
1.CITR, Tamaki Campus, University of Auckland, Private Bag 92019

Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www.citr.auckland.ac.nz)

CITR-TR-42 March 1999

Three-dimensional View Synthesis
 from Multiple Images

Shou-kang Wei

Abstract
We develop a view synthesis system, which is capable to collect/reconstruct 3-D information of scenes
from multiple calibrated/uncalibrated images; to store and access the 3-D information in an efficient
way; and to synthesize, in real time, arbitrary views of the scene with a pre-specified viewing area.

THREE-DIMENSIONAL VIEW SYNTHESIS

FROM MULTIPLE IMAGES

By

Shou-Kang,Wei

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND

NOVEMBER 1998

Abstract

We develop a view synthesis system, which is capable to collect/recover 3-D information of scenes from

multiple calibrated/uncalibrated images; to store and access the 3-D information in an e�cient way; and to

synthesize, in real-time, arbitrary views of the scene within a pre-speci�ed viewing area. We propose a new

scene representation for our view synthesis system. Consequently, it is designed to be expressive enough for

storing the reconstructed data of complicate real scenes, yet simple enough for the fast rendering.

To found the basis of image transformations for various applications in our system, all possible image

mappings between two logical image forms (planar and cylindrical) are established by deriving the corre-

sponding mapping equations. However, the mapping equation alone is insu�cient to render a view because

multiple scene points may map to a single position of the desired image in an arbrary order. Our solution for

the visibility determination is inspired and derived by the geometric observations and the existing approach

[1]. Besides, our approach achieves the constant time complexity, O(1).

Fully automatic depth-recovery algorithms have not yet reached the level that allows us to obtain dense

and accurate depths independently from the scene complexity. Instead of trapping ourselves into such short-

term unsolvable problems, we construct a development system, where the human intervention is adopted,

that is capable to e�ciently recover a dense depth map with acceptible quality.

v

Chapter 1

Introduction

It is intriguing to consider one day in the future when the technology may exist that we can freely travel all

over the world in our own pace and preferences without physically being there. Our high-expectations are

already being set by the depiction of such virtual navigation system in the various works of science �ction.

The technological realities, however, present many problems to be solved before these fantasies could be

realized.

3-D scene generation and navigation were investigated for many years in both computer graphics and

computer vision communities. Computer graphics considers mainly the problem of synthesizing images from

speci�ed geometric models. Great e�ort has been made to develop computer aided design (CAD) systems

that allow us to create realistic images by modeling complex scene geometry and material attributes as well

as by simulating the light propagation through virtual environments. In spite of this e�ort, it is still di�cult,

if possible, to replicate much of the complex geometry and subtle lighting e�ects found in the real world.

Computer vision considers the problem in the opposite direction. The geometric models are synthesized

from multiple images. Given the 2-D projection of a point in the world, its position in 3-D space could be

anywhere along a ray propagating in a particular direction from the camera's optical center. However, when

the projections of a su�cient number of 3-D points are observed in multiple images taken from di�erent

positions, it is theoretically possible to deduce the 3-D locations of the points as well as the relative positions

of the original cameras, up to an unknown scale factor (cf. Appendix C). The e�orts of computer graphics

and computer vision are generally considered as complementary because the results of one �eld can frequently

serve as an input to the other. Computer graphics often looks to the �eld of computer vision for the generation

of complex geometric models, whereas computer vision relies on computer graphics for viewing results or

testing algorithms with synthetic images.

1.1 Motivations and Goals

One of the primary subjective measures of image quality is the extent to which the rendered image is indis-

tinguishable from a photograph. Needless to say, using photographs as the underlying scene representation

inherits intrinsic structure and texture of real scene naturally in a way that is currently beyond capabilities

of geometric modeling. If one wants to render a 3-D scene by computing the shading of composed scene

objects, given surface properties of the objects and positions of light sources, then the 3-D model of the

objects has to be very accurate due to the fact that the computed shading is very sensitive to 3-D noise. On

the other hand, when rendering a 3-D scene with surface textures directly extracted from the real images,

the quality of the rendered image is more tolerable to inaccurate 3-D data.

Recently a new approach to rendering has emerged: image-based rendering [2, 3, 1, 4, 5, 6, 7, 8]. The

image-based rendering systems generate di�erent views of a scene using digitized photographs or rendered

images (for increasing the frame rate), and their corresponding depth maps. The key observation in the

image-based rendering is that when the depth of every point in an image is known, the image can be re-

rendered from any nearby point of view by projecting the pixels of the image to their proper 3-D locations

and back-projecting them into a desired image (cf. Chapter 4). A principal attraction of the image-based

1

rendering is that it o�ers a method of rendering arbitrarily complex scenes with a constant amount of

computation required per pixel. Thus it is suitable for a real-time implementation on workstations and

personal computers to produce a virtual environment.

Our goal is to develop an image-based system for the view synthesis. The system should be capable to

collect/recover 3-D information of scenes from multiple calibrated/uncalibrated images; to store/access the

3-D information in an economical/fast manner; and to render in real-time the arbitrary view(s) of a virtual

scene, within a pre-speci�ed viewing area.

1.2 Related Work

A number of techniques have been proposed for
ying through scenes by redisplaying previously rendered or

digitized views. Some techniques have also been proposed for interpolating between views by warping input

images, using depth information or correspondences between multiple images. Below we give an overview of

previous works that are partially or conceptually related to our system.

Apple's QuickTimeVR system [2] was one of the �rst systems to suggest that the traditional model-

ing/rendering process can be skipped. The multi-nodes version of this system creates environment maps at

key locations in a scene. The user is able to discretely navigate from location to location (jumping in be-

tween), and to continuously changes the viewing direction while at each location. Many overlapping images

of the scene are taken and then stitched together. The simplest stitching occurs when the camera motion

includes only rotation. In this case the transformation between the views is parametric and does not include

any 3-D shape information. R. Szeliski and S. Kang [9] create high-resolution mosaics from low-resolution

video streams, and S. Peleg and J. Herman [10] relax the �xed camera constraint by introducing the projec-

tion manifold. The forerunner to these techniques is the use of environment maps to capture the incoming

light in a texture map. An environment map records the incident light arriving from all directions at a

point. The original use of environment maps was to e�ciently approximate re
ections of the environment

on a surface. However, environment maps may also be used to quickly display any outward looking view of

the environment from a �xed location but at a variable orientation. A drawback of these approaches is that

one cannot correctly simulate a translational camera motion from a set of model images.

S. Laveau and O. Faugeras [3] were the �rst to make use of the epipolar constraint for view synthesis,

allowing views to to extrapolated as well as interpolated, between the reference images. Epipolar constraints,

however, are subject to singularities that arise under certain camera motions, for example, when the virtual

camera optical axis is collinear with the line joining centers of the base cameras. L. McMillan and G. Bishop

[1] use a full depth map together with the epipolar constraint to provide a direct connection between the

virtual camera motion and the rendering engine. The epipolar constraint is somewhat indirect and hence

requires the speci�cation of matching points.

Image interpolation is designed to create in-between images among two or more reference images. This

includes image morphing [4], direct interpolation from image-
ows [11, 12], image interpolation using 3-D

models instead of image-
ow [13], and \physically correct" image interpolation [5, 6]. All but the last two do

not guarantee to produce physically correct images, and all cannot extrapolate from the set of input images.

Instead of the
ow-�eld interpolation among the reference images, it is possible to interpolate directly over

the plenoptic function [14]. E. H. Adelson and J. R. Bergen assigned the name, plenoptic function, to the

set of rays visible from any point in space, at any time, and over any range of wavelengths, which means all

of the radiant energy received at the viewpoint of an observer rather than at an object or an illumination

source. M. Levoy and P. Hanrahan [7] and Gortler et al. [8] interpolate between a dense set of rays derived

from several thousands of reference images to reconstruct a reduced plenoptic function under an occlusion-

free world assumption. Hence, they considerably increase the number of input images to avoid computing

image-
ow between the reference images.

1.3 Overview of Our View Synthesis System

Our system comprises three phases: image acquisition, scene reconstruction and rendering. Each phase

consists of several processes. The processes may also contain sub-processes or a sub-system (e.g. depth

2

Depth Recovery
Relative Projection
Matrix Recovery

Visible Surface
Determination

Scene Model
Registration

Image Mapping

Image
Acquisition

Phase

Multiple Images

Reconstruction
Phase

Rendering
Phase

Depth Maps
















12404010

55203020

34102050

...

...

... Projection
Matrices

Scene Model

Rendering Portion
& Orders

Interactive
Control

Unit

New Virtual
Camera Pose

















7305060

14704020

20403040

...

...

...

Output Image

Input/Output
Devices

Figure 1.1: The architecture of our view synthesis system.

recovery development system cf. Chapter 6). The system is organized as pipeline structure (an output of

one process becomes input of the other). So it is extendible and expandable to meet various requirements

of the speci�c applications, in particulars, for crime or underwater scene visualizations. Consequently, as

technology becomes more and more advanced, one or more processes/sub-processes can be replaced by new

3

technologies without rebuilding the whole system. Figure 1.1 shows the main structure of the system.

In the image acquisition phase, the camera model can be a setup of acquiring stereo panoramic images

[15], or acquiring standard binocular stereo images [16], or both. After digitization, input images are sent

to the reconstruction phase. For each binocular stereo pair, a depth map associated with either of the pair

(we choose the right image) can be obtained through our depth recovery development system (cf. Chapter

6). Since the input images are assumed to be uncalibrated, the geometric relations among those images are

retrieved through the relative camera projection matrices recovery process (cf. Appendix A, B, C) . The

scene model registration process collects previous recovered information as well as the input images into our

scene model, using image mapping equation(s) (a planar-to-cylindrical or a cylindrical-to-cylindrical image

mapping equation, cf. Chapter 4). Once all input image data are registered into our scene representation,

the reconstruction phase is complete.

Navigation to the 3-D scene is done interactively with the user input(s), for example the desktop ap-

plication through a mouse device. Users are allowed to move and turn around in the 3-D space within a

pre-speci�ed region, similar to walk-through in the real world. Two modes MOVE and TURN are speci�ed

and switched by a particular key on the keyboard. The indication of user movement is transmitted to our

rendering engine, and a desired view corresponding to the new virtual viewing pose is generated. The inter-

active control unit coordinates the events triggered by input/output devices and the rendering engine. Since

our system makes no special request to the control unit and interactive scheme(s) used in the recent PC or

workstations are su�cient for our application, we will not give further discussion on it in the remainder of

this thesis.

During the rendering phase, two major processes are performed. The �rst is the visible surface deter-

mination. It determines which portion of data stored in the scene representation is interesting to the new

view, and computes a speci�c traverse order such that the visible surfaces are determined correctly in the

new view (cf. Chapter 5). The second is the image forward-mapping which maps each scene data of the

interesting portion to the desired view (cf. Chapter 4). The illusion of the walk-through in a real 3-D space

would be maintained by continually mapping the images to correspond to the user's changing perspective.

Two image reconstruction techniques, splatting and polygonal texture mapping, are provided for on-line

and o�-line rendering. The splatting process estimates an arrived (mapped) point size on the resulting image

for each scene data mapping, so the potential gaps which may appear in the resulting image are logically

\�lled-up" or at least shrunk noticeably. Because it is fast (a look-up table), it can be used for a real-time

implementation. However, the higher the rendering speed, the lower the quality of resulting images. Thus,

for the o�-line applications the polygonal texture mapping is used to ensure an adequate image quality. It

regards each reference pixel as a mesh polygon de�ned by four corners of the pixel. Instead of mapping a

single pixel to the desired image, it maps four corners of reference pixel onto the desired image and forms a

polygon �lled by an average color of the four. Unlike W. R. Mark's approach [17], our approach is based on

the inter-relations between foreground and background objects established in the reconstruction phase (cf.

Chapter 6), the expensive connectedness computations for the inter-polygon relations are therefore avoided.

1.4 Organization of Thesis

The thesis provides a complete description of a 3-D scene reconstruction and display system. Each chapter

addresses one or more issues of the processes in the system. Chapter 2 provides a few preliminaries that

will be used in subsequent Chapters. In Chapter 3, we �rst investigate some existing 3-D scene representa-

tions. Particularly, the scene representations used in other image-based approaches are analyzed. Our scene

representation, a key to the realization and success of the system, and the performance analysis of it are

elaborated in the second and third part of Chapter 3.

Chapter 4 and 5 cover up the topics of processes in the rendering phase, which discuss a few major

progresses we make to the performance of the rendering. In Chapter 4, we derive image mapping equations

for all the image transformations required in our view synthesis system. This establishment permits such

possibility that multiple images can be registered to as well as novel views can be synthesized from our scene

representation. Furthermore, the optimization of the image mapping, a quality loss-less speedup, is also

explored and explained at the end of Chapter 4.

Chapter 5 solves the visibility problem for the real-time rendering implementation. We interpret visibility

4

problems using epipolar geometry and then explore L. McMillan's solution for the visibility determination [1].

Our solution points out those cases where his approach fails and �xes the problems. Besides, the formulation

and analysis of the culling process, which �lters out the needless scene data in our scene representation

before other rendering processes carried out, are given in the last part of Chapter 5.

Chapter 6 describes a complete depth recovery development system that is capable to generate dense

disparity maps. The motivations of building such system and a blueprint of an underlying system are

elaborated. The experimental results for each intermediate development step in the system are shown.

Chapter 7 concludes this thesis by pointing out the advantages, limitations and future directions of the

current system.

Appendix A introduces an invariant of the epipolar geometry, the fundamental matrix. The de�nition

and properties of such invariant are stated formally. Appendix B describes a modern approach based on the

algebraic structure and numerical computation to recover the fundamental matrix from a given stereo pair.

Finally, the use of the fundamental matrix to recover the relative camera projection matrices is explained in

Appendix C.

5

Chapter 2

Preliminaries

2.1 Notations

We follow the convention that a matrix and a vector (a point) are in bold-faced font, and a scalar or a

constant number is in italic font. An arbitrary point in 3-D space is denoted as P, and its projection on an

image is denoted as p. The camera optical center, the origin of the camera coordinate system, is denoted as

C. The image is denoted as E. The image plane that describes the planar image model is referred to as I,

and the image cylinder as J.

Yworld

Xworld

Zworld

Oworld

P

Ci

Y i

X i

Z i

Ii

pi

x
y

u
v

Ei

fi

Figure 2.1: Perspective camera geometry in world coordinate system.

Every symbol may come with a subscript, which gives connection between di�erent symbols while

multiple images are considered at a time. For example, camera optical center C1 should associate with the

image E1, and C2 with E2, etc. We depict these notations in Fig. 2.1.

The camera projection matrix speci�es a transformation from 3-D to 2-D, and it is used to map a space-

point to an image-point. It describes internal camera parameters, e.g. focal length, image unit length;

and external pose with respect to the world coordinate system, e.g. orientation, translation. A perspective

projection matrix, denoted as �, is a 3� 4 matrix in the following form, � =
�
H
���HC�1 or simply

1
The notation [�

��
�] means the concatenation of matrices from both sides of the vertical bar.

6

� =
�
H
��h�. The camera optical center C is a 3-vector with respect to the world coordinate system. H is a

3� 3 matrix composed as H = AR. The matrix A is the camera intrinsic matrix containing all the intrinsic

parameters of the camera, and the matrix R describes the camera's orientation with respect to the world

coordinate system.

2.2 Epipolar Geometry

Epipolar geometry is a fundamental geometric concept applicable in many computer vision problems, such

as stereo analysis, motion detection, and object recognition [18, 19, 20]. In the next chapters, it is also found

useful to interpret some problems in a manifest and comprehensive manner (e.g. visibility analysis, relate

camera projection matrices recovery).

℘

CL

YL

XL

ZL

YR

XR

ZR

IR

P

pL

eL eR

IL

CR

pR

Figure 2.2: Epipolar geometry of a stereo pair.

For any pair of images, their camera optical centers CL, CR plus a space point P de�ne a plane in 3-D

space called epipolar plane, denoted by }, as illustrated in Fig. 2.2. The projections of CL and CR on the

image planes IR and IL are called epipoles, denoted by eR and eL, respectively. The lines joining pi and

ei are called epipolar lines. An implicit property given by Fig. 2.2 is that all 3-D points lying on the same

epipolar plane are projected onto the same epipolar line of each image plane. Thus, the corresponding points

between two reference images are constrained to sit on the epipolar lines. Moreover, as shown in Fig. 2.3,

we can extend this to in�nite number of epipolar planes, U = f}i : i = 1; 2; : : : ;1g, intersecting the line

joining two camera optical centers CL and CR.

2.3 Standard Binocular Stereo Geometry

If two image planes are coplanar and the x-axes of their associated camera coordinate systems are collinear,

then it is called standard binocular stereo geometry, as shown in Fig. 2.4, where the epipoles lie at in�nity

and the e�ective focal lengths of both camera are the same. The distance between two camera optical centers

CL and CR is called base distance, denoted by b.

The major advantage using epipolar constraints concerning with the stereo correspondence analysis

problem is e�ectively eliminating the search space from 2-D to 1-D. In addition, the binocular stereo geometry

further simpli�es the 1-D searching path from an arbitrary image epipolar line to a regular image row, being

in this case the epipolar line. The correspondence search is therefore performed on the same row of two

stereo images in a scan-line fashion.

7

CL

CR

Epipolar Planes

Figure 2.3: The abstraction of in�nite number of epipolar planes commonly intersect the line joining two

camera optical centers CL and CR.

CL

CR

pL

ZR

XR

YR

ZL

XL

YL

P

pR

Epipolar Planes

Epipolar Lines

b

f

P′′

p′′R
p′′L

Figure 2.4: The geometric interpretation of spatial relations between the depth and disparity in the standard

binocular stereo geometry.

2.4 Disparity to Depth

Disparity can be interpreted as the di�erence between two corresponding points with respect to the x- and

y-axis in image coordinate systems. Let two corresponding points in the left and the right image be (xpL ; ypL)

and (xpR ; ypR) in the standard binocular stereo case. Then we have ypL = ypR and xpL is always greater or

8

equal to xpR , so disparity, denoted as dP , is simply x-disparity

dP = xpL � xpR : (2.4.1)

A depth associated with an image pixel describes the shortest distance between its corresponding 3-D

point and a plane parallel to the image plane through the camera optical center. It is the Z-component of a

3-D point with respect to the camera coordinate system,

Z =
bf

dP
;

where b is the base distance (distance between CL and CR) and f is the e�ective focal length of both cameras.

What is the relationship between pixel's depth (we want) and disparity (we have)? Considering Fig.

2.4, it is easy to understand that ZP � ZP 0 implies dP � dP 0 . Formally, we may assume that the right

camera coordinate system is coincident with the world coordinate system, so we have

xpR =
Xf

Z
; xpL =

(X + b)f

Z
; and ypR = ypL =

Y f

Z
:

Thus, the world coordinates of a point P is as follows,

P = (XP ; YP ; ZP)
T =

�
bxpR
dP

;
bypR
dP

;
bf

dP

�T
: (2.4.2)

It implies that the depth of a pixel is inversely proportional to its disparity since both b and f are constant

values. If the depth values of an image Ei are stored in a depth map Di, then the function value Di(upi; vpi)

gives the depth of an image pixel pi = (upi; vpi).

2.5 Depth Conversion for Cylindrical Images

The depth of a cylindrical image pixel means the shortest distance between the relevant 3-D point and

the y-axis of the cylindrical camera coordinate system, which is di�erent from the de�nition for a planar

image. When warping a planar image into a cylindrical image, the depth map of the planar image must be

transformed into a cylindrical depth map.

Ci p2

Z i

X iY i

P

p1

XP

ZP

i = 1 & 2

DC(p2)

DP(p1)

Figure 2.5: The geometric interpretation of the depth conversion from a planar to a cylindrical image.

The relationship between the depth values of a 3-D point P with respect to the planar and cylindrical

camera coordinate systems is illustrated in Fig. 2.5. Let DP (p1) denote the depth value of the image

9

point p
1
= (xp1 ; yp1) in the planar image, and DC(p2) denote the depth value of the image point p

2
in the

cylindrical image. We already have

DP (p1) = ZP =
bf

dP
;

where dP is the disparity value for the point p1 in a planar image, b is the base distance and f is the e�ective

camera focal length. The depth value for the cylindrical image can be computed as follows,

DC(p2) =

q
X2

P + Z2

P =

s�
bxp1
dP

�
2

+

�
bf

dP

�
2

=
b

dP

q
x2p1 + f 2 =

ZP

f

q
x2p1 + f 2:

Thus,

DC(p2) = DP (p1)

s�
xp1
f

�
2

+ 1:

This equation shows the conversion from the depth of a planar image pixel to the depth of a cylindrical

image pixel.

10

Chapter 3

Scene Representation

The key element of the view synthesis system is a proper scene representation. It should be capable to describe

the scene structure expressively and store the reconstructed data e�ectively. Additionally, considering the

role it plays in the real-time implementation, an e�cient access to the stored scene data is a critical issue to

its performance in the application. Furthermore, as more and more range data become available, merging

the new data with the existing data should be easy to perform.

There exist many scene representations because di�erent applications suggest di�erent design issues. It

is important to understand and analyze those approaches in the �rst place. In this chapter, we investigate

a few existing representations with selected examples based on image-oriented representations. Then, we

propose a new scene representation for our view synthesis system. The ideas, design issues, and performance

analysis are presented in details. Consequently, we focus on the functionality and contributions of the

proposed scene representation to our view synthesis system, as well as reason why it can be characterized

as expressive enough for storing the reconstructed data of complicate real scenes, yet simple enough for the

fast rendering.

3.1 Existing Representations

Point-based representation is a basic 3-D scene representation, which can be expressed in various coordinate

systems, such as Cartesian, polar or stereographic [16] coordinate systems depending on application. Other

geometric representations, mesh-based and patch-based, are also commonly used in both computer vision

and computer graphics communities. A mesh, or a planar surface unit, is normally de�ned by three or four

points in a pre-speci�ed order. A patch, or a curved surface unit, is a more sophisticated primitive for scene

description.

Besides, there is a volumetric primitive, called voxel, that can be interpreted geometrically as a solid

polyhedron in 3-D space. Conventionally, it is used for visualizing internal structure of a volumetric object

from a set of image slices generated either by image acquisitions or simulation-generated. Recently, the voxel

representations for view synthesis, such as [21, 22], have been receiving growing interests.

Considering input data as a set of images, the scene representation is intuitively close to the point-based

representation or the voxel-based representation, where each point/voxel is associated with an image pixel.

Contrarily, the mesh- and the patch-based representations introduce at least one undesired problem, namely,

that all foreground-background objects of the scene in the images are adhered together. Then it is very

di�cult to separate them automatically if high-level knowledge, e.g. human cognition, is not involved into

the process.

One remarkable example using voxel-based representation is the inverse polar octree [22]. It utilizes the

characteristics of spatial relation that the resolutions are inversely proportional to the distance between a

viewpoint and an observed object in the projective space. The unbounded 3-D data is then transformed

into bounded 3-D space and into uniform quantization. Figure 3.1 shows the illustration of the inverse polar

octree and Fig. 3.2 depicts the inverse polar transformation.

Recently, image-based techniques have received increasingly attentions from computer graphics and

11

Figure 3.1: Abstraction of inverse polar octree representation.

dist

dist
1

Rmin

Rmin

1Inverse Polar

Transform

Figure 3.2: Inverse polar transformation (dist denotes the distance between a viewpoint and an observed

point and Rmin represents a minimum distance away from a viewpoint with respect to the closest observed

point in the scene).

computer vision communities. The techniques concern input data uniquely from one or more images. The

primary intention is to reuse those �nite data, from either synthetic or real images, to compute desired images

without actually worrying about underlying 3-D scene structures. One apparent scene representation is the

image itself. S. Laveau and O. Faugeras [3] �rst demonstrated the potentiality of 3-D scene representation as

a collection of images. Other recent reconstruction techniques [6, 23] also use images as their representations

exclusively.

However, transforming images into a logical geometric form may produce desired result(s) instantly. A

simple example is Apple's QTVR. S. E. Chen [2] used the image warping, stitching and blending techniques

to transform multiple mosaics into a single seamless cylindrical representation, called panoramic image.

Another commercial product, PhotoVista, is implemented in a similar way with two additional geometric

12

forms, spherical and cubic representations. Scene reconstruction processes based on this simple representation

are therefore simpli�ed, because neither 3-D data nor depth information is needed for rendering the scene.

The results are promising, because the image transformations can be performed uniformly and independently

from any extent of scene complexity. Other related works based on this idea can be found in [1, 24, 25].

M. Levoy and P. Hanrahan [7] have described another representation in which the underlying model-

primitives are rays rather than images. They combined and interpreted huge arrays of rendered/acquired

images into 2-D slices of a 4-D function. All of the rays that pass through a slab of empty space, which

is enclosed between the two slices, can be described using only four parameters (a 2-D coordinate for each

slice). Such ray-based representation sets the scene reconstruction processes free from recovery of 3-D data

(or depth), as well as free from the fragileness of image registrations (which is part of S. E. Chen's approach).

On the other hand, it misuses the human resource and the data storage severely during the images acquisition

and the digitalization processes (thousands or more images required). It will continue to be impractical in

the near future. The similar representation can also be found in [8] approach.

3.2 Depth-Layered Cylinder Representation

As re
ected from the given name, depth-layered cylinder representation (DLC in short), our scene repre-

sentation is intended to provide a full-view with additional capability to store scene data layered by depth

information.

Let us recall from S. E. Chen's cylindrical model. He considered all the 3-D scene points observed from a

single viewpoint. However, if multiple panoramic images are available, his solution to the walk-through (tran-

sition of movement between viewpoints) is \jumping" in-between. Even a view with a slight displacement

from the original viewpoint is not allowed in his approach. Furthermore, if additional images are available,

such as widely available planar images, his model allows new data nowhere to contribute to.

We simply extend his model (cylindrical representation) to a uni�ed representation (depth-layered cylin-

der representation) that additional range data can easily be integrated into. Let us consider a cylinder in

3-D space, where the center of the cylinder can be de�ned as a projection center emitting cylindrically to

the 3-D world. Each projection point/grid on the cylinder de�nes one class of 3-D space points, lying on/in

a projection ray/frustum from the cylinder center to in�nity. Each classi�er, a projection point/grid on the

cylinder, is associated with a linked list. Reconstructed scene data classi�ed into the same class are stored

in the associated linked list and sorted by depth. Each element of the list contains a depth, colors (ARGB,

4 bytes) and pointers to the previous and the next element. The concept of our scene representation can be

visualized in Fig. 3.3.

Resolutions of the DLC, theoretically, can be of arbitrary �neness. Practically, however, with this model

we should only consider integrating 3-D scene information available from its spatial neighborhoods to certain

extent, instead of doing globally. The reason is to take advantages of the e�ciency, in terms of both data

access and storage, provided by the localization scheme. So, the DLC can be thought as compressed version

of S. E. Chen's model, where the redundant scene information from a few nearby panoramas is largely

eliminated. Besides, this representation relaxes S. E. Chen's �xed-viewpoint problem, allowing arbitrary

view(s) of a virtual scene within a pre-speci�ed viewing area.

One intuitive way of setting up our scene representation is choosing an existing panorama to coincide

with the DLC, normally a centroid of multi-panoramas topology. However, if no panorama is given, our

model can still be set to one of existing images and allows image registrations from others. One intrinsic

feature of this model is its extensibility, the more data integrated into it the better desired views can be

obtained, i.e. less gaps to appear in the resulting images.

3.3 Performance Analysis

The role of our scene representation in the view synthesis system is a bridge between the reconstruction and

the rendering phases, as from a system's point of view. However, it is not just a way to store the scene data.

There are further considerations involved in its design. From a point of view of the reconstruction phase,

the scene representation should be expressive enough to be able to store the reconstructed scene data. On

13

C

P1

P2

p2 p1

Figure 3.3: The visual data structure of the depth-layered cylinder scene representation. 3-D scene points

P1 and P2 are commonly projected along a ray/frustum from the cylinder center C to in�nity through an

intersection point p (i.e., the classi�er). Boxes linked encompassing the cylinder are elements of sorted-lists,

containing actual reconstructed scene data.

the other hand, from a point of view of the rendering phase, the scene representation should be as simple

to access as possible. So the desired data for generating a new view can be extracted out in a regular and

fairly fast manner, such as scan-line traverse.

Our scene representation satis�es such demands from both sides, the reconstruction and the rendering

processes. Let us start from the reconstruction side. The space outside the cylinder, as shown in Fig. 3.3, is

unbounded, with fully horizontal perspective. And the number of elements in the linked lists is not limited.

So our scene representation is capable to handle complicate scenes in any extents, i.e. real-scene images. On

the other hand, what the rendering engine sees is an inside view of a cylinder. For each view rendering, it

only needs to determine which portion of cylinder is required to scan through (for the image mapping) and

in what particular order (for solving visibility problem). So a regular, fast rendering process is feasible based

on such scene representation. In reality, rendering a view in our system we traverse each element of a small

portion of the DLC row by row (or column by column) in pre-computed order and deliver the scene data to

the desired image using the image mapping equations (cf. Chapter 4.4).

Our scene representation is designed for real-time applications, in the sense of \software-only" rendering

acceleration. The time complexity is linear, O(N), where N denotes total number of elements stored in

the DLC. However, the horizontal �eld of view of a virtual camera is limited and normally less than 45�.

The actual portion of DLC required to be traversed is fairly small, determined by the culling process (cf.

14

Chapter 5.4). We show, in the worst case, 75% of the cylinder can be culled away before the traverse takes

place for each desired view synthesis, whereas 93:6% in the best case. Furthermore, based on simplicity

of our scene representation, we can propagate the current computed result of image mapping to the next

mapping computation incrementally until the end of image row (or column) is reached. Hence, each mapping

computation originally requiring 17 multiplication, 1 division, and 13 additions operations is dramatically

reduced down to 4 multiplication, 1 division, and 8 additions, i.e. approximately four times speedups than

the original one. We show this superior algebraic property and its applications later in Chapter 4.6.

A 3-D scene data reconstructed can be registered into the DLC if and only if the di�erences between its

depth value and the ones of the stored data are above a threshold. The threshold is set up proportionally

to the distance away from the projection center. In other words, an element of linked lists in our scene

representation is created and inserted to the list only when a new scene data passes the thresholding scheme.

The huge redundant 3-D data contributed from multiple input images, especially those of close-view, are

hence discarded.

The e�ciency of storage in our scene representation is apparently su�cient for practical use. We do

not directly store complete raw-data (multiple images) into our scene representation, as in O. Faugeras's

approach [3], nor transform them into a large database-like representation such as the rays-based one in the

light �elds approach [7]. Instead, we only store non-repeated scene data to our scene model under certain

quantization, which is known adequate for new view(s) generation within a pre-speci�ed viewing area.

15

Chapter 4

Image Mappings with Optimizations

We consider an image as a set of image-points. The image mapping is a transformation from a 2-D point on

one image to a 2-D point on another image. Both 2-D image points are referred to as the projections of the

same 3-D space point. An image mapping equation describes the correspondence between the projections

of a 3-D point on any pair of images. Given an image point, its corresponding point on any other images,

viewing in di�erent poses, can be derived through the mapping equation if its corresponding 3-D space point

is also visible from other viewpoints.

The concept of image mapping can be formulated as an image point (pixel) travels (transformations)

from one image through several di�erent geometrical spaces (coordinate systems) and �nally arrives to at

another image. Figure 4.1 shows such travels (transformations) for all combinations of mapping between

planar and cylindrical images.

There are four geometrical spaces, namely, the world coordinate system, the camera coordinate system,

the logical image model coordinate system1, and the actual image coordinate system. Each next geometrical

space is the subspace of the previous one. There are four possible combinations of the image mapping,

shown in Fig. 4.1, with vertical downward arrows indicating the transformation sequence. There is a

certain conversion between any two adjacent coordinate systems. Condensing all the intermediate conversion

equations into a compact form, we can then map a pixel in an input image directly to a pixel in an output

image. To build up such equation, we need depth information associated with each pixel on a reference image

(cf. Chapter 6), a projection matrix associated with the reference image and a projection matrix associated

with the desired image (cf. Appendix C for an uncalibrated case).

In this chapter, we show, in detail, the derivations of the four image mapping equations. The derivations

are necessary because of the two following reasons. First, the intermediate results provide useful information

to the successive process(es). For instance, a new depth information of a scene point, with respect to the

camera coordinate system of the virtual camera, can be obtained in the middle of the derivation steps and

used to assist the determination of the splatting size in the desired image (cf. Chapter 1.3).

Second, the intermediate step(s) inspire further computational optimization(s). We illustrate such opti-

mizations for both the planar and the depth-layered cylinder models in the last section of this chapter. The

purpose of it is to save the mapping computations by reusing the previous computed result in the current

mapping calculation. It is found tremendously useful for the time-critical applications. We also perform the

computational complexity analysis in which the signi�cance of speedup is disclosed.

4.1 Notation

We call the reference image source image and the desired image destination image. Our convention is to use

subscript 1 for the indication of a source image. The related notations are an image E
1
, an image plane I

1
, an

image cylinder J
1
, a camera optical center C

1
, and an image projection p

1
of the 3-D point P, in the image

coordinate system (up1 ; vp1) and in the image plane coordinate system (xp1 ; yp1). Furthermore, we have

the image dimension H1�W1, the camera e�ective focal length f1, the camera planar perspective projection

1
It is an image coordinate system of a speci�c logical model, e.g. planar or cylindrical model.

16

World
Coordinate System

Camera
Coordinate System

Logical Image
Coordinate System

Image
Coordinate System

u

v

x

y

ZW

YW

XW

XCYC

ZC

XCYC

ZC

u

v

x

y

ZW

YW

XW

XCYC

ZC

x

y

u

v

v

u

ZC XC

YC

αα

ββ

ZC XC

YC

ZW

YW

XW

v

u

v

u

ZC XC

YC

αα

ββ

αα

ββ

v

u

ZW

YW

XW

x

y

XCYC

ZC

u

v

ZC XC

YC

αα

ββ

Image
Coordinate System

Logical Image
Coordinate System

Camera
Coordinate System

IN

OUT

Figure 4.1: Image mappings through several intermediate geometrical-space transformations.

matrix �1 =
�
H1

��h1� = [A1R1

��h1] (cf. Chapter 2.1), and �nally the associated depth map D1 (cf. Chapter

2.4). Subscript 2, likewise, is used for the destination image. In particular, we use Z2(up2 ; vp2 ; k) to denote

17

the depth value of the k th layer of the class (pixel), (up2 ; vp2), in the DLC.

4.2 Planar to Planar Image Mapping

Planar image is currently the most available image format among all. The mapping equation between two

planar images should be established �rst. Suppose we are required to map a point (up1 ; vp1) in the source

planar image to a point (up2 ; vp2) in the destination planar image, which are the projections of the same 3-D

point P .

First of all, the actual image coordinates of a point p1 are converted to its logical image plane coordinates

as follows,

0BB@
xp1

yp1

1

1CCA =

0BBBBBB@
up1 �

W1

2
+ 0:5

vp1 �
H1

2
+ 0:5

1

1CCCCCCA ; (4.2.1)

where W1 and H1 are the source image's dimensions, width and height, in pixel units and the camera z-axis

is assumed to exactly pass through the image center.

Second, the 3-D point P, with respect to the camera coordinate system of the source image, can be

computed using both the camera intrinsic matrix A1 and the depth map D1 like this,0BBBBB@
s1xp1

s1yp1

s1

1

1CCCCCA =

"
A1 0

0T 1

#0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C1

;

where s1 is some nonzero scalar, 0 is a 3-D zero vector, and (�)C1
denotes a vector with respect to the camera

coordinate system of C1. So inversely, (Xp; Yp; Zp)
T
C1

can be determined by applying the inverse of A1 to

the vector (sxp1 ; syp1 ; s)
T . The intrinsic matrix Ai for image Ei has a general form,

Ai =

2664
a11 a12 a13

0 a22 a23

0 0 1

3775
where aij are some real numbers determined by camera intrinsic parameters. Thus, the scalar s1 is equal to

the value Zp, that is, the depth of p1. The depth value of the image point p1 can be looked up from the

depth map D1(up1 ; vp1). Hence, the following holds,0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C1

=

"
A1 0

0T 1

#�1
0BBBBB@
D1(up1 ; vp1)xp1

D1(up1 ; vp1)yp1

D
1
(up1 ; vp1)

1

1CCCCCA :

The conversion from the camera coordinate system to the world coordinate system is straightforward,0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
world

=

"
R1 �R1C1

0T 1

#�1
=

0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C1

;

18

where R
1
is the 3� 3 rotation matrix with respect to the world coordinate system. Combining the last two

transformations together we have0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
world

=

"
R1 �R1C1

0T 1

#�1 "
A1 0

0T 1

#�1
0BBBBB@
D1(up1 ; vp1)xp1

D1(up1 ; vp1)yp1

D1(up1 ; vp1)

1

1CCCCCA ;

=

 "
A1 0

0T 1

#"
R1 �R1C1

0T 1

#!�1
0BBBBB@
D1(up1 ; vp1)xp1

D1(up1 ; vp1)yp1

D1(up1 ; vp1)

1

1CCCCCA ;

=

"
�1

0T 1

#�1
0BBBBB@
D1(up1 ; vp1)xp1

D1(up1 ; vp1)yp1

D1(up1 ; vp1)

1

1CCCCCA : (4.2.2)

One may notice that it is just an inverse of 4� 4 camera projection matrix, which implies the back-projection2

can be applied to an image as long as its associated depth map and relative projection matrices are recovered

(cf. Chapter 6 and Appendix C).

Once the coordinates of a 3-D point P in world coordinate system are found, the next is simply projecting

it onto the destination image plane by the camera perspective projection matrix, �2. Add this projection

to Eq. 4.2.2, we get 0BBBBB@
s2xp2

s2yp2

s2

1

1CCCCCA =

"
�2

0T 1

#"
�1

0T 1

#�1
0BBBBB@
D1(up1 ; vp1)xp1

D1(up1 ; vp1)yp1

D1(up1 ; vp1)

1

1CCCCCA ;

where s2 is an arbitrary nonzero scalar. Substitute Eq. 4.2.1 into above equation we have

0BBBBB@
s
2
xp2

s2yp2

s2

1

1CCCCCA =

"
�2

0T 1

#"
�1

0T 1

#�1
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1 +

1�W1

2

�
D1(up1 ; vp1)

�
vp1 +

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
; (4.2.3)

2
It is referred to as projecting an image pixel back to its 3-D space point.

19

or, alternatively

0BBBBB@
xp2

yp2

1

1

s2

1CCCCCA '

"
�2

0T 1

#"
�1

0T 1

#�1
0BBBBBBBBBB@

up1 +
1�W1

2

vp1 +
1�H1

2

1

1
D1(up1 ; vp1)

1CCCCCCCCCCA
; (4.2.4)

where ' means \equal" up to a scale factor.

Equations 4.2.3 and 4.2.4 can be used to map the image pixels from one planar image to the other

whenever their relative projection matrices are available (cf. Appendix C). Additionally, if both the source

and the destination images are calibrated, that is, all the intrinsic and extrinsic parameters associated with

both the images are available, then Eq. 4.2.3 can be rewritten as

0BBBBB@
xp2

yp2

1

1

s2

1CCCCCA '

"
H2 �H2C2

0T 1

#"
H1 �H1C1

0T 1

#�1
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1+

1�W1

2

�
D1(up1 ; vp1)

�
vp1+

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
; (4.2.5)

where

H2 = A2R2 and H1 = A1R1:

According to the theorem below (known from linear algebra [26]), we can calculate the inverse of our 4� 4

matrix "
H1 �H1C1

0T 1

#
:

Theorem 4.2.1. If a nonsingular matrix B can be partitioned into the form

B =

�
B1 B2

B3 B4

�
;

such that B1 is nonsingular, then

B�1 =

�
B 0 �B�1

1
B2B

00

�B 00B3B
�1

1
B 00

�
;

where

B 00 =
�
B1 �B2B

�1

4
B3

��1
; and B 0 = B�1

4
+B�1

4
B3B

00B2B
�1

4
:

20

Since the matrix H
1
is always invertible, Eq. 4.2.5 becomes

0BBBBB@
xp2

yp2

1

1

s2

1CCCCCA '

"
H2 �H2C2

0T 1

#"
H�1

1
C1

0T 1

#
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1 +

1�W1

2

�
D1(up1 ; vp1)

�
vp1 +

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
;

=

"
H2H

�1

1
H2(C1 �C2)

0T 1

#
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1 +

1�W1

2

�
D1(up1 ; vp1)

�
vp1 +

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
:

We may further expand it as follows,

0BB@
xp2

yp2

1

1CCA ' D1(up1 ; vp1)H2H
�1

1

0BBBBBB@
up1 +

1�W1

2

vp1 +
1�H1

2

1

1CCCCCCA+H2(C1 �C2): (4.2.6)

Finally the actual image coordinates can be derived by

0BB@
up2

vp2

1

1CCA =

0BBBBBBB@

�
xp2 +

W2

2

�
�
yp2 +

H2

2

�
1

1CCCCCCCA
; (4.2.7)

where W2 and H2 are the destination image's width and height in pixel units.

To illustrate an application of the planar-to-planar image mapping equation, di�erent views of a single-

planar-image scene are generated. We use the right image of the stereo pair, shown in Fig. 6.5, as our source

image to generate a set of destination images from various viewing directions toward the scene center (image

center). The results are displayed in Fig. 4.2.

4.3 Planar to Cylindrical Image Mapping

Cylindrical image model is the natural representation of a full view panoramic image. The camera optical

center locates at the center of the cylinder and the radius of the cylinder is equal to the e�ective camera focal

length. The mapping from a planar image to a cylindrical image is depicted in Fig. 4.3. We use subscript 2

for the destination cylindrical image, and subscript 1 for the source planar image.

The back-projection from an image point p1 to its 3-D space point is shown in the previous planar-

to-planar image mapping derivation. To project a 3-D point P onto a cylindrical image there are several

intermediate steps similar to those in the planar image mapping. First we need to transform the coordinates

21

Figure 4.2: Novel views of a scene from the single planar image in Fig. 6.5, i.e. various viewing directions

toward the scene center. The white gaps indicate the scene regions that are occluded in the source image.

of a 3-D point P from the world coordinate system to the camera coordinate system which is associated

with the cylindrical image. Then we project the point onto the cylinder model. This projection can not be

written in the matrix from, because the mapping is non-linear. A point on the cylinder is represented by a

2-D ordered pair (�p2 ; �p2), called image cylinder coordinate system. The de�nition of these two parameters

are shown in Fig. 4.4. Finally, the mapping is accomplished by the transformation from the image cylinder

coordinate system to the actual cylindrical image coordinate system, which corresponds to the step of the

transformation from the image plane coordinate system to the actual planar image coordinate system.

The combination of the transformations from (up1 ; vp1) to the 3-D point in world coordinate system and

22

C2

p2

Z2

X2

Y2

C1
Y1

X1

Z1

p1

P

Oworld

Zworld

Yworld

Xworld

Figure 4.3: Geometry of the planar-to-cylindrical image mapping.

Ci

pi

Z i

X i

Y i

ααi
ββi

vi

ui

Figure 4.4: Geometry of the image cylinder coordinate system.

from the world coordinate system to the destination (cylinder) camera coordinate system is as follows,

0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C2

'

"
R2 �R2C2

0T 1

#"
�1

0T 1

#�1
0BBBBBBBBBB@

up1 +
1�W1

2

vp1 +
1�H1

2

1

1
D1(up1 ; vp1)

1CCCCCCCCCCA
; (4.3.1)

23

where ' means \equal" up to a scale factor, and R
2
is a 3� 3 rotation matrix with respect to the world

coordinate system. Equation 4.3.1 can be applied when a projection matrix �1, which is associated with

the uncalibrated source image, is found relative to the world coordinate system. If both the camera intrinsic

and extrinsic parameters of the source image are known, then Eq. 4.3.1 can be simpli�ed by using Theorem

4.2.1 as follows,

0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C2

=

"
R2 �R2C2

0T 1

"
H1 �H1C1

0T 1

#�1
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1 +

1�W1

2

�
D1(up1 ; vp1)

�
vp1 +

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
;

=

"
R2 �R2C2

0T 1

#"
H�1

1
C1

0T 1

#
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1 +

1�W1

2

�
D1(up1 ; vp1)

�
vp1 +

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
;

=

"
R2H

�1

1
R2(C1 �C2)

0T 1

#
0BBBBBBBBBBB@

D1(up1 ; vp1)

�
up1 +

1�W1

2

�
D1(up1 ; vp1)

�
vp1 +

1�H1

2

�
D1(up1 ; vp1)

1

1CCCCCCCCCCCA
;

where

H1 = A1R1:

Furthermore, it can be written as

0BB@
Xp

Yp

Zp

1CCA
C2

= D1(up1 ; vp1)R2H
�1

1

0BBBBBB@
up1 +

1�W1

2

vp1 +
1�H1

2

1

1CCCCCCA+R
2
(C

1
�C

2
): (4.3.2)

So far we have 3-D information of a point P in respect to the destination camera coordinate system. The

projection of P onto the image cylinder is nonlinear, so the remaining warping steps cannot be incooperate

with the Eq. 4.3.2 above. Given P = (Xp; Yp; Zp)
T

C2
, we have its projection in the image cylinder coordinate

24

system as

0BB@
�p2

�p2

1

1CCA =

0BBBBBBBB@

tan�1
�
Xp

Zp

�
tan�1

0@ Ypq
X2

p + Z2

p

1A
1

1CCCCCCCCA
:

Followed by the transformation between the image cylinder coordinate system and the actual image coordi-

nate system,

0BB@
up2

vp2

1

1CCA =

0BBBBBB@
�p2
360 � 2�f 2

f 2 tan�p2 +
H2

2

1

1CCCCCCA ;

where f 2 is the e�ective camera focal length of the destination image and H2 is the height of the destination

image cylinder in pixel unit. The complete projection formula for the cylindrical image becomes like this,

0BB@
up2

vp2

1

1CCA =

0BBBBBBBBB@

�f 2 tan
1

�
Xp

Zp

�
180

f 2Ypq
X2

p + Z2

p

+ H2

2

1

1CCCCCCCCCA
: (4.3.3)

If the focal length f 2 is not available, then the projection formula can also be expressed as follows,

0BB@
up2

vp2

1

1CCA =

0BBBBBBBBB@

W2 tan
�1

�
Xp

Zp

�
360

W2Yp

2�
q
X2

p + Z2

p

+ H2

2

1

1CCCCCCCCCA
;

where W2 is the length of the destination image in pixel unit, or equivalent to the diameter of the image

cylinder.

The major application of the planar-to-cylindrical image mapping equation in our system is registering

multiple planar images into the DLC. In Chapter 3 we have described the registration scheme that a source-

image pixel can be registered into the DLC if and only if the di�erences between its depth value and the ones

of the stored data are above a threshold3. The procedures of the registration process are follows. First, we

use Eq. 4.3.3 to determine which class (pixel), of the DLC, the source-image pixel is potentially registered to

(cf. Chapter 3.3). Then, the depth value of the source pixel, Zp, obtained in Eq. 4.3.2, is used to compare

with others where there may be one or more existing scene data already in the determined class of the DLC.

The scene data is quali�ed to be registered into the DLC if the depth comparisons satisfy the registration

scheme; otherwise it is just ignored. Upon the acceptance, an element of the linked list of that class, which

contains the color information and the depth value, is created and inserted.

3
The threshold is proportional to the distance from the projection center, see Chapter 3.3.

25

4.4 Cylindrical to Planar Image Mapping

The depth of an image pixel may be de�ned di�erently in cylindrical images, and it is not equal to the

Z-component of the 3-D point with respect to its camera coordinate system as does in planar images. For

a cylindrical image point p1, the depth value D1(up1 ; vp1) means the distance between the origin C1 and

the projection of the 3-D space point P onto xz-plane of the cylindrical camera coordinate system. Thus we

can determine easily the 3-D point P in the camera coordinate system in terms of �p1 , �p1 , and the depth

D1(up1 ; vp1) as follows, 0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C1

=

0BBBBB@
D1(up1 ; vp1) sin�p1

D1(up1 ; vp1) tan�p1

D1(up1 ; vp1) cos�p1

1

1CCCCCA :

The transformation from (up1 ; vp1) to (�p1 ; �p1) is established as

0BB@
�p1

�p1

1

1CCA =

0BBBBBBBBB@

up1 + 0:5
2�f1

� 360

tan�1

0B@vp1 �
H1

2
+ 0:5

f1

1CA
1

1CCCCCCCCCA
:

Combining these two together, we have a cylindrical image back-projection formula like this,

0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C1

=

0BBBBBBBBBBB@

D1(up1 ; vp1) sin

�
180up1 + 90

�f1

�
D1(up1 ; vp1)

�
2vp1 �H1 + 1

2f1

�
D1(up1 ; vp1) cos

�
180up1 + 90

�f1

�
1

1CCCCCCCCCCCA
:

Once we have 3-D information of the point from the source cylindrical image, the rest of transformations

to the destination planar image are straightforward. First, transform the point P into the world coordinate

system, then project it onto the destination planar image using the planar camera projection matrix. It

gives

0BBBBB@
xp2

yp2

1

1

1CCCCCA '

"
H2 �H2C2

0T 1

#"
R1 �R1C1

0T 1

#�1
0BBBBBBBBBBB@

D1(up1 ; vp1) sin

�
180up1 + 90

�f1

�
D1(up1 ; vp1)

�
2vp1 �H1 + 1

2f1

�
D1(up1 ; vp1) cos

�
180up1 + 90

�f1

�
1

1CCCCCCCCCCCA
;

where

H2 = A2R2:

26

This equation can be simpli�ed as follows,

0BB@
xp2

yp2

1

1CCA ' D1(up1 ; vp1)H2R
�1

1

0BBBBBBBBBB@

sin
�
180up1 + 90

�f1

�
�
2vp1 �H1 + 1

2f1

�
cos
�
180up1 + 90

�f1

�
1

1CCCCCCCCCCA
+H2(C1 �C2):

And �nally,

0BB@
up2

vp2

1

1CCA =

0BBBBBBB@

�
xp2 +

W2

2

�
�
yp2 +

H2

2

�
1

1CCCCCCCA
;

where W2 and H2 are the destination image's width and height in pixel units.

A very important role of this mapping equation played in our view synthesis system is being part of the

rendering processes. The rendering process comprises three major steps. First, it determines which portion

of the DLC is necessary to the desired view, referred to as culling process (cf. Chapter 5.4). Second, it

computes a traverse order such that the visible surfaces are determined correctly in the desired view (cf.

Chapter 5.1, 5.2, 5.3). Third, it transfers scene data to the designation image by the equation(s) established

in this section. The mapping process scans through a small portion of the DLC in the speci�c order and

forwards the pixels to the destination image (planar image) with a chosen image reconstruction method. We

use the splatting method for on-line rendering, and polygonal-texture mapping method for o�-line rendering

(cf. Chapter 1.3). The mapping process is further accelerated up using the incremental computation for

both on-line and o�-line applications. We return to this subject later on in this chapter.

4.5 Cylindrical to Cylindrical Image Mapping

We have shown the back-projection equation of a cylindrical image point to the 3-D space point and the

projection equation of the 3-D point onto a cylindrical image in the previous two sections. The mapping

equation between a pair of cylindrical image points is a combination of these two equations. As we have

mentioned, the cylindrical image mapping is nonlinear so we separate the mapping equation into two parts.

First, the mapping from the source cylindrical image point p1 to the 3-D point P in the destination

camera coordinate system is

0BBBBB@
Xp

Yp

Zp

1

1CCCCCA
C2

'

"
R

2
�R

2
C
2

0T 1

#"
R1 �R1C1

0T 1

#�1
0BBBBBBBBBBB@

D1(up1 ; vp1) sin

�
180up1 + 90

�f1

�
D1(up1 ; vp1)

�
2vp1 �H1 + 1

2f1

�
D1(up1 ; vp1) cos

�
180up1 + 90

�f1

�
1

1CCCCCCCCCCCA
:

27

It can be expressed in a simpler form as follows,

0BB@
Xp

Yp

Zp

1CCA
C2

= D1(up1 ; vp1)R2R
�1

1

0BBBBBBBBBB@

sin
�
180up1 + 90

�f1

�
�
2vp1 �H1 + 1

2f1

�
cos
�
180up1 + 90

�f1

�
1

1CCCCCCCCCCA
+R2(C1 �C2); (4.5.1)

or if the focal length f1 is unknown, then

0BB@
Xp

Yp

Zp

1CCA
C2

= D1(up1 ; vp1)R2R
�1

1

0BBBBBBBBBB@

sin
�
360up1 + 180

W1

�
�
�(2vp1 �H1 + 1)

W1

�
cos
�
360up1 + 180

W1

�
1

1CCCCCCCCCCA
+R2(C1 �C2):

Secondly, the mapping of the 3-D point onto the destination cylindrical image is characterized by

0BB@
up2

vp2

1

1CCA =

0BBBBBBBBB@

�f 2 tan
�1

�
Xp

Zp

�
180

f 2Ypq
X2

p + Z2

p

+ H2

2

1

1CCCCCCCCCA
; (4.5.2)

or, again, if the focal length f 2 is unknown, then by

0BB@
up2

vp2

1

1CCA =

0BBBBBBBBB@

W2 tan
�1

�
Xp

Zp

�
360

W2Yp

2�
q
X2

p + Z2

p

+ H2

2

1

1CCCCCCCCCA
:

Equations 4.5.1 and 4.5.2 altogether specify the mapping between two cylindrical images.

In our system the application of the cylindrical-to-cylindrical image mapping equation is to register each

cylindrical image to the DLC, for a multiple-panoramas case. The procedures of the registration are the

same as the ones introduced in the planar-to-cylindrical case, except that the mapping equations used are

di�erent.

4.6 Incremental Mapping Computation

In the previous sections, we have shown that every image-point mapping is independent from the mapping

of others on the source image. In other words, mapping an image point to another image does not require,

or depend on, any information from its neighboring image points. What is really required for a single

28

image-point mapping, as mentioned before, are the depth information associated with the image point and

the camera information associated with the source and the destination images. However, if we have an

uniform traverse order through the source image, such as a scan-line fashion (pixel by pixel), the coherence

of mapping computations along the scan-line may further be explored.

In this section, we start from the simplest one, the planar image case, to show the basic idea, followed

by a practical application, the depth-layered cylinder case, used in our system. Furthermore, the speed-up

due to this computational optimization is analyzed.

4.6.1 Planar Image

In Eq. 4.2.4, we have established the mapping from a source-image pixel (up1 ; vp1) to a destination image-

plane point (xp2 ; yp2) as follows,

0BBBBB@
xp2

yp2

1

1

1CCCCCA '

"
�2

0T 1

#"
�1

0T 1

#�1
0BBBBBBBBBB@

up1 +
1�W1

2

vp1 +
1�H1

2

1

1
D1(up1 ; vp1)

1CCCCCCCCCCA
:

For each new view rendering the camera projection matrices �1 and �2 are kept unchanged. Thus the

mapping equation can be rewritten as

0BBBBB@
xp2

yp2

1

1

1CCCCCA ' T12

0BBBBBBBBBB@

up1 +
1�W1

2

vp1 +
1�H1

2

1

1
D1(up1 ; vp1)

1CCCCCCCCCCA
; (4.6.1)

where

T12 =

"
�2

0T 1

#"
�1

0T 1

#�1

is the transfer matrix for a source-image point to a destination-image point.

By linearity of this matrix operation, we observe that the computation of the mapping for the next pixel

along the image row, i.e. ((up1 + 1); vp1), can in fact reuse the partial computation of the mapping for the

current pixel (up1 ; vp1). The idea is to decompose the mapping equation of Eq. 4.6.1 into several terms, and

to reuse some of them for the next computation. The following equation demonstrates the decomposition of

29

Eq. 4.6.1 into two terms.

T12

0BBBBBBBBBB@

up1 +
1�W1

2

vp1 +
1�H1

2

1

1
D1(up1 ; vp1)

1CCCCCCCCCCA
= T12

0BBBBBBBBBB@

up1 +
1�W1

2

vp1 +
1�H1

2

1

0

1CCCCCCCCCCA
+

1

D1(up1 ; vp1)
T12

0BBBBB@
0

0

0

1

1CCCCCA ;

= Vbase +
1

D1(up1 ; vp1)
Vdepth:

The �rst term is called base vector, denoted as Vbase. The second term involves a scalar, which is the inverse

depth-value of (up1 ; vp1), and a depth vector, denoted as Vdepth. The following equation shows how both

terms are reused in the mapping computation of the next pixel, ((up1 + 1); vp1).

T12

0BBBBBBBBBB@

(up1 + 1) +
1�W1

2

vp1 +
1�H1

2

1

1
D1((up1 + 1); vp1)

1CCCCCCCCCCA
= Vbase +T12

0BBBBB@
1

0

0

0

1CCCCCA+
1

D1((up1 + 1); vp1)
Vdepth;

= Vbase +Vincr +
1

D1((up1 + 1); vp1)
Vdepth: (4.6.2)

The above two equations suggest that we only need to calculate Vincr and Vdepth once per view rendering,

and increment the base vector Vbase by Vincr for each pixel mapping along the same image row. Moreover,

the inverse of the depth-value, which is pre-computed and stored in the lookup table, needs to be fetched

for each pixel mapping. Figure 4.5 outlines the actual steps of the mapping processes.

The procedure IncrementalMapping4 is called when a new view is to be rendered. The names of

variables follow the conventions used in Eq. 4.6.1 and 4.6.2, where the underscore of variables is equivalent

to the subscript of symbols, otherwise they will be explained. The 2-D array invD 1 denotes the inverse-

depth lookup table. All rowStart, rowEnd, colStart and colEnd are determined before the procedure is

called (cf. Chapter 5 for the traverse order determination). Clearly, V incr and V depth are computed once

per view rendering, both are instantiated before the outer for-loop. The vector V base is initialized for each

row-iteration. The code in the inner for-loop does the real mapping and sends the result to the output image

bu�er via the function SendToImgBuffer. The incremental computation for each pixel is coded by V base

= V base.add(V incr).

4.6.2 Depth-layered Cylinder

To generate a new view from our scene representation, which is the depth-layered cylinder, the cylindrical-

to-planar image equation should be used. The equation can be rewritten in a form similar to Eq. 4.6.1 as

4
This is not an actual source code for the implementation. For instance, the term (1 � ImgW1)=2 is actually a constant.

It should be pre-computed, once the source image is loaded, not in the place of the for-loop. However, it corresponds to the

equations we gave to simplify the explanations.

30

public void IncrementalMapping(int[][] invD_1,
 Matrix3d T_12){

 Vec3d V_incr = T_12.times(new Vec3d(1,0,0,0));
 Vec3d V_depth = T_12.times(new Vec3d(0,0,0,1));

 for(int row=rowStart; row<rowEnd; row++){
 Vec3d V_base = T_12.times(new Vec3d(colStart+(1-ImgW_1)/2,
 row+(1-ImgH_1)/2,
 1,

 0));
 for(int col=colStart; col<colEnd; col++){
 Vec3d p_2 = V_base.add(V_depth.times(invD_1[row][col]));
 SendToImgBuffer(p_2.TransformToUV());
 // incremented for the next iteration (!)
 V_base = V_base.add(V_incr);
 }
 }
}

Figure 4.5: The procedure of the incremental mapping computation.

follows,

0BBBBB@
xp2

yp2

1

1

1CCCCCA ' T12

0BBBBBBBBBBB@

sin
�
180up1 + 90

�f1

�
�
2vp1 + 1�H1

2f1

�
cos
�
180up1 + 90

�f1

�
1

Z1(up1 ; vp1 ; k)

1CCCCCCCCCCCA
;

= T12

0BBBBBBBBBBB@

f1 sin

�
180up1 + 90

�f1

�
vp1 +

�
1�H1

2

�
f1 cos

�
180up1 + 90

�f1

�
1

f1Z1(up1 ; vp1 ; k)

1CCCCCCCCCCCA
; (4.6.3)

where

T12 =

"
H2 �H2C2

0T 1

#"
R1 �R1C1

0T 1

#�1

is the transfer matrix for a DLC's image pixel (up1 ; vp1) to a destination-image point (xp2 ; yp2), andZ1(up1 ; vp1 ; k)

is the depth value of the k th layer at (up1 ; vp1).

Here we intend to derive an equation similar to Eq. 4.6.2 with three terms, a base vector, an incre-

ment vector, plus a depth vector multiplying the inverse depth value, so the before-mentioned idea of the

31

incremental mapping computation can be re-applied to the DLC case. We �rst decompose Eq. 4.6.3 as

follows,

T12

0BBBBBBBBBBB@

f1 sin

�
180up1 + 90

�f1

�
vp1 +

�
1�H1

2

�
f1 cos

�
180up1 + 90

�f1

�
1

f1Z1(up1 ; vp1 ; k)

1CCCCCCCCCCCA

= T12

0BBBBBBBBBBB@

f1 sin

�
180up1 + 90

�f1

�
vp1 +

�
1�H1

2

�
f1 cos

�
180up1 + 90

�f1

�
0

1CCCCCCCCCCCA
+

1

Z1(up1 ; vp1 ; k)
T12

0BBBBB@
0

0

0

f1

1CCCCCA ;

= Vbase +
1

Z1(up1 ; vp1 ; k)
Vdepth:

Due to the involvement of sin and cos functions, the incremental computation may not be applied to image

rows as in the planar example. Fortunately, the relation between two adjacent pixels along the column is

still linear in this cylindrical case. Therefore, we have

T12

0BBBBBBBBBBB@

f1 sin

�
180up1 + 90

�f1

�
(vp1 + 1) +

�
1�H1

2

�
f1 cos

�
180up1 + 90

�f1

�
1

f1Z1(up1 ; (vp1 + 1); k)

1CCCCCCCCCCCA
= Vbase +T12

0BBBBB@
0

1

0

0

1CCCCCA+
1

Z1(up1 ; (vp1 + 1); k)
Vdepth;

= Vbase +Vincr +
1

Z1(up1 ; (vp1 + 1); k)
Vdepth:

(4.6.4)

Equation 4.6.4 provides an incremental mapping computation in column-wise traverse order. The vectors

Vincr and Vdepth are constant for each new view rendering, and are pre-calculated whenever the matrix T
12

becomes available during the rendering phase. The procedure of the incremental mapping computation is

similar to the one in the planar image case, except the column-wise traverse is used5. Moreover, for each

class of the DLC (image pixel (up1 ; vp1)), we traverse the linked list (sorted by depth) in back-to-front order

for the correct visibility determination in the destination image (cf. Chapter 5.3). The incremental mapping

computation for each class of the DLC is simply achieved by iterating the linked list, fetching the depth

value from Z1(up1 ; vp1 ; k), plugging it into Eq. 4.6.4, and leaving the base vectors, the increment vectors

and the depth vectors unchanged.

5
Considering the memory cache-hit optimization, from an implementation point of view, the DLC is rotated about 90

�
so

the miss-hit rate is dramatically reduced.

32

4.6.3 Performance Analysis

To evaluate the merits of using the incremental mapping computation, we compare the arithmetic operations

involved for Eq. 4.6.3 and for Eq. 4.6.4. What we evaluate in Eq. 4.6.3 is as follows,

T12

0BBBBBBBBBBB@

f1 sin

�
180up1 + 90

�f1

�
vp1 +

�
1�H1

2

�
f1 cos

�
180up1 + 90

�f1

�
1

f1Z1(up1 ; vp1 ; k)

1CCCCCCCCCCCA
; (4.6.5)

where T12 is a 4� 4 matrix.

The computations pre-computable in (4.6.5) with moderate lookup-table size will not be considered in

the evaluation. For example, the value of the term (1�H1)=2 is known once the source image is loaded; and

the sin() and the cos() terms are pre-computed as follows,

SinTable [up1] = f1 sin

�
180up1 + 90

�f1

�
;

and

CosTable [up1] = f1 cos

�
180up1 + 90

�f1

�
;

where the sizes of both tables SinTable and CosTable are equal to W1(i.e. a�ordable size).

The number of arithmetic operations involved in (4.6.5) is therefore analyzed as follows. There are 1

addition for adding vp1 with the constant number (1 �H1)=2; and 1 multiplication plus 1 division for the

inverse value of f1Z1(up1 ; vp1 ; k); and 16 multiplication plus 12 additions for the multiplication of the 4� 4

matrix T12 and the 4-vector. So totally there are 17 multiplication, 1 division and 13 additions in (4.6.5).

On the other hand, for the incremental mapping computation, we have the following,

Vbase +Vincr +
1

Z1(up1 ; vp1 ; k)
Vdepth; (4.6.6)

where Vbase, Vincr and Vdepth are all 4-vectors, and are always available for the current mapping except for

the mapping of the initial pixel in the scan-line. The arithmetic operations involved in (4.6.6) are 1 division

for the inverse value of Z1(up1 ; vp1 ; k); and 4 multiplication for multiplying the value 1=Z1(up1 ; vp1 ; k) and

the 4-vector Vdepth; and 8 additions for adding these three 4-vectors. So there are totally 4 multiplication,

1 division and 8 additions in (4.6.6).

We can then conclude that at least three fourth of multiplication in the mapping computations are saved

because of this computational optimization.

33

Chapter 5

Visibility Determination

During the rendering processes, many expensive yet redundant computations can be eliminated prior if

surface points are known to be invisible to the viewpoint. The preprocess, which does visibility checking

before costly computations are involved, is called visible surface determination. Many object/image precision

algorithms [27], removing the invisible surface e�ectively, have been developed. However, as the number of

scene objects becomes extremely large, the performance of those algorithms is degraded signi�cantly. They

are classi�ed as scene-complexity-dependent algorithms.

Unlike traditional computer graphics approaches, the image-based rendering techniques attempt to by-

pass the visible surface determination process, classi�ed as scene-complexity-independent algorithms. S. E.

Chen [2] posed his model in a proper way that all visible scene points are uniquely de�ned with respect to

a �xed viewpoint as they are acquired. So no visible surface determination is required for the rendering in

his model. Similarly, M. Levoy and P. Hanrahan [7] resamped/interpolated a �nite, yet huge, set of rays to

obtain the desired view without the visible surface determination. M. Seitz [6] generated in-between views

using an image morphing technique (bi-directional interpolation) under the monotonicity assumption. It

also bypasses the visible surface determination. Their approaches are all based on the fact that pixels in

an image inherently represent the visible 3-D scene points from the viewpoint. Thus the new viewpoint(s)

either lies exactly on the previous viewpoint(s), where the images were acquired, or somewhere along the

line joining two original viewpoints.

S. Laveau and O. Faugeras [3], allowing views to be extrapolated as well as interpolated, discussed the

combination of information from several views and provided a 2-D ray-tracing-like solution to the visibility

problem, which does not appeal to an underlying geometric description. L. McMillan [28] proposed a visible

surface determination algorithm that arbitrary views extrapolated from a single image are generated without

depth comparisons. His approach is feasible, but it is limited to a single image.

We solve the visibility problem for our rendering model (forward image mapping model). To explain the

solution, in this chapter we �rst analyze the problem and interpret it using epipolar geometry. Consequently,

the observations presented in the visibility interpretations are indispensable information for understanding

of our approach. Next, we study the McMillan's algorithm [1]. The key idea, advantages, and unfortunately

some faults, of his approach are illustrated visually. Then, the detailed description of our solution is coming

next. For removing unnecessary parts of the DLC for each view rendering before the image mapping takes

place, the culling scheme has been analyzed and formulated extensively. The performance analysis for both

processes is conducted at the end of this chapter.

5.1 Interpretation of Visibility Using Epipolar Geometry

Recall from Chapter 2.2, a bundle of epipolar planes commonly intersect a line passing through two camera

optical centers associated with the source and the destination images. The visibility of reference image

points with respect to the optical centers of desired images can be characterized based on the following two

observations. First, any 3-D space point, except those points lying on the line joining both camera optical

centers, can be uniquely classi�ed into one of these epipolar planes of the bundle where it lies on. Second,

34

every 3-D point on the same epipolar plane should project to the same epipolar line in any image.

We see the independence among epipolar planes in terms of visibility measurement. In other words, no

3-D points on an epipolar plane can occlude or be occluded by any 3-D points on the other epipolar planes.

Without loss of validity, the visibility measurement only needs to be performed on those 3-D points lying

on the same epipolar plane; likewise, the pixels on the same epipolar line in image space. Additionally, the

nature of computational parallelism is clear to see in the visibility determination process among epipolar

planes. Our attention is paid on the determination of the traverse order along the epipolar line in such

a way that all pixels, mapping to the same location in the destination image, are guaranteed to arrive in

back-to-front order.

The arrows “ ” show the back-to-front order.

C1

C2

Epipolar Plane ℘i

Projection
Rays

Figure 5.1: Back-to-front visibility order with respect to the destination camera optical center C2.

Considering an epipolar plane }i, as shown in Fig. 5.1, there is an in�nite number of projection rays

emitting from the destination camera optical center C2 outwards1. Every 3-D point lying on the same

projection ray projects onto the same image pixel of the destination image. To ensure a valid visibility along

each projection ray, the 3-D points should arrive onto the image plane in back-to-front order with respect

to C2, which is shown by those arrows heading to C2 inwards. Moreover, the visibility measurements are

allowed to be computed independently from one projection ray to the others.

We denote the source image plane as I1 and its associated camera optical center as C1, similarly, I2 and

C2 for the destination image. We call an eipipole on the source image plane positive epipole, denoted as

+e1, if the point C2 with respect to the source image's camera coordinate system has positive Z-value (i.e.

C2 = (XC2
; YC2

; ZC2
)C1

and ZC2
� 0). Otherwise, we call it negative epipole, denoted as �e1.

Two geometric forms of source image are considered, one is planar and the other is cylindrical. We start

from the planar image case. All the epipolar lines appear straight and intersect at the epipole, which is

either positive or negative. Figures 5.2(a) and 5.3(a) depict the 3-D situations of a positive and a negative

epipole on the image plane I1 respectively. Let us consider two projection rays r1 and r2 emitted from C2

along the epipolar plane }i. The back-to-front visibility orders, P1 before P2 and P3 before P4, imply a

correct traverse order in the image plane I1. In the positive epipole case, the image mapping should traverse

inwards from the image boundary(ies) to the positive epipole as shown in Fig. 5.2(b). Inversely, in the

1
The arrows on the projection rays, showing the back-to-front order of the visibility-constraint with respect to the center

C2, should not be confused with the projection direction.

35

r2

C2

Epipolar Plane ℘i

C1

Epipolar Line

P1
P2

P3

P4

r1

I1+e1

p2

p1

p4

p3

Epipolar Lines

The arrows “ ” show the traverse order.

+e1

I1

p1 p2

p3

p4

(a)

(b)

The arrows “ ” show the back-to-front order.

Figure 5.2: Geometric interpretation of visibility for a planar image with a positive epipole. (a) A 3-D case

where the correct visibility orders with respect to the destination camera optical center C2 are: P1 before

P2, P3 before P4 along the projection rays r1 and r2. (b) The actual traverse order for the image plane I1.

negative epipole case, shown in Fig. 5.3(b), the traverse starts outwards from the negative epipole to the

boundary(ies) of the source image.

Similar observations in the cylindrical case, the traverse order from the negative epipole to the positive

epipole is easily recognized from Fig. 5.4(a). However, one may notice that the epipolar lines on the

cylindrical image are no longer straight, compared with the planar case. Figure 5.4(b) illustrates the curved

epipolar lines, with the correct traverse orders indicated by arrows, on the unfold cylindrical image. This

may cause a di�culty for the implementation of traversing along the curved epipolar lines on the source

image.

A key observation of visibility interpretation in epipolar geometry is that the traverse order of the image

mapping must follow the epipolar lines in such an order, from the negative epipole to the positive epipole,

that the visible surfaces are correctly determined in the destination image. Besides, L. McMillan has proved

that this observation holds for all image geometric forms in [1].

36

r2

C2

Epipolar Plane ℘i

C1

Epipolar Line

P1
P2

P3

P4

r1

I1

−e1

p2
p1

p4

p3

Epipolar Lines

I1

−−e1 p3p1

The arrows “ ” show the traverse order.

p4

p2

(a)

(b)

The arrows “ ” show the back-to-front order.

Figure 5.3: Geometric interpretation of visibility for a planar image with a negative epipole. (a) A 3-D case

where the correct visibility orders with respect to the destination camera optical center C2 are: P1 before

P2, P3 before P4 along the projection rays r1 and r2. (b) The actual traverse order for the image plane I1.

5.2 McMillan's Visibility Algorithm

In this section, we study L. McMillan's visibility algorithm for the two di�erent image forms. First, the planar

image case is investigated. The advantages and limitations of his approach are also discussed. Second, we

illustrate his algorithm for the cylindrical image case. Consequently, few situations his approach fails are

elaborated.

5.2.1 Planar Image

L. McMillan summaries all the possible occurrences of the visibility determination for a planar image into

two groups, one for positive epipole case and the other for negative epipole case. Each group contains nine

possible cases. Each case is de�ned by a partition of the image plane into regions. The partitioning is done

by extending lines along the actual image boundaries to in�nity, which results into nine regions as shown in

Fig. 5.5(a). The actual image E1, outlined by the thicker rectangle, occupies region 5 or region 14 in the

37

C2

Epipolar Plane ℘i

Epipolar Line

C1

+e1

−e1
J1

The arrows “ ” show the traverse order.

Curved Epipolar
Lines

J1

+e1

−e1

(b)

(a)

P1

P2

P3

P4

r1

p2p1

p4p3

r2

Unfold Cylindrical Image

The arrows “ ” show the back-to-front order.

Figure 5.4: Geometric interpretation of visibility for a cylindrical image with a positive and a negative

epipoles. (a) A 3-D case where the correct visibility orders with respect to the destination camera optical

center C2 are: P1 before P2, P3 before P4 along the projection rays r1 and r2. (b) The actual traverse order

for the image cylinder J1.

negative epipole or the positive epipole groups, respectively, and the other regions are also clearly de�ned.

The traverse order of the image mapping is determined by the fact to which region the positive/negative

epipole belongs. As the region is determined, the correct traverse order can be looked up by its corresponding

region illustrated in Fig. 5.5(b). Since all the epipolar lines in Fig. 5.5(b) are straight lines and independent

from one and the other, a scan-line fashion traverse, as shown in Fig. 5.5(c), can be used to ease the

implementation without loss of validity. It is otherwise very di�cult to traverse systematically along the real

epipolar lines depicted in Fig. 5.5(b). Furthermore, in Fig. 5.5(c), the case 1 and 12, 3 and 10, 7 and 18, 9

and 16, are exactly the same, hence only 14 cases are actually required to be implemented.

The advantages of his approach are as follows. It is independent from the scene complexity and from the

depth information. It blends the visibility determination processes and the image mapping processes into

one with no additional comparison computations, unlike one does it in the z-bu�er algorithm. It suggests a

simple and feasible method, which is the scan-line fashion traverse, and allows a real-time implementation.

38

Region1 Region2 Region3

Region4 Region5 Region6

Region7 Region8 Region9

Region10 Region11 Region12

Region13 Region14 Region15

Region16 Region17 Region18

Negative Epipole −e Postive Epipole +e

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

(a)

(b)

(c)

E1 E1

Figure 5.5: Illustrations of McMillan's visibility algorithm for a planar image. (a) All possible regions that

+e1/�e1 may lie on. For each region where the epipole may belong to, there is a corresponding traverse

order map, illustrated in (b). (c) The actual scan-line paths of the corresponding region for the underlying

implementation.

39

Unfortunately, if more than one input (source) image is used, this approach is not applicable because

we do not know which input image the traverse should start from before the others.

5.2.2 Cylindrical Image with Faults

McMillan's visibility algorithm for a cylindrical source image is illustrated in [1]. He successfully pointed out

that the visibility determination can be done through the enumeration of curved epipolar lines. However,

as described before, to traverse along an arbitrary path of a straight epipolar line is already a di�cult task

(due to the discrete nature of an image). To traverse along an arbitrary path of a curved epipolar line is

even harder. He illustrated his approach, cf. Fig. 5.6(a), by �rst partitioning an unfold cylindrical image

into four regions (labeled by the numbers in the corners) and enumerating each in the order indicated by

the black, thick arrows.

3

2

3

2

4

1

3

34

Two Problematic Cases for Region 4

McMillan’s Solution to Cylindrical Image Traverse

①
②

p1p2

p3
p4

Horizontal Traverse Order

Vertical Traverse Order
①②n

(a)

(b)

Figure 5.6: McMillan's solution for a cylindrical image, and its problems.

Unfortunately, there is a problem with his approach. Let us consider solely the region 4 in Fig. 5.6(a)

to illustrate the problem. His solution (black arrows) indicates two possible traverse orders depicted in Fig.

5.6(b). One is traversing horizontally (row-scan) from top to bottom, the other is vertically (column-scan)

from right to left. In the horizontal case, the enumeration reaches point p1 �rst, p2 second, p3 third and

p4 last, but this does not follow the correct traverse order which is p1 �rst, p3 second, p4 third and p2
last. Furthermore, in the vertical case, when the enumeration reaches the nth column, the traverse direction

(downwards) is exactly opposite to the correct order (upwards). So both of them fail to follow the correct

order along the curved epipolar lines in the cylindrical image.

40

5.3 Our Solution

In our system, the visible surface determination process contains two sub-processes, culling and traverse

order determination. The culling is performed at �rst so only relevant portion of scene data stored in the

DLC is traversed and forwarded to the destination image. We discuss the culling in a great detail in the

next section. In this section, we focus on the second sub-process | traverse order determination.

−e1

+e1

Unfold
Virtual

Box

(b)

J1
Unfold

Cylindrical
Image

Face A Face C Face DFace B

−e1

+e1

Face B

Face A

C2

Epipolar Plane ℘i

C1

Face D

(a)

Face C

J1

+e1

−e1

Figure 5.7: Illustration of an ordering map (virtual box). (a) It shows a virtual box, with no top and bottom

faces, surrounding a cylinder (i.e. the DLC). (b) The straightness of reprojected epipolar lines on the unfold

virtual box below in comparison with the curved epipolar lines on the unfold cylindrical image above.

In the last section, we have discussed the key idea, advantages and problems of McMillan's algorithm.

To utilize his key idea and take advantages of his approach, two problems need to be solved in advance.

The �rst is the multiple source-images ordering problem; the second is the di�culty of traversing along the

curved path in the cylindrical image. Based on our scene representation, we explain our solution to the

41

second problem �rst and then come to the �rst problem later on.

Our approach to the curved traverse problem is to reuse the provably correct property of McMillan's vis-

ibility algorithm for planar images. Let us imagine a virtual box (without top and bottom faces) surrounding

a cylinder, such as depicted in Fig. 5.7(a). The planarity of each box face guarantees the straightness of the

intersection lines. Based on this, the curved epipolar lines would appear as straight as they are projected

onto the planar surfaces, the faces of the box. Figure 5.7(b) shows the straightness of the projected epipolar

lines on an unfold virtual box in comparison to the original curved epipolar lines on the unfold cylindrical

image above.

Epipolar Plane ℘i

Face A Fa
ce

 B

C2

C1

Fa
ce

 C
Face D

+e1

−e1

Region A

Region B

Region C

Region D

Figure 5.8: Four disjoined partitions of an epipolar plane for the traverse-order determination of four virtual

box faces.

Instead of calculating the complicated curve function of traverse paths on the DLC for every new view

rendering, we simply use the box as an ordering map that is only computed once when the DLC is constructed.

The connection between the ordering map (the box) and the DLC is built by projecting the cylinder's surface

onto each face of the box. Without loss of generality, we can then virtually traverse along epipolar lines on

the face(s) of the box using McMillan's visibility algorithm for a planar image, yet actually traverse along

the curved epipolar lines in the DLC.

The reason why every face of the box can be treated separately is because it partitions each epipolar

plane into four disjoined regions as shown in Fig. 5.8. As long as those 3-D scene points of the furthest

region, with respect to the destination camera optical center, are projected to the destination image �rst and

those of the closest region at last, then our approach guarantees the back-to-front order in the destination

image. The rule of thumb is that the traverse should always start from the face that contains the projection

of the negative epipole, and the face containing the positive epipole at last. For instance, in Fig. 5.8, region

A, containing �e1, is the furthest region with respect to C2, and region D, containing +e1, is the closest

one. Hence we start from the face A, then B or C, and �nally the face D. In practice, at most two faces may

be required for each new view rendering because the others may be culled away (see next section).

Our solution to the second problem directly inherits all advantages of McMillan's approach. Furthermore,

we have also shown in Chapter 4 that the scan-line traverse, proposed by our solution for the visibility

determination, ensures the feasibility of fast rendering through the incremental mapping computation. It is

therefore simple and practical and supports a real-time implementation. Consequently, the establishment

of such a method for the second problem implicitly contributes to the solution of the �rst problem | the

multiple source-images ordering problem.

Since our scene representation, the DLC, is already capable to store scene information from multiple

images as well as we have build up the access to ensure a back-to-front order for the cylindrical model in the

previous section, the solution of the multiple source-images ordering problem is simpli�ed. For each class of

the DLC (i.e. each pixel of a cylindrical image) along the traverse path, the associated linked list is traversed

from the last element to the �rst. Because the linked list is pre-sorted by depth, where the closest scene data

with respect to the center of the DLC is stored at �rst place in the linked list, this method guarantees the

42

back-to-front order.

5.4 Culling

Traditional computer graphics approaches, such as back-face culling, remove the invisible parts of objects

before starting expensive rendering computations. The same concept can also be applied to our rendering

system. Our culling process is performed before anything else in the rendering phase of the view synthesis

system. The culling process does not eliminate all the occluded scene points, instead, we remove a portion

of the DLC which is out of the frustum of the virtual camera projection. So only the remainder portion

(subset) of scene data in the DLC is actually rendered for each new view generation.

Area to be
Rendered

Nearest Range

Furthest Range
(or infinity)

Culled Area

Viewing Position Vector

r0

vP

Viewing
Direction
Vector

vD
r2

C2

r1

ω

γ

C1

Figure 5.9: The setup for culling computation, where C1 is the center of the cylinder (the DLC) and C2 is

the optical center of a virtual camera.

Figure 5.9 depicts the culling computation setup. The unbounded outer circle stands for the furthermost

range of scene data in the DLC, i.e. the maximum depth value. Similarly, the inner circle is for the nearest

range. A point C1 is �xed at the center of two cycles (the center of the DLC) and a point C2 indicates

the optical center of a virtual camera that can be moved arround from frame to frame within the inner

circle during the rendering. The inner circle encloses the valid navigation area, where we assume there is no

object inside this region so no collision detection is required. The vector vD indicates the virtual camera's

viewing direction and vector vP , which starts from the point C1 passing through the point C2 to in�nity,

indicates the virtual camera's position with respect to the center of the DLC. The distance between C1 and

C2 is r0, the radius of the inner circle is r1, and the radius of the outer circle is r2. Note that the value of

r2 may tend to in�nity theoretically, but practically we can assign a fairly large number for an underlying

implementation. The values r1 and r2 are known and kept constant once the scene reconstruction is built

up. Both vectors vP and vD are dynamically determined by the values r0 and the �eld of view of the virtual

43

camera
. The angle ! indicates the angle of the portion to be rendered. Given the optical center of a

virtual camera C2, a viewing direction vP and a �eld of view of the virtual camera
, the culling process is

to calculate two boundaries between the lighter gray area (to be rendered) and the vertical-bar �lled area

(to be culled away).

C2

C1 vD

P4P3

P2

P1

Right-boundary

Left-boundary

δ3

vP

φ

δ2

Figure 5.10: Culling geometry.

We call the boundaries left-boundary and right-boundary as shown in Fig. 5.10. They are speci�ed as

viewing from the center C1 to the light gray area. Geometrically, the left- or right-boundary is de�ned by

the angle to the vector vP . For instance, the left-boundary is speci�ed by angle \�3, and the right-boundary

by angle \�2 in Fig. 5.10. The angle \�n is clockwise starting from vector vP , de�ned formally as

\�n = \C2C1Pn; where 0� � �n < 360�:

Points Pi indicate the intersections of the virtual camera's frustum to the inner and the outer cycles. Our

target is to calculate the two angles associated with the left-boundary and the right-boundary.

The virtual camera can freely move around within the inner circle and take a shot towards any direction.

The angle \�n for the left- and the right-boundary are therefore varied arbitrarily. We summaries all the

occurrences into four cases, as shown in Fig. 5.11. Each case is de�ned by a value of � which is the angle

between vectors vP and vD. The speci�cations of these four cases are as follows.

Case 1: When 0 � � �

2

or
�
360�

2

�
� � < 360; then

the left-boundary is speci�ed by \�4 and the right-boundary is speci�ed by \�2:

Case 2: When

2
< � <

�
180�

2

�
; then

the left-boundary is speci�ed by \�3 and the right-boundary is speci�ed by \�2:

Case 3: When
�
180�

2

�
� � �

�
180 +

2

�
; then

the left-boundary is speci�ed by \�3 and the right-boundary is speci�ed by \�1:

44

P1

P3

vP

vP

vD

P1

P2

P4

P2

P4

P3

Case 1

Case 3

C1

C1

C2

C2

P2

P3

vP
vD

P1

P4

Case 4

C1

C2

vP

vD

P1

P2

P3

P4

Case 2

C1

C2

vD

Figure 5.11: Four possible culling cases.

Case 4: When
�
180 +

2

�
< � <

�
360�

2

�
; then

the left-boundary is speci�ed by \�4 and the right-boundary is speci�ed by \�1:

Given the vectors vP and vD, we can then derive a general equation to calculate the angle �n for n 2 [1; 2; 3; 4],

�n = ('� 90o) + cos�1
�
r0 sin'

ri

�
;

where i2 f1; 2g. To calculate the left-boundary, we have

' = ��

2
;

for the right-boundary,

' = �+

2
;

where ' is an angle between vP and a ray from C
2
to Pn. Figure 5.12 depicts this geometry.

5.5 Performance Analysis

The time complexity is constant, O(1), for the process of the traverse order determination. Regardless of the

amount of the scene data stored in the DLC, only a projection calculation for the epipole and a classi�cation

calculation (switch-cases computation) for the case recognition of the epipole are required to determine the

traverse order for each new view rendering. The information used for those calculations is con�gurations

of the virtual camera and the DLC model (e.g. the projection matrix of a virtual camera and the DLC's

45

C1

C2 ϕ

Left- or right-boundary

Pn
r i
i∈{1,2}

r0 δn

vP

Figure 5.12: Geometry for calculation of culling boundaries.

height, radius, coordinate system, etc). No further information or procedure is involved in this process. So

the process is independent from the scene complexity (e.g. depth complexity) as well as the quantity of the

scene data stored in the DLC.

For the culling process, what we are interested in is by how much percentage of upper bound and lower

bound the DLC can be culled away. To evaluate this, an angle ! is computed (by subtracting the left-

boundary angle from the right-boundary angle) which gives an idea of how much the DLC is required to be

rendered. Complementarily, �
1�

!

360

�
� 100% (5.5.1)

shows how much percentage of the DLC is culled away. The de�nition of this angle !, for all the cases, is

speci�ed below,

! =

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

 + cos�1
�
r0
r2
sin
�
�+

2

��
� cos�1

�
r0
r2
sin
�
��

2

��
;

if 0 � � �

2
or
�
360�

2

�
� � < 360;

 + cos�1
�
r0
r2
sin
�
�+

2

��
� cos�1

�
r0
r1
sin
�
��

2

��
;

if

2
< � <

�
180�

2

�
;

 + cos�1
�
r0
r1
sin
�
�+

2

��
� cos�1

�
r0
r1
sin
�
��

2

��
;

if
�
180�

2

�
� � �

�
180 +

2

�
;

 + cos�1
�
r0
r1
sin
�
�+

2

��
� cos�1

�
r0
r2
sin
�
��

2

��
;

if
�
180 +

2

�
< � <

�
360�

2

�
;

(5.5.2)

where we assume that

0 � r0 � r1; r1 < r2; 0
�
� � < 360�; and 20� �
 � 70�:

Note that the
 set between 20 to 70 degrees is reasonable for a wide range of applications.

46

Let us consider a particular
. The achievement of a maximum culling is equivalent to the task to

minimize the function

Gpos(�) = cos�1
�
r0

ri
sin
�
�+

2

��
;

and to maximize the function

Gneg(�) = cos�1
�
r0

ri
sin
�
��

2

��
;

where i2 f1; 2g, with respect to the same value of �. Similarly, we have a minimum culling, when function

Gpos(�) is maximized and function Gneg(�) is minimized, with respect to the same value of �. We conclude

that when � = 0� we have maximum culling, and when � = 180� we have minimum culling. Figure 5.13

depicts two possible cases, one for the maximum culling and the other for the minimum culling.

C2

C1

γ

Maximum Culling Minimum Culling

C2

C1

γ

Figure 5.13: The possible cases of maximum and minimum cullings.

As in a usual indoor scene, for instance, the relation of the nearest and the furthest scene range may

have r2 = 2r1. If
 = 45� (average horizontal �eld of view) is used for a virtual camera, the maximum

culling goes up to 93:6% of the DLC and 75% for the minimum culling, computed by Eqs. 5.5.2 and 5.5.1.

Similarly, for the outdoor scene with
 = 45� and the furthest scene range to the in�nity, r2 ! 1, the

maximum culling goes up to 87:5% of the DLC and 75% for the minimum culling.

47

Chapter 6

Depth Recovery Development System

An image stores 3-D data into 2-D form. One third of geometric information is lost from this transformation

during the image acquisition process. There are many computer vision techniques, described in [16, 29, 30],

available to recover the lost part of 3-D information (depth) exclusively from given images. They commonly

require that at least two cameras capture a static scene in a certain time interval when lighting conditions in

the scene are assumed tolerably constant. Unfortunately, they may not guarantee a highly accurate depth

measurement as the result. Nevertheless, this stereo-based approach is more accessible and a�ordable to

gain the 3-D information of a scene compared to a use of specialized equipment for range measurement.

Depth-from-stereo using correspondence analysis has been well studied for its long history yet remains

di�cult and unstable. It is an ill-posed mathematical problem. Many algorithms in [16, 31, 29, 30, 32,

33] have been developed to challenge di�erent aspects in the stereo correspondence problem. They may

perform surprisingly well in one particular image contents but poor in the others due to content dependency.

Furthermore, their attentions focus merely on featured data in the images, such as edge and corner, and yield

either a sparse depth map from matched featured-data or a dense depth map where the depths of unmatched

pixels are coarsely interpolated. The later enforces foreground objects incorrectly adhering with background

while the former delivers insu�cient depth data to its applications where the pixel-wise depth may be

required. Consequently, the accuracy of recovered depth from those discrete nature of input data (digital

image) is inherently inexact, even through the correspondences of stereo images are perfectly established.

In order to contend with those problems for our application we propose an alternative approach | a

systematical approach. A semi-automatic system, generating a dense disparity map from a pair of standard

binocular stereo images (left/right image in short), is constructed. Human intervention is adopted so high-

level problems and ambiguities raised from performing correspondence search can be easily solved. In the

remainder of this chapter, we start from describing our motivation to this development system, followed by

a blueprint of this system. Those intermediate experimental results through each process in the system are

shown in the last part of this chapter.

6.1 Motivations

Automatically constructing correspondences between pairs of stereo images is unfortunately fairly fragile and

may not always �nd the correct correspondences. Some well-known problems, such as homogenous region,

occlusion and ordering problems, raised in the depth recovery processes, and others found in [16, 29, 30] can

degrade the desired results signi�cantly. Fully automatic depth-recovery algorithms have not yet reached

to the level that dense and accurate depths can be obtained independently from scene and illumination

complexity. Still, there is a long way to go till reaching that level. Instead of trapping ourselves into the

short-term unsolvable problems, our intention is to seek an access of obtaining dense and reasonable quality

depths instantly.

In spite of many stereo image matching problems, to what extents those existing algorithms can serve to

achieve the task is still an open question. Generally speaking, they can at least provide a coarse yet useful

disparity information to a human animator who then can do the re�nements. Nevertheless, they cannot deal

48

with all the complicated cases, such as homogenous regions, occlusions and many others acquired from our

complex world. On the other hand, people can easily tell, in a high-level sense, what the background and

foreground objects are from the given images. Furthermore, people are good at high-level object discrimi-

nations but poor at specifying complicated tiny-scale details manually, especially in pixel-scale level. It is

therefore too tedious for human to build up the correspondence, pixel by pixel, among the multiple stereo

images.

It is not di�cult to see the complementary relation between a human animator and the computer

algorithms. Our approach, which combines both of them, is therefore feasible because it splits the task of

depth recovery into sub-tasks that are easily accomplished by a person (but not a computer algorithm),

and sub-tasks that are easily performed by a computer algorithm (but not a person). Moreover, as we have

mentioned in Chapter 1, we do not intend to reconstruct a highly accurate 3-D model of the scene but a

visually convinced approximations. A dense depth map generated by our development system in such a

hybrid way is satisfactory to the application in the view synthesis system.

6.2 Blueprint

In this section a blueprint of a dense depth recovery development system is elaborated. One major di�erence

between our approach and traditional computer vision approaches is that we make use of human cognition

to recognize and specify the foreground and background objects appearing in the images before performing

dense correspondence analysis using computer algorithms.

The whole development system consists of four major processes and it is organized into a pipeline struc-

ture. Each process receives one or more inputs, generated by previous processes and/or provided by an image

acquisition, and produces a single output. These processes are object-based layer speci�cation (OLS), dense

correspondence analysis (DCA), disparity map re�nement (DMR) and disparity-to-depth transformation

(DDT). A diagram of the system is given in Fig. 6.1.

The process OLS is mainly implemented by a human animator assisted by a computer aided imaging

system, such as an interactive tool Intelligent Scissors presented in [34]. This process aims to help solve the

inter-occlusion problem1. The key idea of this process is to discriminate between foreground and background

objects appearing in input images. Each distinctive object is speci�ed by outlining its silhouette and anno-

tating (�lling up) the embraced region with a distinctive gray value determined by relative depth relation to

the neighboring objects | the closer to the viewpoint the brighter. Correspondence between corresponding

objects in the input images is build up by assigning the same gray value. The choice of object is
exible

depending on its application. For instance, in augmented reality applications it is often required to align a

virtual object to one or more foreground object(s) of the real-scene image but leaves the background far away

behind [35]. In this case, only those applied objects, few foreground objects, need to be speci�ed individually.

Furthermore, if cyclic-occlusions are present, a splitting method is used accordingly. Given two standard

binocular stereo images, the process OLS outputs object layer maps (OLMs). The OLMs containing a set

of uniform intensity regions can be highly compressed using a GIF compressor with no data loss. In our

experiment, 1

50
compression rate was achieved. So the extra overhead it brings to the development system

is small.

Once the OLMs are generated, the process DCA is performed next. Two inputs are required by the

process DCA, one is a pair of standard binocular stereo images and the other is the OLMs (cf. Fig. 6.1).

The process DCA can further be separated into three sub-processes. They are occlusion extraction (OE),

search priority determination (SPD) and correlation similarity testing (CST). The processes OE and SPD

need to be performed �rst before the process CST. The process OE extracts out the inter-occlusion area

so the process CST skips the risk of searching through the occlusion area. The process SPD ensures that

those featured data with higher intensity variation will have higher priority for the establishment of the

correspondence through the process CST. The process CST �nalizes the dense correspondence analysis and

outputs a coarse disparity map (CDM).

Each entry of the CDM is initialized with a valid state for the correspondence search. The process OE is

responsible to update this state so long as the occlusion pixels are identi�ed. A criterion for the identi�cation

1
It means occlusions occurred among objects, not within an object itself.

49

Object-based Layer Specification (OLS)

Disparity-to-Depth Transformation (DDT)

Dense
Correspondence
Analysis

(DCA)

Occlusion Extraction (OE)

Search Priority Determination (SPD)

Correlation Similarity Testing (CST)

Standard Binocular Stereo Pair

Refined Disparity Map (RDM)

Disparity Correction (DC)Disparity Map
Refinement

(DMR) Disparity Smoothing (DS)

Depth Map (DM)

Object Layer Maps (OLMs)

(Visual) Coarse Disparity Map (CDM)/(VCDM)

Figure 6.1: The pipeline structure of a dense depth recovery development system.

of an occlusion region is as follows. Let p1L and p2L be any two neighboring pixels on the same image row

across objects' boundaries in the left image, similarly p3R and p4R in the right image. Figure 6.2 depicts

this situations. An inter-occlusion region appears in the left or right image around an objects' boundary

area if OLMright(p4R) > OLMright(p3R) or OLMleft(p1L) > OLMleft(p2L). Wherever this criterion is

met, a normalized correlation similarity testing is held to �nd the corresponding points along prede�ned

50

searching intervals over corresponding object regions (Fig. 6.2 indicates the searching paths) using a shape-

adaptive image window. The essential idea of this specialized window is to exclude the irrelevant/misleading

information that a normal rectangular or circular window would cover up in comparing the similarities

between the two windows. Figure. 6.3 illustrates this idea in comparison with a standard rectangular image

window.

Left Object Layer Map (OLMleft) Right Object Layer Map (OLMright)

p1L

p2L

p3L

p4L

p1R

p2R

p3R

p4R

Figure 6.2: Illustration of occlusion identi�cation.

Left Silhouette

Reference
Point

Shape-adaptive
Image Window

Object

Right Silhouette

Object

Reference
Point

Object

Standard Rectangular
Image Window

Shape-adaptive
Image Window

Reference
Point

Figure 6.3: Shape-adaptive image windows VS. a standard rectangular image window.

Notice that the thin grid window de�nes the template of a shape-adaptive image window associated with

the current reference point (one of silhouette points), and the thick border de�nes the real image window from

where the correlation coe�cients are actually computed. The shape of the window is dynamically determined

depending on the shape of the object silhouette. Nevertheless, once it is de�ned, all its corresponding windows

along the searching interval in the other image are �xed with that de�ned shape. As the corresponding

boundary points are found, as in Fig. 6.2, for instance p1R and p2R from p2L and p2L , the process OE

simply updates states of entries between p1R and p2R in CDM, where the occlusion region is identi�ed. The

process CST then consults this state before entering a search procedure for each entry.

The process SPD presorts the searching order for each image row, so a pixel in a row with higher

intensity variation has a higher priority. The method used in the presorting is Sobel operator, where each

channel is computed separately and the �nal output is the average of the three. The process CST uses this

51

order to traverse each image row and follows the rule of �rst-found-�rst-occupy. This rule restricts less-

featured pixels' corresponding search into a certain interval that is constructed by preoccupation of those

more featured pixels under the monotonicity ordering constraint. The searching method used in the process

CST is the normalized cross-validation correlation algorithm [36]. The output of the process DCS is a coarse

yet dense disparity map (CDM).

To be able to re�ne the CDM by a human animator, a friendly user interface should be provided. Without

loss of generality, we can scale the CDM up by a factor 255=Max(CDM) and output a gray value image, i.e.

visual coarse disparity map (VCDM). The resulting VCDM gives not only a vivid relative-depth visualization

(the brighter the closer to the viewpoint) but also a visual representation so a graphical editing for the

re�nement becomes possible. Further strengthening the connection between the VCDM and actual scene in

the image, a layer-concept capable imaging system can be used so a human animator is allowed to perform

the disparity map re�nement (DMR) visually in an easy yet e�ective manner. The disparity correction (DC)

corrects minor problematic areas of the VCDM, caused by those unsolved stereo problems. The disparities

recovered, as said before, are very coarse. The continuity of disparities is sometimes lower than G02 even

for a simple surface patch. The process of disparity smoothing (DS) is therefore adopted to smoothen the

VCDM using Gaussian smoothing operator. The adherence between foreground and background objects,

due to the unconsciously smoothening, is avoided by restricting the applied area within a single object-layer

at time. The process DMP outputs a re�ned disparity map (RDM), which is then transformed to an actual

depth map through the process DDT using Eq. 2.4.2.

6.3 Experimental Results

In this section, we present results for each (sub)-process in the depth recovery development system. The

photographs were taken with a still digital camera sat on a leveled tripod with a 20mm lens (equivalent to

40mm lens for normal 35mm camera). Captured images of 1536�1146 pixel resolution were processed to

correct for lens distortion, then �ltered down to 800�600 pixels for use in the development system. The

examples shown below are cropped into 300�300 so they can be �tted into the paper. The results are all

un-retouched except required, i.e. the disparity map re�nement.

With two standard binocular stereo images, shown in Fig. 6.5, a pair of OLMs is produced through the

process OLS, depicted in Fig. 6.4. The input images are of 24 bit-depth colors. Fifteen object layers are

speci�ed in each OLM. The left OLM originally is 296KB in BMP format, after compressed we have 6KB

in GIF without any data loss (checked by the program).

Two stereo images and the generated OLMs are then passed to the next process DCA. In the process

DCA, the process OE updates the CDM's entry if the entry is identi�ed as an occlusion pixel. Figure

6.6 visualizes the output of the process OE, where red color regions are identi�ed occlusions and green

color components are the corresponding inter-objects' boundaries. The normalized correlation algorithm is

implemented to search the corresponding boundary points, where an 11�11 shape-adaptive image window

is adopted.

The process SPD generates a search-order output, which is visualized in Fig. 6.7. The brighter gray

values indicate the higher priority to perform the corresponding search (through the process CST), the darker

the less priority.

The output of the process DCA, a VCDM, is given to the right in Fig. 6.8 in comparison to the left where

the process CST is directly applied without any pre-processes taken. Noticeable di�erences between the two

are around the boundary areas of the sofa's arm and the corner of the tea table, where the inter-occlusion

areas occur. This is also a strong evidence telling why we employ those preprocessing steps, that is too hard

to rectify those erroneous artifacts once they have been produced.

The VCDM generated using our approach gives an easy and e�ortless way to the further re�nements.

Two sub-processes in the process DMR, the disparity correction and the disparity smoothing, �ne-tune the

VCDM. Their results are shown in Fig. 6.9. One remark is the smoothing operation (the Gaussian smoothing

operator) is performed object-layer based so inter-objects' boundaries are crisp.

The re�ned disparity map (RDM) can further be visualized in shaded (Lambertian) and texture-mapped

2
The G

0
continuity denotes zeroth order geometric continuity, which means only end-points match.

52

representations, shown in Fig. 6.10.

Additionally, a portion of a panorama image (by 7 mosaics) and the associated disparity map are

depicted in Fig. 6.11. The disparity map is generated through three steps. First, a planar disparity map of

each mosaic is yielded using our development system. Second, each planar disparity map is converted into

a partial cylindrical disparity map (cf. Chapter 2.5). Third, all the partial cylindrical disparity maps are

stitched into a single cylindrical disparity map, where the blending function of the stitching is disable. We

also render nine views, depicted in Fig. 6.12, from the scene provided by the partial panorama image in

Fig. 6.11 using the rendering engine constructed in our view synthesis system.

Left Object-Layer Map Right Object-Layer Map

Figure 6.4: A pair of object-layer maps derived from stereo images in Fig. 6.5.

53

Left Image Right Image

Figure 6.5: Two standard binocular stereo views of an indoor scene.

Occlusions in Left Image Occlusions in Right Image

Figure 6.6: Results of occlusion extraction. Red color regions are identi�ed occlusions and green color

components are the corresponding inter-objects' boundaries.

54

Figure 6.7: Visualization of the search-priority determination result, where the brighter gray values indicate

the higher priority.

Figure 6.8: Comparison between two disparity maps, one with the preprocessing in our development system

(right) and the other without (left).

55

Figure 6.9: The corrected (left) and the smoothened (right) disparity maps.

Figure 6.10: Shaded (left) and texture-mapped (right) representation of the re�ned disparity map.

56

Figure 6.11: Partial panorama image with the associated cylindrical disparity map.

57

Figure 6.12: Nine views rendered from the scene provided by the partial panorama image in Fig. 6.11 using

the rendering engine of our view synthesis system.

58

59

60

Chapter 7

Conclusions

The thesis presents the view synthesis system for 3-D scene visualization using a set of uncalibrated real

images. It is focused on 3-D scene understanding, geometric problem analysis and practical solutions (with

performance analysis) to the problems encountered in building such a system.

The system has been designed as a pipeline structure. Each process/subsystem, with clearly de�ned

interfaces in between, is replaceable if new technology exists. A simple but expressive 3-D scene model, the

depth-layered cylinder representation, has been designed and utilized as a bridge between the reconstruction

and the rendering phases in the system. It allows a full-view, in terms of 360� horizontal perspective

representation of a scene, and expresses the scene inherently. Consequently, the regular shape (cylinder)

enables the fast rendering and the dynamic layer creation allows the integration of multiple images. So

a real-time display system for 3-D navigation under moderate computing power (e.g. PC or workstation)

become realizable.

Although we claim that the more the source images, the better the quality of generated image, the

compactness of our scene representation is ensured by the proportional thresholding scheme. The limitation

of our scene representation is its locality. It will be undesirable and less economical, in terms of data access

and storage, if it attempts to describe a scene globally. Finding an optimal topology of multiple DLCs and

exploring the coherence of compression for the multiple DLCs should be further pursued in the future.

The apparent quality of a synthesized view is closely related to the accuracy of the depth information

available. To obtain a dense and accurate depth information from multiple real images is known a very

di�cult problem. Although many approaches have shown their potentials for automatic solutions, in prac-

tice they are still di�cult to generate the adequate result. A depth recovery development system in the

reconstruction phase has been constructed to retrieve depths based on the correspondence analysis of stereo

images with human interventions. It separates tasks into a pipeline structure, and assigns the tasks to a

human animator or a computer algorithm in a proper way that a satisfactory result can be attained reliably.

The future works should further eliminate the extent of human intervention as well as provide a high-level

editing tools to ease the intervention.

For each new view rendering, the culling process is �rst taken place. We have shown at least 75% of

cylinder (the DLC), under the horizontal �eld of view of a virtual camera 45�, can be culled away before

a traverse of the image mapping. The computations of the culling process under our scene representation

are simpler and faster than the culling computations held in traditional computer graphics (e.g. back-face

culling). It plays a signi�cant role to improve the rendering performance under our scene representation.

After the culling, the partial cylinder portion is simply traversed in such a speci�c order that the visible

surfaces with respect to the desired viewpoint are determined correctly. Our virtual box solution for the

visibility determination directly inherits all advantages of L. McMillan's visibility algorithm yet a minor

payo� of extra linkages to the actual scene representation. No extra depth comparison or sorting is required.

The time complexity of it is constant, O(1), it is therefore suitable for the real-time implementation.

To found the basis of image transformations for various applications in our system, we have revealed all

possible image mappings between two logical image forms (planar and cylindrical) by the establishment of

their mapping equations. Based on regularity of geometric shape of our scene representation (cylinder) and

uniformity of the traverse order (scan-line fashion), the computations of the image mapping optimization

61

only require one forth of the original computations to achieve the same mapping result. Furthermore, this

optimization is suitable for both on-line and o�-line rendering processes.

The photorealism in our system is achieved with no additional operations, since the photometric prop-

erties of a scene are determined entirely by pre-acquired values of the input images. Although images are

particularity appealing because their visual source helps to form our expectation, the images do not represent

points that cannot be seen, as well as visible points are not represented equally.

It is known di�cult, in general, to give a de�nition of measurement for the adequacy of number of

images for the 3-D scene reconstruction, as well as an optimal scheme to determine where camera should

give a capture. Consequently, the inherited weakness of image's nature, e.g. limited image resolutions and

discontinuity of digital signals, may inherently constrain the computational accuracy to a certain degree.

Moreover, several aspects of the image-based approaches, while theoretically correct, su�er from sensitivities

to errant inputs and singularities under certain geometric con�gurations.

62

Appendix A

Fundamental Matrix

Given any pair of reference images, if their associated cameras' perspective projection matrices are known,

we may derive a robust relationship between any pair of corresponding points as stated in Theorem A.0.1

below, it is usually referred to as epipolar constraint.

Theorem A.0.1. For any two images, refer to them as left and right images, there exists a 3� 3 matrix F

such that the equation,

pTLFpR = 0;

holds for any pair of corresponding points pL and pR in left and right images respectively.

The matrix F which describes a relationship between a pair of corresponding points is called fundamental matrix

[31]. Let �L and �R be the cameras' perspective projection matrices for left and right images respectively.

Let �L (�R) be decomposed as the concatenation of a 3� 3 sub-matrix HL (HR) and a 3-vector hL(hR),

i.e. �L =
�
HL

��hL� and �R =
�
HR

��hR�. Then the fundamental matrix F has the form

F =
�
hL �HLH

�1

R hR
�
�
H�1

L H�1

R : (A.0.1)

The derivation of fundamental matrix has been described extensively in [18]. In general, the rank of

F is equal to two; thus it de�nes a one-to-one mapping from a set of image points to a set of image lines.

This sort of mapping is called correlation. The fundamental matrix, if known, is very useful to assist the

corresponding point searching between two reference images. For example, given an image point say pL in

the left image, the epipolar constraint guaranties that its corresponding point pR in the right image must lie

on its epipolar line. Hence the 2-D searching space over the image plane are reduced down to 1-D searching,

i.e. along the mapped epipolar line.

63

Appendix B

Fundamental Matrix Recovery

The epipolar geometry can be discovered if we have their associated projection matrices, which combine all

the camera intrinsic and extrinsic parameters. In other words, we must know the geometric relationship

between every pair of images and their corresponding camera con�gurations. However, usually the complete

geometric information between any pair of reference images and their camera parameters are unknown.

Thus we cannot use Eq. A.0.1 directly to compute the fundamental matrix. Instead, a partial geometric

relationship may be established by involving some human interventions1 in which a few matching points are

identi�ed. We may therefore apply the parameter estimating algorithms to �nd an optimal solution for a

matrix F numerically.

Assuming pL = (xpL ; ypL) and pR = (xpR ; ypR) are one pair of matched points in two reference images

respectively. From Theorem A.0.1, we know that

pTLFpR = 0;

and it can be expanded as follows,

(xpL ; ypL ; 1)

2664
f11 f12 f13

f21 f22 f23

f31 f32 f33

3775
0BB@

xpR

ypR

1

1CCA = 0;

where fij are the elements of F. This equation can be rewritten as a linear and homogenous function G with

four variables and nine unknown coe�cients, i.e.

G(xpL ; ypL ; xpR ; ypR)

= f11xpLxpR + f12xpLypR + f13xpL + f21ypLxpR + f22ypLypR + f23ypL + f31xpR + f32ypR + f33

= 0: (B.0.1)

By given a set of m pairs of corresponding points f(xpiL ; ypiL ; xpiR ; ypiR)g where i = 1; : : : ;m, the task

becomes �nding those nine coe�cients that best �t to Eq. B.0.1. In shorter form, let w = (f11, f12, f13, f21,

f22, f23, f31, f32, f33)
T , and di = (xpiLxpiL , xpiLypiR , xpiL , ypiLxpiR , ypiLypiR , ypiL , xpiR , ypiR , 1)

T , so that

G(xpiL , ypiL , xpiR , ypiR) = dTi w:

The fundamental matrix F is de�ned up to a scalar factor, so we may set one of nine elements of F to

be 1. It is then only left eight parameters in its place need to be estimated. Furthermore, the rank of F is

at most 2, the number of free parameter of F can then be further reduced down to seven [18]. Ideally, to

determine the fundamental matrix F, we need at least seven pair of matched points between two reference

1
Some automatic approaches using point detector, e.g. Canny detector or Plessey-Harris detector, have attempted to build

up the correspondences among them. However, we �nd that they are unstable so we specify the corresponding points manually.

64

images. In practice, due to the factors of false matching and discontinuity of discrete data arisen from the

image digitization, an optimization scheme is required to minimize the potential errors it may occur. One

of approaches is to strengthen and constrain the estimation by giving more matching points, i.e. more than

seven. There are many of numerical approximation methods available to estimate F with over-speci�ed data,

we demonstrate a simple approach | linear least-squares.

For more than seven pair of matching points (i.e. m > 7), the problem of �nding an optimal solution is

equivalent to minimize the following function:

U(w) =

nX
i=1

G2(xpiL ; ypiL ; xpiR ; ypiR):

Clearly, there exists a trivial solution fij = 0 for all i; j = 1::3, which is not what we want. We should impose

some constraints to the coe�cients of G(xpL , ypL , xpR , ypR) in order to avoid it. One way is to set one of

the coe�cients to 1. Without loss of generality, we assume that f33 is not equal to zero, and hence we can

set f33 = -1. Let w0 = (f11, f12, f13, f21, f22, f23, f31, f32)
T , and d0i = (xpiLxpiL , xpiLypiR , xpiL , ypiLxpiR ,

ypiLypiR , ypiL , xpiR , ypiR)
T . Moreover, D = [d0

1
, d0

2
, : : : , d0k]

T , and v = (v, v, : : : , v)T , where v is a k-vector

and its elements v is the last element of di. By given m point, the system equation can be rewritten as

G(xpiL ; ypiL ; xpiR ; ypiR) = d0i
T
w0
� v = 0:

Thus the function to be minimized becomes

U(w) = (Dw0
� v)T (Dw0

� v):

The solution can be obtained by setting its �rst derivative to be zero and yield

@U(w)

@w0
= 2DT (Dw0

� v) = 2DTDw0
�DTv = 0:

Hence, function U(w) is minimum when

w0 =
�
DTD

��1
DTv;

w =

w0

�1

!
;

if there exists an unique global minimum. This method will fail if the element we set to 1 is actually zero or

much smaller than the other elements. As we do not know priori which element is not zero, we can then set

each element of F to -1 for nine iterations and choose the one with minimum value of U(w).

65

Appendix C

Relative Camera Projection Matrices

Recovery

Camera projection matrix speci�es a transformation from 3-D to 2-D, and it is used to map a space-point

to an image-point. A camera projection matrix consists of camera intrinsic and extrinsic parameters. It is

well known that if we have the camera parameters and the depths of any two stereo images, we are able to

reconstruct the 3-D scene from those 2-D information. Unfortunately, the camera parameters are usually

not available unless additional measurements are taken, such as camera calibration.

Our system assumes all the input images are uncalibrated, which means no camera parameters are known

priori. It is known impossible to retrieve actual camera projection matrices only from those uncalibrated

stereo images. However, the relative camera projection matrices of stereo images are possible to be recovered

and are su�cient for our application of the scene registration (cf. Chapter 4).

Given two uncalibrated reference images, the task is to recover the relative perspective camera projection

matrices associated with those two images. Z. Zhang [18] has pointed out a nice property that, if the epipolar

geometry of two uncalibrated images is known, i.e. the fundamental matrix, then the relative camera

projection matrices can be determined [37]. However, it is only up to a linear transformation depending on

the projection model of the camera. For example, with the perspective projection the recovered cameras

projection matrices are de�ned up to a projective transformation in 3-D space while with the orthographic,

weak projective and paraperspective projections, their recovered camera projection matrices are de�ned up

to an a�ne transformation. A projective transformation is represented by a non-singular 4� 4 matrix acting

on homogenous vectors. When we said \only up to a projective transformation", it means if �1 and �2

are two perspective camera projection matrices and their epipolar geometry, the fundamental matrix F, is

established, then for any arbitrary projective transformation T in 3-D space, �0

1
= �1T and �0

2
= �2T

remain constantly consistent with F.

The property described above has suggested that there are in�nite numbers of projective base satisfying

the epipolar constraint, hence there is no way to recover the absolute camera projection matrices associated

with those images. Nevertheless, any pair of recovered camera projection matrices satisfying the epipolar

constraint has ful�lled the partial requirements of the images mapping between two uncalibrated images (cf.

Chapter 4). One way to represent the relative camera projection matrices recovered from the fundamental

matrix F is to use the canonical representation described in [38, 39, 37]. It can be expressed as follows,

�
1
=
�
H

1

��h
1

�
and �

2
= [I j 0] : (C.0.1)

Here �1 and �2 are de�ned with respect to the world coordinate system that is assumed to be coincided

with the second camera coordinate system. This representation is equivalent to the strongly calibrated case

in which the camera intrinsic parameters are known. In this case, F is called the essential matrix. A matrix

H1 describes the orientation of the �rst camera with respect to the second camera coordinate system, i.e.

the world coordinate system. A vector h1 is equal to -H1C1 (cf. Chapter 2, where C1 is the position of the

�rst camera optical center with respect to the second camera coordinate system).

66

From Eq. A.0.1 the fundamental matrix F can be calculated as follows,

F =
�
h1 �H1H

�1

2
h2
�
�
H1H

�1

2
:

Let us considering Eq. C.0.1 above, we have H2 = I and h2 = 0. Substitute to Eq. A.0.1, we have

F = [h1]�H1;

where [h1]�
1 is a skew symmetric matrix of h1, and H1is a 3� 3 rotation matrix.

Since the epipole e1 in the image plane I1 is the projection of the second camera optical center onto the

image plane I1, so we can write

e1 ' �1C2 =
�
H1

��h1�C2 =
�
H1

���H1C1

�
C2 = �H1C1;

where ' means \equal" up to a scale factor and we have C2 = (0; 0; 0) as the origin of the world coordinate

system. And we know h1 is equal to -H1C1, so e1 = h1: The epipole e1 in the image plane I1 has the

property eT
1
F = 0, which is equivalent to FTe1 = 0. Since F is singular, we multiply both sides by F and

then we have FFTe1 = 0: The matrix FFT is symmetric, hence the epipole e1 is the eigenvector of matrix

FFT associated to the smallest eigenvalue.

To calculate �1 and �2 from the matrix F, we �rst factorize F into a product of this form [e1]�H1.

The factorization is not unique in general, since once we �nd a matrix H1 satisfying it, any matrix in this

form, H1 + e1v
T , will also be a solution for any 3-vector v. It can be easily veri�ed that we always have

[e1]�e1v
T = 0. In particular, a matrix H1 can be obtained by the following steps:

F = [e1]�H1;

) [e1]�F = [e1]�
2

H1;

) [e1]�F = (e1e
T
1
� k e1 k

2I3)H1; since vvT = [v]
�

2

+ k v k2I3 for any 3-vector v,

) [e1]�F = e1e
T
1
H1 � k e1 k

2H1;

) [e1]�F = �k e1 k
2H1; since [e1]�ee1vT = 0 for any 3-vector v,

) H1 = (�1=k e1 k
2)[e1]�F:

Therefore,

�1 =
�
(�1=k e1 k

2)[e1]�F j e1
�

and �2 = [I j 0];

the relative perspective camera projection matrices are recovered using the fundamental matrix F derived

from two uncalibrated reference images.

1
The notion [v]

�
denotes the skew symmetric matrix of vector v, which is

[v]
�
=

2
4

vx
vy
vz

3
5
�

=

2
4

0 �vz vy
vz 0 �vx
�vy vx 0

3
5 :

67

Bibliography

[1] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. In Proc. SIG-
GRAPH'95, pages 39{46, 1995.

[2] S. E. Chen. QuickTimeVR - an image-based approach to virtual environment navigation. In Proc.
SIGGRAPH'95, pages 29{38, 1995.

[3] S. Laveau and O. Faugeras. 3-d scene representation as a collection of images and fundamental matrices.
Technical Report 2205, INRIA, Lucioles, France, February 1994.

[4] T. Beier and S. Neely. Feature-based image metamorphosis. In Proc. SIGGRAPH'92, pages 35{42, New
York, USA, July 1992.

[5] T. Werner, R. Hersch, and V. Hlavac. Rendering real-world objects using view interpolation. In
Proceedings of the International Conference on Computer Vision, pages 957{962, 1995.

[6] S. M.Seitz and C. R. Dyer. View morphing. In Proc. SIGGRAPH'96, pages 21{30, New Orieans,
Louisiana, USA, August 1996.

[7] M. Levoy and P. Hanrahan. Light �eld rendering. In Proc. SIGGRAPH'96, pages 31{42, New Orleans,
Louisiana, August 1996.

[8] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In Proc. SIGGRAPH'96,
pages 43{54, New Orleans, Louisiana, August 1996.

[9] R. Szeliski and S. Kang. Direct methods for visual scene reconstruction. In IEEE Workshop on Repre-
sentation of Visual Scenes, 1995.

[10] S. Peleg and J. Herman. Panoramic mosaic by manifold projection. In CVPR, pages 338{343, 1997.

[11] D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and synthesis. Technical Report
1431, Arti�cial Intelligence Laboratory, MIT, USA, 1993.

[12] T. Poggio and R. Brunelli. A novel approach to graphics. Technical Report 1354, Arti�cial Intelligence
Laboratory, MIT, USA, 1992.

[13] S. E. Chen and L. Williams. View interpolation for image synthesis. In Proc. SIGGRAPH'93, pages
278{288, Anaheim, California, USA, August 1993.

[14] E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early vision. In Computa-
tional Models of Visual Proceeding, pages 3{20, Cambridge, MA, 1991.

[15] S. K. Wei, Y. F. Huang, and R. Klette. Color anaglyphs for panorama visualizations. Technical
Report 19, CITR, Auckland University, New Zealand, Feb. 1998.

[16] R. Klette, K. Schl�uns, and A. Koschan. Computer Vision - Three-Dimensional Data from Images.
Springer, Singapore, 1998.

[17] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In Proceedings of 1997 Symposium
on Interactive 3D Graphics, pages 7{16, Providence, RI, April 1997.

[18] G. Xu and Z. Zhang. Epipolar Geometry in Stereo, Motion and Object Recognition. Kluwer, Netherlands,
1996.

[19] B. J�ahne. Digital Image Processing: Concepts, Algorithms, and Scienti�c Applications. Second edition.
Springer, Berlin, 1993.

68

[20] K. Kanatani. Geometric Computation for Machine Vision. Oxford Engineering Science Series No.37.
Oxford University Press, New York, 1995.

[21] S. M. Seitz. Image-Based Transformation of Viewpoint and Scene Appearance. PhD thesis, University
of Wisconsin, 1997.

[22] C.-Y. Lin, S.-W. Shih, and Y.-P. Hung. Toward automatic reconstruction of 3d environment with an
active binocular head. Technical Report 004, Academia Sinica, Taipei, Taiwan, 1998.

[23] S. Avidan and A. Shashua. Novel view synthesis in tensor space. In CVPR97, pages 1034{1040, June
1997.

[24] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mosaics and environment maps. In
Proc. SIGGRAPH'97, pages 251{258, Los Angeles, California, USA, August 1997.

[25] S. Peleg and J. Herman. Panoramic mosaic by manifold projection. Technical report, David Sarno�
Research Center, Princeton, NJ, USA, 1996.

[26] B. Noble and J. W. Daniel. Applied Linear Algebra Third Edition. Prentice-Hall, London, 1988.

[27] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics Principles and Practice Second
Edition. Addison-Wesley, Reading, Massachusetts, 1990.

[28] L. McMillan. A list-priority rendering algorithm for redisplaying projected surfaces. Technical Report
95-005, University of North Carolina, Chapel Hill, USA, 1995.

[29] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision, volume II. Addison-Wesley, Reading,
Massachusetts, 1993.

[30] A. Rosenfeld and A. C. Kak. Digital Picture Processing, volume 2. Academic Press, London, England,
second edition, 1993.

[31] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, London,
England, 1993.

[32] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique for matching two uncalibrated
images through the recovery of the unknown epipolar geometry. Technical Report 2273, INRIA, Lucioles,
France, May 1994.

[33] H.-C. Huang and Y.-P. Hung. Disparity morphing and automatic generation of stereo panoramas for
photo-realistic virtual reality systems. Technical Report 002, Academia Sinica, Taipei, Taiwan, 1997.

[34] E. N. Mortensen and W. A. Barrett. Intelligent scissors for image composition. In Proc. SIGGRAPH'95,
pages 191{198, 1995.

[35] R. T. Azuma. A survey of augmented reality. In Teleoperators and Virtual Environments 6, pages
355{385, Malibu, CA, August 1997.

[36] Y. F. Huang, S. K. Wei, and R. Klette. Automatic generation of stereo images from multiple monocular
object views. Technical Report 28, CITR, Auckland University, New Zealand, Aug. 1998.

[37] Z. Zhang and G. Xu. A general expression of the fundamental matrix for both perspective and a�ne
cameras. In IJCAI'97, pages 23{29, Nagoya, Japan, August 1997.

[38] P. Beardsley, A. Zisserman, and D. Murray. Navigation using a�ne structure from motion. In Proc.
3rd ECCV, volume 2, pages 85{96, Stockholm, Sweden, May 1994.

[39] Q.-T. Luong and T.Vieville. Canonic representations for the geometries of multiple projective views. In
Proc. 3rd ECCV, volume 1, pages 589{599, Stockholm, Sweden, May 1994.

69

