+q � zmine � rp+q � zmin

� �A(r � S) + O(r2)

=

brp+q �zmaxcX
i=drp+q �zmine

(A((r � S)(i; p; q)) � vol(!0i))

+
�drp+q � zmine � rp+q � zmin

� �A(r � S) + O(r2)

=

brp+q�zmaxcX
i=drp+q �zmine

A((r � S)(i; p; q)) �
brp+q �zmaxcX
i=drp+q �zmine

vol(!0i)

+
�drp+q � zmine � rp+q � zmin

� �A(r � S) + O(r2)
0
@note that brp+q�zmaxcX

i=drp+q �zmine
vol(!0i) � r2 �A(S) because the projections of

!0i onto the xy-plane belong to r � S)

=

brp+q �zmaxcX
i=drp+q �zmine

�
�0;0((r � S)(i; p; q)) +O

��
max

n
f(r); r

7
11 � (log r) 4722

o���

+
�drp+q � zmine � rp+q � zmin

� �A(r � S) + O(r2)



= �0;0;0(E
00) +

�drp+q � zmine � rp+q � zmin

� �A(r � S)
+ O

�
rp+q �

�
max

n
f(r); r

7
11 � (log r) 4722

o��
Thus,

�0;0;0(E
00) = vol(E00) � �drp+q � zmine � rp+q � zmin

� �A(r � S)
+ O

�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o�
:

The proof of the lemma is �nished by adding �0;0;0(E
0) and �0;0;0(E

00) :

�p;q(r � S) = �0;0;0(E
0) + �0;0;0(E

00)

= vol(E0) + A(r � S) � �drp+q � zmine � rp+q � zmin

�
+O

�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o�

+ vol(E00) � �drp+q � zmine � rp+q � zmin

� �A(r � S)
+ O

�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o�

= vol(E) + O
�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o�

= mp;q(r � S) + O
�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o�
: ut

The errors in estimating real moments mp;q(r � S) by their discrete analogs

�p;q(r � S) are derived separately depending upon whether both p and q are

strictly positive or not. It turns out that in both cases the error terms can be

upper bounded by

O
�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o�
:

The next lemma describes the e�ciency in calculating real moments of an arbi-

trary order from the corresponding digital sets.

Lemma23. Assume a convex set S in Ff(r). Then mp;q(S) can be estimated by

1

rp+q+2
� �p;q(r � S)

within an error of

O
0
@max

n
f(r); r

7
11 � (log r) 4722

o
r2

1
A :



Proof. It holds that

mp;q(S) � 1

rp+q+2
� �p;q(r � S)

= mp;q(S) � 1

rp+q+2
�
0
@Z
r�S

Z
xp � yqdxdy

+ O
�
rp+q �max

n
f(r); r

7
11 � (log r) 4722

o��

= mp;q(S) � 1

rp+q+2
�
Z
r�S

Z
xp � yqdxdy + O

0
@max

n
f(r); r

7
11 � (log r) 4722

o
r2

1
A

= mp;q(S) � mp;q(S) + O
0
@max

n
f(r); r

7
11 � (log r) 4722

o
r2

1
A

= O
0
@max

n
f(r); r

7
11 � (log r) 4722

o
r2

1
A : ut
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