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Abstract

Representations of real regions by corresponding digital pictures cause an inherent loss of information.
there are infinitely many different real regions with and identical corresponding digital picture. So,
there are limitations in the reconstruction of the originals and their properties from digital pictures.
The problem which will be studied here is what is the impact of a digitization process on the efficiency
in the reconstruction of the basic geometric properties

• position (usually described by the gravity centre or centrod),
• orientation (usually described by the axis of the least second moment),
• elongation (usually calculated as the ratio of the minimal and maximal second moments values

w.r.t. the axis of least second moment),
of a planar convex region from the corresponding digital picture. Note that the size (area) estimation of
the region (mostly estimated as the number of digital points belonging to the considered region) is a
problem with an extensive history in number theory.
We start with smooth convex regions, i.e. whose boundaries have a continuous third order derivative
and positive curvature (at every point), and show that if such a planar convex region is represented by a
binary picture with resolution r, the mentioned features can be reconstructed with an absolute upper
error bound of

in the worst case. Since r is the number of pixels per unit, 1/r is the pixel size.
This result can be extended to regions which may be obtained from the previously described convex
regions by finite applications of unions, intersections or set differences. The upper error bound remains
the same which converges to zero with increase in grid resolution. The given description of the speed of
convergence is very sharp.
Only smooth, curved regions are studied because if the considered region contains a straight section, the
worst-case errors in the above estimations have 1 r as their order of magnitude. That is an trivial result.
The derivation is based on the estimation of the difference between the real moments (of the first and
second order) and the corresponding discrete moments. The derived estimation can be a necessary
mathematical tool in the evaluation of other procedures in the area of digital image analysis based on
moment calculations.
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Abstract

Representations of real regions by corresponding digital pictures cause an inherent loss of information. There are

in�nitely many di�erent real regions with an identical corresponding digital picture. So, there are limitations in

the reconstruction of the originals and their properties from digital pictures.

The problem which will be studied here is what is the impact of a digitization process on the e�ciency in the

reconstruction of the basic geometric properties

{ position (usually described by the gravity center or centroid),

{ orientation (usually described by the axis of the least second moment), and

{ elongation (usually calculated as the ratio of the minimal and maximal second moments values w.r.t. the

axis of the least second moment),

of a planar convex region from the corresponding digital picture. Note that the size (area) estimation of the region

(mostly estimated as the number of digital points belonging to the considered region) is a problem with an extensive

history in number theory.

We start with smooth convex regions, i.e. whose boundaries have a continuos third order derivative and positive

curvature (at every point), and show that if such a planar convex region is represented by a binary picture with

resolution r, then the mentioned features can be reconstructed with an absolute upper error bound of

O

�
1

r
15
11
�"

�
� O

�
1

r1:3636:::

�
;

in the worst case. Since r is the number of pixels per unit,
1

r
is the pixel size.

This result can be extended to regions which may be obtained from the previously described convex regions

by �nite applications of unions, intersections or set di�erences. The upper error bound remains the same which

converges to zero with increase in grid resolution. The given description of the speed of convergence is very sharp.

Only smooth, curved regions are studied because if the considered region contains a straight section, the worst-

case errors in the above estimations have
1

r
as their order of magnitude. That is an trivial result.

The derivation is based on the estimation of the di�erence between the real moments (of the �rst and second

order) and the corresponding discrete moments. The derived estimation can be a necessary mathematical tool in

the evaluation of other procedures in the area of digital image analysis based on moment calculations.

Keywords: Digital images, geometric properties, moments, resolution, convergence.
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1 Introduction and de�nitions

Because a quantization process is unavoidable, representations of real regions by computer pictures cause an

inherent loss of information, even in case of using high spatial and scale resolutions. There are always in�nitely

many di�erent real regions with an identical corresponding computer picture.

In this paper, our attention is focused on two-dimensional binary (digital) pictures and the limitation in the

reconstruction of basic geometric properties of the original regions from their digital pictures caused by the digiti-

zation process. Some related work can be found in [11] and [16]. Noise e�ects to the e�ciency in the reconstruction

are not studied here { for some approaches see [10] and [3].

Since there are no further assumptions about the observed regions, the obtained results are simply given as

function of the applied picture resolution { i.e. the number of pixels per unit.

In the diversity of di�erent digitization models, we specify that for a set S its digitization D(S) is de�ned to

be the set of all grid points with integer coordinates which belong to the region occupied by the given set S:

(i; j) 2 D(S) , (i; j) 2 S; where i and j are integers:

Image analysis of a binary picture usually starts with an estimation of the size and location of the region. Since

the digitization of a region is assumed to be the set of digital points which fall into the area occupied by the region,

it is straightforward to estimate the size of the region as the number of digital points inside of it. The di�erence

between the area of a region and the number of digital points which belong to it, is a classical mathematical

problem. A recent related result [7] from number theory could be used as the basic mathematical tool in our

studies.

There are di�erent ways to specify the position of a region. We describe the position of a region by its center

of gravity or the centroid. In the continuous case, the centroid of S is de�ned as the point�
m1;0(S)

m0;0(S)
;
m1;0(S)

m0;0(S)

�
;

where m0;0(S) is the zero-th order moment, while m1;0(S) and m0;1(S) are the �rst order moments.

In general, the (k; l)-moment, denoted by mk;l(S), of a planar set S is de�ned by

mk;l(S) =

Z
S

Z
xkyl dx dy:

The moment mp;q(S) has the order p+ q. Three (and higher) dimensional moments and their orders are

de�ned analogously.
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In situations of image processing applications, the exact values of the momentsmp;q(S) remain unknown. They

are estimated by, so called, discrete moments �k;l(S) where

�k;l(S) =
X

(i;j)2D(S)

ik � jl =
X

i;j are integers

(i;j)2S

ik � jl ;

which can be calculated from the corresponding digital pictures of the regions. For example, the center of gravity

of a set S is directly approximated from its digital image D(S) as�
m1;0(S)

m0;0(S)
;

m0;1(S)

m0;0(S)

�
�

�
�1;0(S)

�0;0(S)
;

�0;1(S)

�0;0(S)

�
:

The next useful geometric property considered here is the orientation. The orientation of a region can be e�ciently

described by its, so called, axis of the least second moment. That is the line for which the integral of the square of

the distance to points in the region is a minimum. That integral is

I(S; '; �) =

Z
S

Z
r2(x; y; '; �)dxdy ;

where r(x; y; '; �) is the perpendicular distance from the point (x; y) to the line given in the form

x � cos' � y � sin' = �:

We are looking for the value of ' for which I(S; '; �) is the minimal possible, and by this angle we de�ne the

orientation of the region S. This '-value will be denoted by A(S), i.e.

min
';�

I(S; '; �) = I(S;A(S); �); for some value of � :

Accordingly we de�ne the elongation of S (see [9]) as the ratio of the maximum and minimum values of

I(S; '; �), i.e.

E(S) =

max
'; �

I(S; '; �)

min
'; �

I(S; '; �)
:

Primarily, we are interested in convex regions whose boundaries have a continuos third derivative and positive

curvature (at every point). We show that if such a planar convex region is represented in a binary picture with

resolution r, then the mentioned features can be reconstructed with an absolute upper error bound of

O

�
1

r
15
11
�"

�
� O

�
1

r1:363636:::

�

where r is the number of pixels per unit, i.e. the pixel size is 1=r.
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This result can be extended to regions which may be obtained from smooth planar convex regions by �nite

applications of unions, intersections or set di�erences. Such regions will be called smooth regions. The upper error

bound remains the same which converges to zero with an increase in grid resolution. That is a worst-case analysis.

Mathematical tools for the computation of the average (or expected) error due to quantization are developed in

[11].

The obtained description of the speed of convergence can be interpreted to be very sharp. Namely, from the

derivations of the results it can be concluded that they are sharp up to the Huxley's result [7], which is a strong

mathematical result, related to the number of integer points inside of the strictly convex region of the form r �S. It

improves the previously best known upper bound of the rest term even for the famous \circle problem", i.e. when

S is the unit circle [8].

In the case when the considered region contains a straight boundary section, the errors in the above estimations

have 1
r
as their order of magnitude (the worst-case situation). That is an trivial result and consequently, such

situations are not considered in the paper. An analysis of the precision bounds by which a measure of the location

can be determined on the image plane for the straight-edged regions can be found in [2].

Our derivations are based on the estimation of the di�erence between the real moments (of the �rst and second

order) and the corresponding discrete moments. The method which has been used here can be extended to the

estimation of the moments which have order bigger than two. Those estimations can be a useful tool for the

evaluation of procedures in the area of digital image analysis based on moment calculations. Let us mention that

the moment-concept in image analysis has ben introduced by Hu [6], since then a variety of new moment-types and

moment-based methods have been developed and used, we mention several of them: object recognition [1], region

representation [13], [22], determination of invariants [17], [18], motion estimation [14], similarity measurement [4].

While this paper studies the problems related to an asymptotic analysis of the moments behaviour there is also

interest in the description of algorithms for a fast moment calculation because the use of moments is still limited

due to computational complexity. Of course, only discrete moments are computable. For more details we refer to

[10], [20].

Through the paper it is assumed that all appearing coordinates are positive. In other words, the origin is always

placed in the lower-left corner of a studied digital picture.

The paper is organized as follows. The mathematical formulation of the problem and a recent result from

number theory are given in Section 2. The asymptotic expressions of the discrete moments of the �rst order of a

smooth region are derived in Section 3 while the asymptotic behaviour of the discrete moments of the second order

is derived in Section 4. Section 5 is related to the location of the centroids of smooth regions. The central moments
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are considered in Section 6. Sections 7 and 8 give the error estimation in reconstruction of the orientation and

elongation of smooth regions. Section 9 contains an example, concluding remarks and comments.

2 Necessary mathematics, Huxley's theorem

If nothing is known a-priori about the given smooth planar convex region then the precision in estimation can only

be speci�ed as a function of the grid resolution, i.e. of the number of pixels per unit. Of course, it can be expected

that higher resolution enables a higher precision. But, the question is:

Which resolution preserves the required precision ?

The paper gives an answer.

Assume that D1(S) is a binary picture of region S for resolution r1 = 1, i.e. one pixel per unit, and let

D2(S) be the binary picture of the same region for resolution r2, i.e. with r2 pixels per unit. Then it follows that

D2(S) = D1(r2 � S), where r2 � S is the dilation of S by factor r2 . More precisely, for a real number r and a set

S , the set r � S is de�ned to be

r � S = f(r � x; r � y) j (x; y) 2 Sg :

In other words, for our purpose it is su�cient to consider regions of the form r � S, which are digitized on the

orthogonal grid. The study of r ! 1 corresponds to the increase in picture resolution (for a general concept see

[12]). For such an increase it is necessary to estimate the asymptotic behavior of the following expressions:

m1;0(S)

m0;0(S)
�
1

r
�
�1;0(r � S)

�0;0(r � S)
and

m0;1(S)

m0;0(S)
�
1

r
�
�0;1(r � S)

�0;0(r � S)
; (1)

which are the errors in the centroid location;

A(S) � A(r � S) ; (2)

where A(r � S) is the angle which approximates A(S) and and which can be calculated from D(r � S) ;

E(S) � E(r � S) ; (3)

where the approximation for E(S) (calculated from D(r � S)) is denoted by E(r � S) .

It is well known how to describe the centroid, orientation and elongation of S from the moments m0;0(S);

m1;0(S); m0;1(S); m2;0(S); m0;2(S) and m1;1(S): It seems to be straightforward to approximate mp;q(S) by

1

rp+q+2
� �p;q(r � S);
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but the error term in this approximation determines the e�ciency of the mentioned descriptions. So, we have to

known the order of this error, (in the studied case) as a function of the applied picture resolution.

We cite the following result from number theory [7], which expresses �0;0(r � S) for a smooth planar convex

region.

Theorem 1 If S is a convex region in the Euclidean plane, with C3 boundary and positive curvature at every point

of the boundary, then the number of lattice (digital) points belonging to r � S is

�0;0(r � S) = r2 � P (S) + O
�
r

7
11 � (log r)

47
22

�
;

where P (S) denotes the area of S, while r � S is the dilatation of S by factor r.

Lateron, because of simplicity, we will use a weaker result:

�0;0(r � S) = r2 �P (S) + O
�
r

7
11
+�
�

; for every " > 0: (4)

The preconditions of Theorem 1 can be relaxed to allow S to have a �nite number of vertices (corners). The

theorem can also be applied, e.g., to an intersection of the interiors of two convex curves (for details, see [7]). Our

goal is to derive a \reasonable" asymptotic expression for �1;0(r �S), �0;1(r �S), �2;0(r �S), �0;2(r �S) and

�1;1(r � S) and by using these expressions to estimate (1), (2) and (3).

We will use the following de�nitions.

De�nition 1 For a smooth planar convex region S, a given integer k and a real number r, the set (r � S)(k) is

de�ned as:

(r � S)(k) = f(x; y) j (x; y) 2 (r � S) and x � kg :

Consequently, D((r � S)(k)) is the set of digital points in the digitization of r � S lying in the closed half plane

determined by x � k.

De�nition 2 For a smooth planar convex region S, a given integer k and a real number r, the digital point set

L(r � S; k) is de�ned as

L(r � S; k) = f(k; j) j (k; j) 2 D(r � S)g :

In other words, L(r �S; k) is a set of digital points in the digitization of r �S which belong to the vertical line x = k.

It follows that

D(r � S) =

k=+1[
k=�1

L(r � S; k) =

br�xmaxc[
k=dr�xmine

L(r � S; k) ; (5)
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where xmin is the minimum x-value among all the points in set S, and xmax is the maximum x-value, i.e.

xmin = minfx j (x; y) 2 Sg ; xmax = maxfx j (x; y) 2 Sg :

The values ymin and ymax are de�ned analogously. We need the following auxiliary lemma..

Lemma 1 For a smooth planar convex region S, a given integer k and a real number r, the discrete (0; 0)-moment

of the set (r � S)(k) can be expressed as

�0;0((r � S)(k)) = P ((r � S)(k)) +
1

2
� �0;0(L(r � S; k)) + O(r

7
11
+"):

Proof. Let r � S be the region symmetrical to r � S, with respect to the line x = k. Furthermore, the convex set

r � S \ r � S satis�es the conditions of Theorem 1, so the number of digital points belonging to r � S \ r � S

can be determined as �0;0(r � S \ r � S) = P (r � S \ r � S) + O
�
r

7
11
+"
�
. The statement follows because the set

r � S \ r � S is symmetrical with respect to the line x = k. ut

3 Discrete moments of the �rst order

In this section we estimate the �rst order moments of a smooth region S from its digital picture as a function of

the picture resolution.

Let us de�ne three-dimensional sets Vi and V 0
i , for i = dr � xmine; dr � xmine+ 1; : : : ; br � xmaxc � 1:

De�nition 3 For a smooth planar convex region r �S and an integer i from the set fdr �xmine; dr �xmine+1; : : : ; br �

xmaxc � 1g, we de�ne 3D-sets

Vi = f(x; y; z) j (x; y) 2 r � S and x � i and i < z � i + 1g:

De�nition 4 For a smooth planar convex region r �S and an integer i from the set fdr �xmine; dr �xmine+1; : : : ; br �

xmaxc � 1g, we also de�ne 3D-sets

V 0

i = f(x; y; z) j (x; y) 2 r � S and x � i and x < z � i+ 1g:

The discrete moments �1;0(r � S) and �0;1(r � S) may be expressed as follows:

Theorem 2 Let S be a convex planar region. Then the following asymptotical expressions hold:

�1;0(r � S) =
X

i;j are integers

(i;j)2r�S

i =

Z
r�S

Z
xdxdy + O

�
r
18
11
+"
�

;
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and

�0;1(r � S) =
X

i;j are integers

(i;j)2r�S

j =

Z
r�S

Z
ydxdy + O

�
r
18
11
+"
�

:

Proof. It holds that �1;0(r � S) is equal to the number of digital points belonging to the 3D set C given by

C = f(x; y; z) j (x; y) 2 r � S; 0 < z � xg = C0 [ C00

where C0 and C00 are de�ned as follows:

C0 = f(x; y; z) j (x; y) 2 r � S; 0 < z < r � xming

and

C00 = f(x; y; z) j (x; y) 2 r � S; r � xmin � z � xg:

First, consider the number of digital points belonging to the set C 0. From (4) it follows that

�0;0;0(C
0) = (dr � xmine � 1) �

�
P (r � S) + O

�
r

7
11
+"
��

=

= vol(C0)� r � xmin �P (r � S) + (dr � xmine � 1) �
�
P (r � S) + O

�
r

7
11
+"
��

=

= vol(C0) + P (r � S) � (dr � xmine � r � xmin � 1) +O
�
r
18
11
+"
�
:

Now, let us calculate the number of digital points belonging to the set C 00. According to De�nitions 3 and 4 of

the 3D-sets Vi and V 0
i it follows that

vol(C00) =

br�xmaxc�1X
i=dr�xmine

(vol(Vi)� vol(V 0

i )) + (dr � xmine � r � xmin) �P (r � S) +O(r) =

=

br�xmaxc�1X
i=dr�xmine

vol(Vi)�

br�xmaxc�1X
i=dr�xmine

vol(V 0

i ) + (dr � xmine � r � xmin) �P (r � S) + O(r) =

=

br�xmaxc�1X
i=dr�xmine

P ((r � S)(i)) �
1

2
� P (r � S) + (dr � xmine � r � xmin) �P (r � S) + O(r) =

=

br�xmaxc�1X
i=dr�xmine

�
�0;0((r � S)(i)) �

�0;0(L(r � S; i))

2
+ O

�
r

7
11
+"
��

�
P (r � S)

2
+

+ (dr � xmine � r � xmin) � P (r � S) + O
�
r
18
11
+"
�

=
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Figure 1: Decomposition for �rst order moment calculation.

= (�0;0;0(C
00)�

�0;0(r � S)

2
�
P (r � S)

2
+ (dr � xmine � r � xmin) � P (r � S) +O

�
r
18
11
+"
�
=

= �0;0;0(C
00) � �0;0(r � S) + (dr � xmine � r � xmin) � P (r � S) + O(r

18
11
+"):

Note that Lemma 1, (4), (5) and

br�xmaxc�1X
i=dr�xmine

vol(V 0

i ) =
1

2
�P (r � S) + O(r)

have been used. That gives

�0;0;0(C
00) = vol(C00) + �0;0(r � S) � (dr � xmine � r � xmin) � P (r � S) +O(r

18
11
+") :
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The sum of �0;0;0(C
0) and �0;0;0(C

00) is the number of digital points in C. It follows that

�1;0(r � S) = �0;0;0(C) = �0;0;0(C
0) + �0;0;0(C

00) =

= vol(C0) + P (r � S) � (dr � xmine � r � xmin � 1) + O
�
xmin � r

18
11
+"
�
+

+ vol(C00) + �0;0(r � S) � (dr � xmine � r � xmin) �P (r � S) + O(r
18
11
+") =

= vol(C) + O
�
xmin � r

18
11
+"
�

= vol(C) +O
�
r
18
11
+"
�

=

= m1;0(r � S) + O
�
r
18
11
+"
�
: ut

The above theorem has the following important consequence.

Theorem 3 The moments of the �rst order m1;0(S) qnd m0;1(S) of a smooth convex region S can be

estimated as follows:

m1;0(S) =
1

r3
� �1;0(r � S) + O

�
r�

15
11
+"
�

and m0;1(S) =
1

r3
� �0;1(r � S) + O

�
r�

15
11
+"
�
:

Proof. By using the previous theorem we have:

m1;0(S) �
1

r3
� �1;0(r � S) = m1;0(S) �

1

r3
�

0
@Z
r�S

Z
xdxdy + O

�
r
18
11
+"
�1A =

= m1;0(S) �
1

r3
� r3 �m1;0(S) + O

�
r�

15
11
+"
�
=

= O
�
r�

15
11
+"
�
: ut

4 Discrete moments of second order

In this section we give asymptotic expressions for the second order discrete moments of a smooth region r � S.

Obviously, the moments �2;0(r � S) and �0;2(r � S), because of symmetry, can be derived in an identical

way, while the estimation of �1;1(r � S) needs some modi�cations.

The following de�nitions of 3D-sets Wi and W 0
i are used.

De�nition 5 For a smooth planar convex region r �S and an integer i from the set fdr �xmine; dr �xmine+1; : : : ; br �

xmaxc � 1g, we de�ne 3D-sets

Wi = f(x; y; z) j (x; y) 2 r � S; x � i; i < z � i + 1g:

12



De�nition 6 For a smooth planar convex region r �S and an integer i from the set fdr �xmine; dr �xmine+1; : : : ; br �

xmaxc � 1g, we also de�ne 3D-sets

W 0

i = f(x; y; z) j (x; y) 2 r � S; x � i ; x2 < z � i+ 1g:

We start with the calculation of �2;0(r � S) . An auxiliary lemma is necessary.

Lemma 2
br�xmaxc�1X
dr�xmine

vol(W 0

i ) =
X

(i;j)2r�S

i + O(r2) = �1;0(r � S) + O(r2)

Proof. The boundary of r � S can be divided into two arcs of the form y = y1(x) and y = y2(x), such that

y1(x) � y2(x). Then it holds that

br�xmaxc�1X
i=dr�xmine

vol(W 0

i ) =

br�xmaxc�1X
i=dr�xmine

Z i+1

i

dx

Z y2(x)

y1(x)

dy

Z (i+1)2

x2
dz =

=

br�xmaxc�1X
i=dr�xmine

Z i+1

i

dx

Z
by2(i)c

dy1(i)e

dy

Z (i+1)2

x2
dz + O(r) =

=

br�xmaxc�1X
i=dr�xmine

Z i+1

i

(by2(i)c � dy1(i)e) � ((i + 1)2 � x2)dx + O(r) =

=

br�xmaxc�1X
i=dr�xmine

(by2(i)c � dy1(i)e) �

�
i +

2

3

�
+ O(r) =

=

br�xmaxc�1X
i=dr�xmine

(by2(i)c � dy1(i)e) � i +
2

3
�

br�xmaxc�1X
dr�xmine

(by2(i)c � dy1(i)e) + O(r) =

=
X

(i;j)2r�S

i + O(r2) = �1;0(r � S) + O(r2) : ut

Let us note that
br�xmaxc�1X
dr�xmine

(by2(i)c � dy1(i)e) � i

equals �1;0(r � S) with error having order of magnitude upper bounded by

maxf x j (x; y) 2 r � S g � (perimeter of r � S) = O(r2) ;

13



while
br�xmaxc�1X
dr�xmine

(by2(i)c � dy1(i)e)

has O(r2) as the order of magnitude .

The discrete moments �2;0(r �S) and �0;2(r �S) are evaluated by Theorem 4, while Theorem 6 evaluates

�1;1(r � S) .

Theorem 4 Let S be a convex planar region. Then the following asymptotical expressions hold:

�2;0(r � S) =
X

i;j are integers

(i;j)2r�S

i2 =

Z
r�S

Z
x2dxdy +O

�
r
29
11
+"
�

and

�0;2(r � S) =
X

i;j are integers

(i;j)2r�S

j2 =

Z
r�S

Z
y2dxdy + O

�
r
29
11
+"
�

:

Proof. Let us notice that �2;0(r � S) is equal to the number of digital points belonging to the 3D set B given by

B = f(x; y; z) j (x; y) 2 r � S and 0 < z � x2g = B0 [ B00

where B0 and B00 are de�ned as follows:

B0 = f(x; y; z) j (x; y) 2 r � S and 0 < z � dr � xmine
2g

and

B00 = f(x; y; z) j (x; y) 2 r � S and dr � xmine
2 < z � x2g:

First, consider the number of digital points belonging to the set B0. From (4) it follows easily that

�0;0;0(B
0) = dr � xmine

2 �
�
P (r � S) + O

�
r

7
11
+"
��

=

= vol(B0) + O
�
r
29
11
+"
�
:

Now, let us calculate the number of digital points belonging to set B00. According to De�nitions 5 and 6 of the

14



Figure 2: Decomposition for second order moment calculation.

3D-sets Wi and W 0
i , it follows that

vol(B00) =

br�xmaxc�1X
i=dr�xmine

(vol(Wi) � vol(W 0

i )) +O(r2) =

=

br�xmaxc�1X
i=dr�xmine

vol(Wi)�

br�xmaxc�1X
i=dr�xmine

vol(W 0

i ) +O(r2) =

=

br�xmaxc�1X
i=dr�xmine

(2i+ 1) � P ((r � S)(i)) �

br�xmaxc�1X
i=dr�xmine

vol(W 0

i ) +O(r2) =

=

br�xmaxc�1X
i=dr�xmine

(2i+ 1) �

�
�0;0((r � S)(i)) �

1

2
� �0;0(L(r � S; i)) +O

�
r

7
11
+"
��

�
X

(i;j)2r�S

i +O(r2) =

15



=

br�xmaxc�1X
i=dr�xmine

(2i+ 1) � �0;0((r � S)(i)) �

br�xmaxc�1X
i=dr�xmine

i � �0;0(L(r � S; i)) +

+
1

2
�

br�xmaxc�1X
i=dr�xmine

�0;0(L(r � S; i) + O
�
r2+

7
11
+"
�
�

br�xmaxc�1X
i=dr�xmine

�0;0(L(r � S; i) +O(r2) =

=

br�xmaxc�1X
i=dr�xmine

(2i+ 1) � �0;0((r � S)(i)) �

br�xmaxc�1X
i=dr�xmine

2 � i � �0;0(L(r � S; i)) + O
�
r
29
11
+"
�
=

=

br�xmaxc�1X
i=dr�xmine

(2i+ 1) � (�0;0((r � S)(i) � �0;0(L(r � S; i))) + O
�
r2+

7
11
+"
�
=

= �0;0;0(B
00) +O

�
r
29
11
+"
�

Note that
br�xmaxc�1X
i=dr�xmine

(2i+ 1) � (�0;0((r � S)(i) � �0;0(L(r � S; i)))

equals the number of digital points inside of B00. Lemma 1 and the equalities (4) and (5)also have been used. So,

we have

�0;0;0(B
00) = vol(B00) + O(r

29
11
+") :

The sum of �0;0;0(B
0) and �0;0;0(B

00) is the number of digital points in B. Together with the already

derived expression for �0;0;0(B
0) we have

�2;0(r � S) = �0;0;0(B) = �0;0;0(B
0) + �0;0;0(B

00) =

= vol(B0) + O
�
r
29
11
+"
�

+ vol(B00) + O(r
29
11
+") =

= vol(B) +O
�
r
29
11
+"
�

=

= m2;0(r � S) + O
�
r
29
11
+"
�
: ut

The following important theorem is a direct consequence of the previous statement.
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Theorem 5 Let a convex smooth region S be given. Then the moments m2;0(S) and m0;2(S) can be estimated by
1

r4
� �2;0(r � S) and

1

r4
� �0;2(r � S), respectively, within an O

�
r�

15
11
+"
�

error.

Proof. It holds

m2;0(S) �
1

r4
� �2;0(r � S) = m2;0(S) �

1

r4
�

0
@Z
r�S

Z
x2dxdy + O

�
r
29
11
+"
�1A =

= m2;0(S) �
1

r4
�

Z
r�S

Z
x2dxdy + O

�
r�

15
11
+"
�

=

= m2;0(S) � m2;0(S) + O
�
r�

15
11
+"
�

=

= O
�
r�

15
11
+"
�
: ut

It remains to estimate �1;1(r � S).

Theorem 6 Let S be a convex planar region. Then the following asymptotical expression holds,

�1;1(r � S) =
X

i;j are integers

(i;j)2r�S

i � j =

Z
r�S

Z
xydxdy +O

�
r
29
11
+"
�

:

Proof. Note that �1;1(r � S) is equal to the number of digital points belonging to the 3D set E given by

E = f(x; y; z) j (x; y) 2 r � S and 0 < z � x � yg = E0 [ E00

where E0 and E00 are de�ned as follows:

E0 = f(x; y; z) j (x; y) 2 r � S and 0 < z < r2 � zming

and

E00 = f(x; y; z) j (x; y) 2 r � S and r2 � zmin � z � x � yg:

Where zmin is de�ned to be

zmin = minf z j z = x � y and (x; y) 2 S g:

Analogously, zmax is de�ned to be

zmax = maxf z j z = x � y and (x; y) 2 S g:

17



First, consider the number of digital points belonging to the set E0. From (6) it follows that

�0;0;0(E
0) = (dr2 � zmine � 1) �

�
P (r � S) + O

�
r

7
11
+"
��

=

= vol(E0) � r2 � zmin � P (r � S) + (dr2 � zmine � 1) �
�
P (r � S) + O

�
r

7
11
+"
��

=

= vol(E0) + P (r � S) �
�
dr2 � zmine � r2 � zmin � 1

�
+ O

�
r
29
11
+"
�
:

Now let us calculate the number of digital points belonging to set E00. The following de�nition of 3D-sets, !i

and !0i, is useful:

!i = f (x; y; z) j (x; y) 2 r � S and x � y � i and i < z < minfx � y; i+ 1g g:

and

!0i = f (x; y; z) j (x; y) 2 r � S and x � i and x � y < z < i + 1 g:

Now, we can estimate the volume of E00.

S3(i) will denote the 2D-region f (x; y) j (x; y) 2 r � S and x � y � i g: It follows that

vol(E00) =

br2�zmaxc�1X
i=dr2�zmine

vol(!i) +
�
dr2 � zmine � r2 � zmin

�
� P (r � S) +O(r2) =

=

br2�zmaxc�1X
i=dr2�zmine

(P (S3(i)) � vol(!0i)) +
�
dr2 � zmine � r2 � zmin

�
� P (r � S) + O(r2) =

=

br2�zmaxc�1X
i=dr2�zmine

P (S3(i)) �

br2�zmaxc�1X
i=dr2�zmine

vol(!0i) +
�
dr2 � zmine � r2 � zmin

�
�P (r � S) + O(r2) =

=

br2�zmaxc�1X
i=dr2�zmine

�
�0;0(S3(i)) +O

�
r

7
11
+"
��

+
�
dr2 � zmine � r2 � zmin

�
� P (r � S) + O(r2) =

= �0;0;0(E
00) +

�
dr2 � zmine � r2 � zmin

�
� P (r � S) + O

�
r
29
11
+"
�

Thus,

�0;0;0(E
00) = vol(E00) �

�
dr2 � zmine � r2 � zmin

�
�P (r � S) + O

�
r
29
11
+"
�
:
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The proof of the theorem is �nished by summing �0;0;0(E
0) and �0;0;0(E

00). So,

�1;1(r � S) = �0;0;0(E
0) + �0;0;0(E

00) =

= vol(E0) + P (r � S) �
�
dr2 � zmine � r2 � zmin � 1

�
+ O

�
r
29
11
+"
�

+

+ vol(E00) �
�
dr2 � zmine � r2 � zmin

�
� P (r � S) + O

�
r
29
11
+"
�
=

= vol(E) + O
�
r
29
11
+"
�
=

= m1;1(r � S) + O
�
r
29
11
+"
�
: ut

The next theorem follows directly from the previous one.

Theorem 7 Let a convex smooth region S be given. Then the moment m1;1(S) can be estimated by
1

r4
� �1;1(r � S) within an O

�
r�

15
11
+"
�

error.

Proof. It holds

m1;1(S) �
1

r4
� �1;1(r � S) = m1;1(S) �

1

r4
�

0
@Z
r�S

Z
xydxdy + O

�
r
29
11
+"
�1A =

= m1;1(S) �
1

r4
�

Z
r�S

Z
xydxdy + O

�
r�

15
11
+"
�

=

= m1;1(S) � m1;1(S) + O
�
r�

15
11
+"
�

=

= O
�
r�

15
11
+"
�
: ut

5 E�ciency in the reconstruction of gravity centers

Now, we are prepared to specify an upper error bound for the reconstruction of the gravity center of a smooth

planar convex region. Note that the given estimates below are very sharp. They show that a reasonable high

resolution ensures a location of the calculated gravity center within an error less than any arbitrary small fraction

of the grid edge length 1
r
.

Theorem 8 Let S be a smooth planar convex region. Then, for the gravity center position�
m1;0(S)

m0;0(S)
;

m0;1(S)

m0;0(S)

�

19



the following error estimates hold:

m1;0(S)

m0;0(S)
�

1

r
�
�1;0(r � S)

�0;0(r � S)
=

m1;0(S)

m0;0(S)
�

1

r
�

X
i;j are integers

(i;j)2r�S

i

X
i;j are integers

(i;j)2r�S

1
= O

�
1

r
15
11
�"

�

and

m0;1(S)

m0;0(S)
�

1

r
�
�0;1(r � S)

�0;0(r � S)
=

m0;1(S)

m0;0(S)
�

1

r
�

X
i;j are integers

(i;j)2r�S

j

X
i;j are integers

(i;j)2r�S

1
= O

�
1

r
15
11
�"

�
:

Proof. By using Theorem 2 it follows that

m1;0(S)

m0;0(S)
�
1

r
�
�1;0(r � S)

�0;0(r � S)
=

r �m1;0(S) �
�
r2 �m0;0(S) +O

�
r

7
11
+"
��

�m0;0(S) �
�
r3 �m1;0(S) +O

�
r
18
11
+"
��

r �m0;0(S) �
�
r2 �m0;0(S) + O

�
r

7
11
+"
��

=
O
�
r�

15
11
+"
�

(m0;0(S))
2
+ O

�
r�

15
11
+"
� = O

�
r�

15
11
+"
�
: ut

Several numerical examples are given in Table 1 in order to illustrate the previous theorem.

6 Central moments

The moments of the order one and two will vary for a given region depending on the spatial position of the

region. Translation invariants (as should be orientation and elongation) are obtained by using the central moments

for which the origin is at the centroid of the region. This normalization step is very common in moment based

calculations. That is a reason for the following brief discussion of normalized moments.

Let the coordinates

�
m1;0(S)

m0;0(S)
;
m1;0(S)

m0;0(S)

�
of the centroid of S be shortly denoted as xc(S) and yc(S). While

the values
�1;0(r � S)

�0;0(r � S)
and

�1;0(r � S)

�0;0(r � S)
are denoted by xd(r � S) and yd(r � S), respectively. Then the expression

mk;l(S) =

Z
S

Z
(x� xc(S))

k(y � yc(S))
l dx dy

is called the central (k; l)-moment of a given region S.
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The discrete analogon for the central (k; l)-moment of a given region r � S is the so-called central discrete

(k; l)-moment, which is equal to

�k;l(r � S) =
X

i;j are integers

(i;j)2r�S

(i � xd(r � S))
k � (j � yd(r � S))

l :

We show that central moments of second order of a given smooth region S can be recovered with the same

O
�
r�

15
11
+"
�
error bound from their corresponding central discrete moments. Obviously, the central moments of

the �rst degree are equal to zero, i.e.

m1;0(S) = m0;1(S) = �1;0(r � S) = �1;0(r � S) = 0 :

Second order moments are speci�ed in the next theorem.

Theorem 9 Let a smooth convex region S be given. Then the following di�erences

a) m2;0(S) �
1
r4
� �2;0(r � S),

b) m0;2(S) �
1
r4
� �0;2(r � S),

c) m1;1(S) �
1
r4
� �1;1(r � S),

have an upper bound in O
�
r�

15
11
+"
�
.

Proof. We prove a). Theorems 3, 5 and 8 as well as the equations m2;0(S) = m2;0(S) � xc(S) � m1;0(S) , i.e.

�2;0(r � S) = �2;0(S) � xd(r � S) � �1;0(r � S) will be used. It follows that

m2;0(S) �
1

r4
� �2;0(r � S) = m2;0(S) � xc(S) �m1;0(S) �

1

r4
� (�2;0(r � S) � xd(r � S) � �1;0(r � S)) =

=

�
m2;0(S) �

1

r4
� �2;0(r � S)

�
�
�
xc(S) �m1;0(S) �

�
m1;0(S) +O

�
r�

15
11
+"
��

�
�
xc(S) +O

�
r�

15
11
+"
���

=

= O
�
r�

15
11
+"
�
:

The items b) and c) can be proved analogously. ut

7 E�ciency in the reconstruction of orientations

The usual practice in de�ning of the region's orientation is to choose the axes of the least second moment ([5] ,

[9]). More precisely, it is necessary to �nd the line, say in the polar-coordinates form X � sin'�Y � cos'+ � = 0
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as it is used usually in order to avoid numerical problems when the line is (nearly) vertical, for which the integral

of the square of the distance to points in the region is a minimum. The squared distance r(x; y; �; ') from a point

(x; y) to the speci�ed line is r2(x; y; �; ') = (x � cos' � y � sin' + �)2. That means the integral

I(S; '; �) =

Z
S

Z
(x � sin'� y � cos' + �)2dxdy

should be minimized with respect to � and '. Di�erentiating with respect to � and setting the result to

zero leads to

xc(S) � sin' � yc(S) � cos' + � = 0:

Thus the required line (the so-called axis of least second moments) passes through the centroid of S. This suggests

a change of coordinates, i.e. a normalization by translation of S by the vector (�xc(S); �yc(S)). So, I(S; '; �)

becomes

I(S; '; �) = m2;0(S) � sin
2 '� 2 �m2;0(S) � sin' � cos'+m0;2(S) � cos

2'

or equivalently,

I(S; '; �) =
1

2
� (m2;0(S) +m0;2(S)) �

1

2
� (m2;0(S) �m0;2(S)) � cos 2'�m1;1(S) � sin 2' : (6)

Di�erentiating with respect to ' and setting the result to zero, we have ([5]) two solutions. The solution

sin 2' =
2 �m1;1(S)p

4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))2
; cos 2' =

m2;0(S) �m0;2(S)p
4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))2

(7)

leads to the desired minimum for I(S; '; �), while the solution

sin 2' = �
2 �m1;1(S)p

4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))2
; cos 2' = �

m2;0(S) �m0;2(S)p
4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))2

(8)

corresponds to the maximum value for I(S; '; �), unless m2;0(S) = m0;2(S) . The equality m2;0(S) = m0;2(S)

points out that S is to symmetrical in some sense. More details about the determination of orientations even in

the case of \degenerate" images can be found in [15].

Consequently, the orientation E(S) of the region S satis�es

tan(2 �E(S)) =
2 �m1;1(S)

m2;0(S) �m0;2(S)
:

Now, we can estimate the error in approximating the orientation of a smooth region S by using the discrete

analogon for the previous equality. Namely, if the orientation E(S) of a smooth region S, given on the picture with

the resolution r, is estimated by E(r � S) where

tan(2 � E(r � S)) =
2 � �1;1(r � S)

�2;0(r � S) � �0;2(r � S)
;
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then the following theorem holds.

Theorem 10 Let a smooth planar region S be given. If m2;0(S) 6= m0;2(S) is assumed, then its orientation

A(S) can be recovered within error O(r�
15
11
+"), by using

tan(2 �A(S)) �
2 � �1;1(r � S)

�2;0(r � S) � �0;2(r � S)
:

Proof. By using Theorem 9 we have

tan(2 �A(S)) � tan(2 � A(r � S)) =
2 �m1;1(S)

m2;0(S) �m0;2(S)
�

2 � �1;1(r � S)

�2;0(r � S) � �0;2(r � S)
=

=
2 �m1;1(S)

m2;0(S) �m0;2(S)
�

2 �m1;1(S) + O
�
r�

15
11
+"
�

m2;0(S) � m0;2(S) + O
�
r�

15
11
+"
� =

=
O
�
r�

15
11
+"
�

(m2;0(S) �m0;2(S))2 + O
�
r�

15
11
+"
� = O

�
r�

15
11
+"
�

: ut

For a few numerical examples see the Table 1.

8 Reconstruction of elongation

As it is already mentioned the elongation of a region S is de�ned to be the ratio of the maximal (reached for the

angle-value given by (8)) and the minimal (reached for the angle-value given by (7)) values of I(S; '; �). That is a

de�nition such that, for example, the elongation of a circle has the value 1 (which is the minimal possible), while

the elongation of a straight line segment is 1.

If these calculated values are entered in (6) we have

max
';�

I(S; '; �) =
1

2
� (m2;0(S) +m0;2(S)) +

1

2
�
q
4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))2

and

min
';�

I(S; '; �) =
1

2
� (m2;0(S) +m0;2(S)) �

1

2
�
q
4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))2 :

So, this suggests that the elongation E(S) of a region S should be approximated by E(r � S) , where

E(r � S) =
�2;0(r � S) + �0;2(r � S) +

q
4 � (�1;1(r � S))

2 + (�2;0(r � S) � �0;2(r � S))
2

�2;0(r � S) + �0;2(r � S) �
q
4 � (�1;1(r � S))

2 + (�2;0(r � S) � �0;2(r � S))
2
:
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We prove the following theorem.

Theorem 11 If a smooth convex region S is given by a digital picture having the resolution r, then its elongation

can be estimated by E(r � S) where

E(r � S) =
�2;0(r � S) + �0;2(r � S) +

q
4 � (�1;1(r � S))

2 + (�2;0(r � S) � �0;2(r � S))
2

�2;0(r � S) + �0;2(r � S) �
q
4 � (�1;1(r � S))

2 + (�2;0(r � S) � �0;2(r � S))
2
:

The error in the approximation E(S) � E(r � S) has an upper bound in O
�
r�

15
11
+"
�
, i.e.

E(S) = E(r � S) + O
�
r�

15
11
+"
�
:

Proof. It is su�cient to apply the following equation. It holds

1

r4
�

q
4 �
�
(�1;1(r � S)

�2
+
�
�2;0(r � S) � �0;2(r � S)

�2
=

=

s
4

�
�1;1(r � S)

r4

�2

+

�
�2;0(r � S) � �0;2(r � S)

r4

�2

=

=

r
4
�
m1;1(S) +O

�
r�

15
11
+"
��2

+
�
m2;0(S) �m0;2(S) + O

�
r�

15
11
+"
��2

=

=

r
4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))

2
+O

�
r�

15
11
+"
�
=

=

q
4 � (m1;1(S))2 + (m2;0(S) �m0; 2(S))

2 �

r
1 + O

�
r�

15
11
+"
�
=

=

q
4 � (m1;1(S))2 + (m2;0(S) �m0;2(S))

2
+O

�
r�

15
11
+"
�
;

where Theorem 9 and
p
1 + x = 1 + O(x) have been used. Then the rest of the proof follows from Theorem 9

and the use of elementary mathematics. ut

9 An example and conclusions

The fact, that the digitization of real regions leads to some uncertainty, opens (at least) two kinds of question. We

illustrate them with the following examples:
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r xc(S) � xd(r � S) xc(S) � yd(r � S) A(S) � A(r � S) E(S) � E(r � S) r�
15
11

1 -0.02 -0.0714285 || || 1

2 -0.002 -0.7142857 || || 0.3886015

3 -0.0533333 -0.0380952 || -16.318875 0.2235528

� -0.0292958 -0.0170624 || -16.318875 0.2099270

3
p
2 0.0085954 -0.0133703 -88.062862 -6.4088558 0.1935815

5 -0.0109090 -0.0441558 -88..045099 -8.1739793 0.1113933

10 -0.0004878 -0.0153310 -89.501941 -1.1011864 0.0432876

23 -0.0030917 -0.0023867 -0.1137293 -0.0501661 0.0139026

100 -0.0002594 -0.0003305 -0.0181834 0.0605284 0.0018738

100
p
3 0.0003404 -0.0003389 -0.0059411 0.0181071 0.0008859

256 -0.0001566 -0.0001219 -0.0032078 0.0164456 0.0005200

100� -0.0000937 -0.0001651 -0.0029504 0.0079204 0.0003933

500 -0.0000805 -0.0000495 -0.0009776 0.0086543 0.0002087

750 -0.0000389 -0.0000272 -0.0005014 0.0054513 0.0001200

1000 -0.0000312 -0.0000178 -0.0010762 0.0023119 0.0008111

Table 1: Errors between the values of the coordinates of the centroid, the orientation and elongation of the region

S and their approximations calculated from the digitization of r � S, for di�erent values of r. The values A(S),

A(2 �S), A(3 �S) and A(� �S) as well as E(S) and E(2 �S) cannot be calculated because dividing by zero appeared.

(i) Assume a given binary image representing a digital region. How to determine the set of all gravity centers

of those regions where digitization leads to the same binary picture? This problem is already studied in

relation to digital disks, i.e. binary pictures of circular regions, where the centers of gravity coincide with the

midpoints of the circles ([19]).

(ii) What is an upper error bound for the approximation of the centroid of a region if the calculation is based on

a binary image? In the case when the studied region is a circle (the centroid coincides with the midpoint of

the circle), for an answer see [21].

In this paper the second kind of questions were studied. It is shown that the absolute error in the calculation of

the centroids, orientations and elongations of smooth regions has an upper bound of O
�

1
r15=11�"

�
, where " is an
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arbitrary small positive number, while r is the picture resolution (i.e. the number of pixels per unit). An equivalent

formulation of the studied problem is:

If smooth planar regions are considered, which picture resolution has to be used in order to satisfy a pre-speci�ed

precision in calculating the centroid, orientation and elongation ?

The paper answers that as follows: if � is the allowed error, then a picture resolution O
�
��

11
15
�"
�
; i.e. the

pixel size O
�
�

11
15
+"
�
, gives the garanty that the errors in the mentioned calculations are bounded above by

�. The previous observation is summarized by the next theorem. The proof is omitted because it is trivial.

Theorem 12 Let a positive number � be given. Then the area (size), centroid, orientation and elongation of a

convex region S whit C3 boundary having positive curvature at every point, or region which can be obtained as

a �nite number of unions, intersections and set di�erences of such regions, can be reconstructed within an absolute

error less or equal to � if a suitable picture resolution r is applied. The order of magnitude of r is described by

r = O
�
��

11
15
�"
�
:

We give the following example which illustrates the obtained results. Let the region S be de�ned by the

inequalities y � x3 and y �
p
x . It is easy to obtain

m0;0(S) =
5

12
; m1;0(S) =

1

5
; m0;1(S) =

5

28
; m2;0(S) =

5

42
; m1;1(S) =

5

48
; m0;2(S) =

1

10
;

and

m2;0(S) =
5

42
�

12

125
=

121

5250
; m1;1(S) =

5

48
�

3

35
=

31

1680
; m0;2(S) =

1

10
�

15

196
=

23

980
:

This speci�es that gravity center, orientation and elongation of S are

(xc(S); yc(S)) =

�
12

25
;
12

28

�
; A(S) = �

1

2
arctan

175

2
� �44:67261o; E(S) =

6838 + 31
p
30629

6838� 31
p
30629

Table 1 contains the values of (xd(r �S); yd(r �S)) ; A(r �S) and E(r �S) which approximate the position,

orientation and elongation, when di�erent picture resolutions are applied.

In this paper our attention was focused on the digitization e�ects on the possibility in the reconstruction of the

basic geometric properties of smooth regions. The results are based on estimations of moments up to order two of

the region from discrete data obtained by digitization. But there are many procedures in image processing which

are based on moment calculations. So, the results obtained here can be used in the evaluation of the e�ciency of

such procedures.
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r m0;0(S) �
�0;0(r�S)

r2
m1;0(S) �

�1;0(r�S)

r2
m0;1(S) �

�0;1(r�S)

r2
r�

15
11

1 -1.5833333 -0.8 -0.8214285 1

2 -0.3333333 -0.175 -0.1964285 0.3886015

3 -0.1388888 -0.0962962 -0.0806878 0.2235528

� -0.0899392 -0.0580122 -0.0471893 0.2099270

3
p
2 -0.0277777 -0.0095131 -0.0178471 0.1393581

5 -0.0233333 -0.16 -0.0294285 0.1113933

10 0.0066666 0.003 -0.0034285 0.0432876

23 0.0083490 0.0027451 0.0026036 0.0139026

100 0.0004666 0.000116 0.0000624 0.0018738

100
p
3 0.0002666 -0.0000137 -0.0000268 0.0008859

256 0.0002848 0.0000714 0.0000713 0.0005200

100� 0.0001960 0.0000550 0.0000152 0.0003933

500 0.0000906 0.0000099 0.0000182 0.0002087

750 0.0000533 0.0000093 0.0000115 0.0001200

1000 0.0000586 0.0000151 0.0000176 0.0000811

Table 2: Errors between the values of the moments m0;0(S), m1;0(S) and m0;1(S) and their estimations from

digitization of r � S.

Accordingly the results as given in Theorems 2, 4 and 5 (and Theorems 6, 7, 8 and 9 as their direct consequences)

are the main contributions of this paper. They are perhaps more important than the results of Theorems 8, 10

and 11 which are just their consequence. That is a reason for giving an illustration of these statements in the

next two tables. Table 2 contains some numerical examples which show which is the di�erence between m0;0(S)

and
�0;0(r�S)

r2
(showing the error in the size estimation and illustrating Huxley's result), and which is the di�erence

between the �rst order moments and their estimations - a sharp theoretical upper bound is derived here. All the

previously mentioned di�erences should be compared with r�
15
11 .

Finally, Table 3 illustrates which is the e�ciency in the second moment estimation if a given picture resolution

r is applied. The errors in estimations have to be compared with r�
15
11 .
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r m2;0(S) �
�2;0(r�S)

r4
m0;2(S) �

�0;2(r�S)

r4
m1;1(S) �

�1;1(r�S)

r4
r�

15
11

1 -0.8809523 -0.9 -0.8958333 1

2 -0.1934523 -0.2125 -0.2083333 0.3886015

3 -0.1031746 -0.0851851 -0.0933641 0.2235528

� -0.0657400 -0.0539897 -0.0600890 0.2099270

3
p
2 -0.0167548 -0.0203703 -0.0192901 0.1393581

5 -0.0233523 -0.0312 -0.0286333 0.1113933

10 0.0001476 -0.0048 -0.0029333 0.0432876

23 0.0015380 0.0013975 0.0012903 0.0139026

100 0.0001305 0.0000740 0.0001063 0.0018738

100
p
3 -0.0000279 -0.0000319 -0.0000302 0.0008859

256 0.0000551 0.0000579 0.0000546 0.0005200

100� 0.0000378 0.0000040 0.0000172 0.0003933

500 0.0000095 0.0000190 0.0000149 0.0002087

750 0.0000094 0.0000124 0.0000112 0.0001200

1000 0.0000112 0.0000134 0.0000116 0.0000811

Table 3: Errors between the values of the second order momentsm2;0(S), m0;2(S) andm1;1(S) and their estimations

from a digitization of r � S.

The results of our paper are based on Huxley's theorem. This theorem is a strong mathematical result which

is related to the number of integer points inside of a smooth planar convex curve  and addresses an ancient

mathematical problem. Gauss and Dirichlet knew that the area of a region bounded by curve  estimates this

number within an order O(s), where s is the length of the curve . The situation when  is a circle is studied most

carefully. Huxley's result [7] improves the previously best known upper bound ([8]) even in this case of a circle.

From the proofs of Theorems 2, 4 and 6 it can be concluded that results derived here are sharp up to Huxley's

result.
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Symbols and notations

{ S { denotes a 2D region;

{ r { denotes the picture resolution, i.e. 1
r

is the pixel size ;

{ r � S { is the dilation of the region S by factor r, i.e. r � S = f(r � x; r � y) j (x; y) 2 Sg ;

{ r � S { is the region symmetrical to r � S with respect to a speci�ed (vertical) line x = k , where k is an

integer;

{ (r � S)(k) { is the set de�ned as: (r � S)(k) = f(x; y) j (x; y) 2 (r � S) and x � kg ;

{ D(S) { is a digitization of a set S, de�ned to be the set of all grid points with integer coordinates which belong

to the region occupied by the given set S: (i; j) 2 D(S) , (i; j) 2 S; where i and j are integers;

{ L(r � S; k) { is the set of digital points de�ned as L(r � S; k) = f(k; j) j (k; j) 2 D(r � S)g ;

{ P (S) { is the area of the region S ;

{ vol(B) { is the volume of the 3D-set B ;

{ mk;l(S) { is the (k; l)-moment of a planar set S de�ned by mk;l(S) =

Z
S

Z
xkyl dx dy;

{ �k;l(S) { denotes the discrete (k; l)-moment of the region S and it is de�ned by

�k;l(S) =
X

(i;j)2D(S)

ik � jl =
X

i;j are integers

(i;j)2S

ik � jl ;

{ �k;l(r � S) { denotes the discrete (k; l)-moment of the region r � S, so,

�k;l(r � S) =
X

(i;j)2D(r�S)

ik � jl =
X

i;j are integers

(i;j)2r�S

ik � jl ;

{ �0;0;0(B) { denotes the three-dimensional zero-th order moments of a three dimensional set B and it is

de�ned by �0;0;0(B) =
X

(i;j;k)2B

1 =
X

i;j;k are integers

(i;j;k)2B

1 ;

{ the gravity center (or centroid) of a region S is

�
m1;0(S)

m0;0(S)
;

m0;1(S)

m0;0(S)

�
; the gravity center (centroid) of

the region S is also denoted by (xc(S); yc(S)) ;
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{

�
1

r
�
�1;0(S)

�0;0(S)
;

1

r
�
�0;1(S)

�0;0(S)

�
{ is the centroid approximation calculated from the digitization of r � S, it is

also denoted by (xd(r � S); yd(r � S));

{ mk;l(S) { is the central (k; l)-moment of a planar set S de�ned by

mk;l(S) =

Z
S

Z
(x� xc(S))

k � (y � yc(S))
l dx dy;

{ �k;l(r � S) is the central discrete moment for the region r � S, and it equals

�k;l(r � S) =
X

i;j are integers

(i;j)2r�S

(i� xd(r � S))
k � (j � yd(r � S))

l ;

{ xmin, ymin and zmin are the minimal values of x, y and z coordinates, respectively, where (x; y; z) belong to

some speci�ed set. The values xmax, ymax and zmax are de�ned as the maximal ones;

{ for a given set r � S; C0, C00, Vi, V
0
i , B

0, B00, Wi, W
0
i , E

0, E00, !i and !0i are three-dimensional sets de�ned

as follows:

C0 = f(x; y; z) j (x; y) 2 r � S; 0 < z < r � xming ;

C00 = f(x; y; z) j (x; y) 2 r � S; r � xmin � z � xg;

Vi = f(x; y; z) j (x; y) 2 r � S; x � i; i < z � i + 1g;

V 0
i = f(x; y; z) j (x; y) 2 r � S; x � i ; x < z � i + 1g;

B0 = f(x; y; z) j (x; y) 2 r � S; 0 < z � dr � xmine2g ;

B00 = f(x; y; z) j (x; y) 2 r � S; dr � xmine2 < z � x2g;

Wi = f(x; y; z) j (x; y) 2 r � S; x � i; i < z � i + 1g ,

W 0
i = f(x; y; z) j (x; y) 2 r � S; x � i ; x2 < z � i+ 1g;

E0 = f(x; y; z) j (x; y) 2 r � S; 0 < z < r2 � zming ;

E00 = f(x; y; z) j (x; y) 2 r � S; r2 � zmin � z � x � yg ;

!i = f (x; y; z) j (x; y) 2 r � S; x � y � i; i < z < minfx � y; i + 1g g;

!0i = f (x; y; z) j (x; y) 2 r � S; x � i; x � y < z < i+ 1 g :

{ r(x; y; '; �) is the perpendicular distance from the point (x; y) to the line given in the form:

x � cos'� y � sin' = � ;

{ I(S; '; �) { denotes the integral

Z
S

Z
r2(x; y; '; �)dxdy ;
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{ A(S) { denotes the orientation of the region S and it is equal to this '-value for which min
';�

I(S; '; �) reaches

the minimum, i.e. min
';�

I(S; '; �) = I(S;A(S); �) ; for some � ;

{ A(r � S) { denotes the approximation of A(S) calculated from the digitization of r � S ;

{ E(S) { denotes the elongation of the region S and it is E(S) =

max
'; �

I(S; '; �)

min
'; �

I(S; '; �)
;

{ E(r � S) { denotes the approximation of E(S) calculated from the digitization of r � S .
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