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ABSTRACT 

Controller design based on model predictive controller (MPC) is being widely 

applied in industry and studied by academia during past few decades. In recent 

years, with the wide application of networked control systems, bit-stream based 

control design method is getting increasing attention from researchers . The 

present study essentially focus on designing continuous time MPC and 

implement them in bit-stream environment. This is called as bit-stream MPC. 

The performance of bit-stream based MPC is investigated both via simulations 

and experiments. 

The study begins with a review of model predictive control in discrete time 

domain and the bit-stream technique. To successfully implement bit-stream 

controllers, several functions are initially implemented in MATLAB which can 

convert the analog or multi-bit digital signals into single bit. Then the discrete 

time MPC is adopted with bit-stream technique. Although the discrete time 

MPC has been very popular amongst practitioners during the past few decades, 

the controller still has some disadvantages such as choice of sampling time and 

numerical sensitivities. 

To overcome the limitations and difficulties associated with discrete time 

controllers, continuous time approach to controller design was preferred. 

Therefore, the next part of the research begins with designing controllers in 

continuous time domain. Initially continuous time model predictive controller 
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(CMPC) was designed for linear systems based on the state space model of the 

system and then it is combined with bit-stream technique. 

In practice most of the systems are nonlinear to some extent. Therefore the 

next part of the study focuses on the design of CMPC for nonlinear systems 

(NLCMPC) based on state space models of the system. And also bit-stream 

technique is used on the NLCMPC. 

The last phase of the research deals with hardware implementation of 

bit-stream based CMPC using HILINK. An experimental prototype of DC 

servo motor has been considered for such implementation. The performance of 

bit-stream based linear CMPC has been implemented using HILINK and the 

tracking performance of such controllers is investigated by considering 

different types of references. 
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Chapter 1 

Introduction 

1.1 Motivation 

Model predictive control (MPC) has made a significant impact on industrial 

process control systems since it was originated in the late seventies. It was 

brought up to solve the existing problems of the traditionally used self-tuning 

control such as lacking robustness [1, 2]. With over forty years’ development, 

model predictive control gradually becomes the most important approach to the 

advanced control of complex industrial processes [2, 3, 4]. Compare to the 

traditional controllers such as the conventional PID controller, MPC has two 

crucial advantages: 

a) The working principle of MPC is easy to be understood. MPC works like 

a human who predicts the future outcome and choose the suitable actions 

at the present in order to obtain a satisfactory output over some horizon in 

the future. 

b) Although there are several types of MPC which fit to different kinds of 

systems, the key characteristics of all of them are essentially similar. Thus 

different kinds of plants could easily adopt MPC controller with little 

modification from the basic formulation of MPC. This makes MPC a 

much wider range of applications. 
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However, traditional MPC is too complex to implement in real-time 

embedded systems. Especially recent years, networked control systems are 

widely applied in industrial field. In a networked control system there may be 

very limited resources. In this situation bit-stream technique can be used to 

design controller due to various advantages this offer. 

It converts either analog or multi-bits digital signal into bit-stream (single-bit) 

output through a Delta-Sigma (Δ-Σ) modulator. Bit-stream signal processing is 

mainly proposed to reduce the silicon consumption and the physical areas for 

routing bit-parallel signals in digital integrated circuits such as FPGA and VLSI. 

Furthermore, bit-stream technique reduces the number of interface channels 

between the subsystems from multiple to single channel, thereby consumes 

significantly less hardware resources compared to traditional multibit 

processing. In control and power electronics applications, a pulse width 

modulator (PWM) is not needed anymore since the bit-stream signal is like a 

fine-grained PWM and hence, it can derive DC-DC converters directly. 

1.2 Objectives 

Motivated by the success of model predictive controllers and the advantage of 

bit-stream based technology, the research carried out in this study intends to 

achieve the following objectives: 

i) Carry out a comprehensive review of model predictive control and 

bit-stream based technology, apply both MPC and bit-stream based 
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MPC on a specific system and compare the performance of 

different controllers, discuss their stability and tracking ability.  

ii) Investigate the performance of continuous time MPC for classic 

nonlinear systems, apply the controller to specific system with 不

bit-stream technology. 

iii) Design continuous time model predictive controllers observers for 

complex nonlinear systems and study the performance of 

bit-stream based MPC. 

iv) Implement the continuous time MPC to control a real DC motor 

using a servo motor rig. 

The organization of this thesis proceeds as follows: chapter 2 presents a 

comprehensive review of model predictive control algorithms in discrete time, 

apply MPC on specific system with bit-stream modulator and discuss their 

performance. Chapter 3 studies the principles of linear continuous time MPC 

and apply it with bit-stream modulator with simulation. In chapter 4, design 

methods of linear continuous time MPC is extended for classic nonlinear 

systems and a bit-stream modulator is used together with this controller to 

investigate the performance. In chapter 5, the continuous time model predictive 

controller is realized in hardware with implementation on a servo DC motor rig. 

Finally, the conclusions of the thesis and some possible directions for future 

investigation on this research area were presented in Chapter 6.  
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Chapter 2 

Bit-Stream Based Discrete Time MPC 

Control 

2.1 Introduction 

Model Predictive Control (MPC) computes a trajectory of a future manipulated 

variable u to optimize the future behavior of the system output y. It clearly 

computes the predictive behavior over some horizon while most classical 

control laws, e.g. PID, do not consider the future influences of current control 

actions. 

  Before applying the bit-stream modulator to wider range, it should be 

adopted on the discrete time MPC first in order to investigate its performance 

step by step. This chapter comprehensively review the algorithm of model 

predictive control from a single-input-single-output (SISO) simply system 

extending to a multiple-input-multiple-output (MIMO) complex system. After 

that, such controllers are applied on an isolated thermal system with simulation 

to investigate the performance of both MPC and bit-stream based MPC. 

  In the meanwhile, bit-stream converter and inverter are developed in 

MATLAB/Simulink in order to apply it on other types of systems convenient ly. 

And in the further simulation, such modulators are used directly as a blocked 

model without building new models. 
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2.2 Model Predictive Control 

2.2.1 Control law design 

Consider a system which admits a locally linear model: 

         1 1 1dA z y t z B z u t x t               (2.1) 

where A and B are polynomials in the backward shift operator 

 1 1

11 a

a

n

nA z a z a z
                     (2.2) 

 1 1

0 1
b

b

n

nB z b b z b z
                    (2.3) 

d=dead time of the system 

u(t)=control input 

y(t)=output 

x(t) is the noise or uncertainty in the model and can considered to be of the 

form 

 
 

 
1

11

C z
x t t

z








                    (2.4) 

where  t  is a random noise with zero mean which disturbs the system but it 

is not measurable. C is a known polynomial: 

 1 1

11 c

c

n

nC z c z c z
                    (2.5) 

Define 11 z    then: 

           1 1 11dA z y t z B z u t C z t                 (2.6) 

At each time t, MPC minimizes the following the cost function: 

   1 2 1 2, , uJ N N N E Q Q                   (2.7) 

         
2

1

22

1 2

1

ˆ , 1
uNN

j N j

Q j y t j w t j Q j u t j 
 

                
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   

 

1

2

where N minimum costing horizon

           N maximum costing horizon

           N control horizon

           , weighting sequences

           w future set-points presumed to be known

u

j j

t j

 









 

 

The first step to optimize the cost function is to get the optimal prediction of 

y(t+j) while
1 2N j N  . 

And  

           1 1 11dA z y t z B z u t C z t                (2.8) 

Thus 

           1 1d B C B C
y t z u t t y t j u t j d t j

A A A A
           

 
 (2.9) 

Then consider the immeasurable part: 

 
C

t j
A

 


 

Assume 

jj

j

FC
E z

A A

 
 

                          (2.10) 

   

 
   

11 1

0 1 1

1 1

0 1

1 2 2

1

2

.......

   ........

           max 1, max ,

           maximum degree of  1

           maximum degree of

f

f

j

j j

n

j n

f a

a

where E z e e z e z

F z f f z f z

n n n j n n j

n A n

n C

  



 

   

   

    

   



 

Thus we could get 

     1j j d j

j j jz E A y t z E z B u t z E C t                (2.11) 

In the meanwhile, 

j

j jE A C z F    
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So 

     

       

       

       

      1

 1

 1

1
 1

j j j

j

j j j

j j j

j j j

E A y t j E B u t j d E C t j

C z F y t j E B u t j d E C t j

Cy t j E B u t j d F y t E C t j

y t j E B u t j d F y t E C t j
C











        

         

         

           

       (2.12) 

For  1 1C z  , the equation becomes 

       

     

1

 1

j j j

j j j

y t j E B u t j d F y t E t j

G u t j d F y t E t j





        

       
         (2.13) 

The prediction equation would be 

     

   

ˆ 1

1

j j

j j

y t j E B u t j d F y t

G u t j d F y t

      

     
              (2.14) 

1

,0 ,1 ,Where  ..... , 1g

g

n

j j j j j n g bG E B g g z g z n n j
         

Because the system dead time is d, then the output will be influenced by u(t) 

after sampling period d+1. And to optimize the cost function, the set of control 

signals u(t), u(t+1),…, u(t+N) needs to be obtained. 

Now from the model of future output, the minimum value would be

1 21,  and uj N d N d N N N      , for j=d+1, d+2,…, d+N, the output 

equations would be 

       

       

       

1 1 1

2 2 2

1 1

2 1 2

1

d d d

d d d

d N d N d N

y t d G u t F y t E t d

y t d G u t F y t E t d

y t d N G u t N F y t E t d N







  

  

  

       

        

         

    (2.15) 

Analyze the different terms of y(t+j): 

     1

1 0 1 ....   is dependent on the past values of y(t)  knownf

f

n

d nF y t f f z f z y t


     
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 1 1  is dependent on both past and future values of the noise   unknowndE t d    

Consider the term  1jG u t j d    . This term can be split into two parts, one is 

dependent on the past values of u(t) (known) and the other is dependent on the 

future values of u(t) (unknown). 

For j=d+1: 

       

 

1 1

1 1

1

1,0 1,1 1,

1 1

                                            ....

                                                        1

           

g

g

d d

n

d d d n

g b b

G z u t d d G z u t

g g z g z u t

where n n j n d

 

 



  

      

     
 

    

     

 

1,0 1,1 1,

0

                                  1 .....

                                               

gd d d n g

Unknown at time t known at time t

d

Unknown at time t

g u t g u t g u t n

g u t G

  



        

      1

1 1,0 1

                                                      0,1,2,..

d

known at time t

ij j

z g z u t

Note that g g for j i




   
 

  

 

Also we can get that for j=d+2 to j=d+N: 

       

   

     

1

2 0 1

1 1 2

2 2,0 2,1

1

3 0 1

2 1 1

                                                1

3 1 2

d

Unknown at time t

d d d

known at time t

d

G z u t d d g u t g u t

G z g g z z u t

G z u t d d g u t g





 

  





         

     
 

             

   

     

2

1 1 2 3

3 3,0 3,1 3,2

1

0

1

                                                1

1 1

Unknown at time t

d d d d

known at time t

d N

u t g u t

G z g g z g z z u t

G z u t d N d g u t N

  

   





  

      
 

             

     

1 1

11 1

,0 ,1 , 1

2 ...

                                                  ... 1

N

Unknown at time t

N N

d N d N d N d N N

known at time t

g u t N g u t

G z g g z g z z u t



  

    

     

       
 

  Thus one of the three terms of y(t+j) is dependent on future control actions 

yet to be determined, another is dependent on the past output values which is 

known, the rest of them is dependent on future noise signals. 
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  In calculating predictions, the future noise sequences are ignored, thus for 

j=d+2 to j=d+N: 

     

     

     

1 1

2 2

ˆ 1

ˆ 2 1

ˆ 1

d d

d d

d N d N

y t d G u t F y t

y t d G u t F y t

y t d N G u t N F y t

 

 

 

    

     

      

          (2.16) 

This can be written as: 

knownunknown

Y GU                        (2.17) 

where 

 

 

 

 

 

 

0

1 0

2 1 0

1 2 0

ˆ 1 0 0

ˆ 2 1 0 0

, , 0

ˆ 1 N N

y t d u t g

y t d u t g g

Y U G g g g

y t d N u t N g g g 

       
     

        
       
     
     
              

 

and 

     1 2 Tt d t d t d N                (2.18) 

The components of vector  are known at time t and are given as: 

         

         

       

   

1 1

1 1,0 1

1 1 2 1

2 2,0 2,1 2

11 1

,0 ,1 , 1

1

1 1

2 1

... 1

d d d

d d d d

N N

d N d N d N d N N

d N

t d G z g z u t F z y t

t d G z g g z z u t F z y t

t d N G z g g z g z z u t

F z y t







 

  

 

   

  

    





       
 

        
 

         
 



 (2.19) 

Let      1 2 TW w t d w t d w t d N         , the cost function can 

be written as: 
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    

  

T T T

T T

T T T T T

T T T T T

J E GU W GU W U U

U G GU U G U G W GU
E

W W GU W W W U U





     

       
  

       

       (2.20) 

Now differentiating J with respect to input and equating it to zero: 

    

   
1

      

      2 2

      2 2 2 2 0

  

T T T

T T T T T

T T T

T T

T T

T T T T T T

T T T T

J
E GU W GU W U U

U

U G GU U G U G w GU W
E

U W GU W W W U U

G G G G W G G W U

G GU G G W U

U G G I G W













     



          
   
         

       

     

   

  (2.21) 

We know that the first element of U is      1u t u t u t    . 

Assume K is the first row of  
1T T

G G I G


  then we could get the control law 

of MPC: 

     1u t u t K W                    (2.22) 

After that, assume a system has m-inputs, q-outputs and n1 states. 

If there are more outputs than inputs, it may not be possible control each of the 

outputs independently with no steady-state error. So the general condition is 

q m . 

Now considering the effects of noise, represent the system as 

       

   

1m m m m d

m m

x k A x k B u k B k

y k C x k

   




             (2.23) 

where ω(k) is the input disturbance and is assumed to be a sequence of 

integrated white noise. 
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Now 

       

     

1

   1

m m m m dx k A x k B u k B k

where k k k



  

      

  
             (2.24) 

Relate Δxm(k) to the output y(k): 

         1 m m m m m m dy k C A x k C B u k C B k y k            (2.25) 

Define a new vector as 

       1 1, : 1 1,
T T

mx k x k y k Dimension n q n n n q        
 

 

The dimensions of different matrix are 

1 1 1 1 1; , , 1, 1, 1m m m mA n n B n m C q n x n u m y q              

Hence the augmented model becomes 

 

 

 

 

 

 

   

 
 

 

1 1 1

1

1

1

,

x k n x k nA n n B n mB n m

T

m m m dm m

m m m dm m q q

C q n

m

m q q

n

x k x k B BA O
u k k

y k y k C B C BC A I

x k
y k O I

y k

where





        



 






           
            

          

  

    
  


1

1

0 0

   ,

0 0

q n

mO n n q



 
 

  
 
  

  (2.26) 

Also we could compute the predicted state variables using future control 

parameters as: 

       

       

         2

1

2 1 1 1

1 1

i i i i i

i i i i i i i

i i i i i i

x k k Ax k B u k B k

x k k Ax k k B u k B k k

A x k AB u k B u k AB k B k k





 





 

    

       

        
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       

         

   

     

3 2 2

1 2

3 2 2 2

1 2

                                                                       1 2

p p p

i i i i i i i

i i i i i

i i i i

N N N

i p i i i

x k k Ax k k B u k B k k

A x k A B u k AB u k B u k A B k

AB k k B k k

x k N k A x k A B u k A B





 





 

 

       

         

   

        

     1 2

1 .... 1

                        1 ..... 1

p c

p p

N N

i i c

N N

i i i i p i

u k A B u k N

A B k A B k k B k N k    



 

      

      

With the assumption that ε(k) is a zero mean white noise sequence, the 

predicted values of ε(ki+1|ki) at future sample is assumed to be zero. Hence the 

noise effect to the predicted value is zero. 

Now we can compute the predicted output values from predicted state variables 

as: 

     

         

           

         

2

3 2

1 2

1

2 1 1

3 2 1 2

1 .... 1p p p p c

i i i i

i i i i i i i

i i i i i i i i

N N N N N

i p i i i i i c

y k k CAx k CB u k

y k k Cx k k CA x k CAB u k CB u k

y k k Cx k k CA x k CA B u k CAB u k CB u k

y k N k CA x k CA B u k CA B u k CA B u k N
  

   

        

           

           

Thus we can write: 

 

   
2

3 2

1 2 3

                                                   

0 0 .... 0

0 .... 0

.... 0;

.... ... .... .... .... ....

....

p

p p p p

i

N q n

N N N N

Y F x k U

CA q n CB q m

CA CAB CB

CA CA B CAB CBwhere F

CA CA B CA B CA B C







  

  

  
 
 
  
 
 
 
 

           1, 1, , , 1

p c

p c

N q N m

N N

p p p c c

A B

Y N q x n F N q n N q N m U N m





 
 
 
 
 
 
 
 

          

 

Then 

      

       

1

1 1

T T

s i i

T T T T

s i i

U Q R r k Fx k

Q R r k Q Fx k

  

     



 

   

   

         (2.27) 
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Again, we could find the control law applying receding horizon principle  

         

   

1

.. ..

 

With dimentions:  , , 1

cm N

T T T

i m m m s i i

y i mpc i

y mpc

u k I O O Q R r k Fx k

K r k K x k

K m q K m n u m

   



         

 

      

    (2.28) 

2.2.3 Simulation Result 

The block diagram of an isolated thermal power system is shown in figure 2.1 

with the parameters in table 2.1. 

 
Figure 2.1. Block diagram of an isolated thermal power system 

Tp Kp TG KG Tt Kt R 

20 120 0.08 0.6 0.3 1.0 2.4 

Table 2.1. Parameters of an isolated thermal power system 

Firstly find out the state equations describing the system: 

1 1 2 1 2 2

2 2 3

3 1 3 1

1 2

1 1

1

1

   ,

p p p p

d

p p p p p p

t

t t

g g

g g g

c d

K K K K
x x x P x x u

T T T T T T

K
x x x

T T

K K
x x x u

T R T T

Where u P u P


        




  


    


   

       (2.29) 

 

 cP s  

1

G

G

K

sT

 
 1U s  

1

t

t

K

sT
 

1

p

p

K

sT

 

1

R

 

 dP s

  2U s   F s

 

1x  
3x  

2x  

+ 

+ 

- 

- 

Governor Turbine Generator 

Load disturbance 
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Thus 

1 1

2 2 1 2

3 3

1
0

0
1

0 0 0

0
1

0

p
p

p p
p

t

t t

g

g

g

g g

K
K

T T
Tx x

K
x x u u

T T
x x K

K
T

T R T

 
   
   

       
          
       
          

         
 

       (2.30) 

Transfer it from continuous time to discrete time at a sample time 0.01s in 

Matlab. We could get the discrete time system state equation: 

     

     

0.9995 0.0590 0.0009 0

1 0.0008 0.9672 0.0308 0.002

0.0489 0.0015 0.8825 0.1175

1 0 0

m m

m

x k x k u k

y k x k

    
    

       
        
 

   (2.31) 

Set qw=50, Np=10, Nc=2, than calculate the control law of the discrete system, 

we could get: 

 

0.0024

0.0024 0.0001 0 0.0024

y

mpc

K

K




 

Thus we could simulate the close loop system and compare its step response to 

the original system shown in figure 2.2: 

 
Figure 2.2. Step response for MPC control system and the original system 

The simulation results for steady state, which means we assume the load 
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disturbance is 0, are shown in figure 2.3: 

 

Figure 2.3. System performance with noise 

We could see that the system response could accurately track the reference 

signal (input) after adopting MPC controller.  

Then, add the load disturbance into the system to test if the system is stable in 

steady state. Figure 2.4 shows the system responses in steady state while the 

load disturbance changes. 

 

Figure 2.4. System response with load disturbance 
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We could see that the system could rapidly get back to steady state with MPC 

controller, thus it is robust. 

2.3 Bit-Stream based discrete time MPC Control 

2.3.1 The concept of Bit-Stream and Δ-Σ Modulator 

Bit-stream based technique can convert either an analog or a multi-bits digital 

signal into a single-bit output. Compared to traditional multi-bits processing, 

bit-stream system use a single channel instead of multiple channel between 

subsystems. Thus it consumes less hardware resources.[5]
 

  The input analogue/multi-bits signal is encoded into a bit-stream signal by a 

Delta-Sigma modulator at high sampling frequencies. Figure 2.5 shows the 

model of a first order Delta-Sigma modular. 

 

Figure 2.5. A fist order Delta-Sigma modulator 

2.3.2 Bit-Stream Stability analysis 

Assume the closed loop system transfer function can be expressed as: 

Quantizer 

+ + 
+ - 

1z

 

1 

0 

ke  1ke   
ke  ˆ

ke  

eQ  

eQ  
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 
   

   1

c p

c p

G s G s
H s

G s G s



                 (2.32) 

Gc(s) is the controller model of the system and Gp(s) is the system plant model.  

If the controller output stabilizes the system perfectly, then all the poles of 

the transfer function H(s) should be negative and real. In order to convert the 

control loop to a bit-stream based model, a Delta-Sigma modulator is adopted 

to convert the error signal e into a switch signal ˆ e . The bit-stream based control 

system is shown in figure 2.6. 

 
Figure 2.6. Bit-stream based control system. 

  It is very important to investigate the stability of the bit-stream based control 

system as the nonlinearity in Delta-Sigma modulator might affect the system 

stability. 

  Firstly find out the coupling between the system and Delta-Sigma modulator: 

   
ˆ

c p

y
G s G s

e
                       (2.33) 

e r y                           (2.34) 

 
 

0
ˆ ˆsgn  

 sgn

t

e Q e e dt

Q e

 



                    (2.35) 

 

+ + 
+ - 

Q 

-Q 

 r t  e  e  ê   y t

 

 e t   u t  

  
cG  pG

 

  
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where the sign function is known as  

 
ˆ1     0

sgn
ˆ1     0

if e
e

if e

 
 

 
                   (2.36) 

  We could figure out that based on the contact between the system and 

Delta-Sigma modulator, Q should be chosen after considering the whole 

system. 

  Sliding mode analysis suggests a Lyapunov function: 

21

2
V e                         (2.37) 

  The derivative of the function would be: 

  

0

  sgn 0

V ee

e e Q e

 

  
                  (2.38) 

  From it we could find that the error e must be bounded by the Delta-Sigma 

modulator output Q in order to ensure the existence of the sliding motion on

0, 0e e  . This could be written as: 

e Q

                          (2.39) 

  Hence, V is negative always. From the point of view of sliding mode, the 

Delta-Sigma modulator output which is a switched signal is identical to 

modulator the input [6]. Assume the ideal sliding mode exists, then 0, 0e e   

are forced to zero at an infinite sampling frequency, ensure that  

ˆe e                           (2.40) 

  However, the ideal sliding mode is impossible to achieve. Hence, we should 

consider the real sliding mode at a finite sampling frequency instead of ideal 

sliding mode assumption. 
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  From figure 2, we could define: 

1 1k k ke e e                         (2.41) 

  Thus the Lyapunov function of the discrete-time Delta-Sigma modulator is: 

21

2
kV e                         (2.42) 

  One of the condition of stability requires the difference of the Lyapunov 

function should meet: 

  

 

1

1

0

     sgn 0

     0

k k

k k

k k k

V e e

e e Q e

e e e





   

  

  

                   (2.43) 

  Furthermore, this equation can be written as: 

1

1

    0

    0

k k k

k k k

e e e

e e e





  


  
                      (2.44) 

  So ke  points toward zero each sampling time. Because of the imperfection 

of the switch elements, the equation 0e   is replaced by: 

2ke Q

                        (2.45) 

  Considering the close loop transfer function of the system and the reference 

signal r, Q is obtained as the follow equation
 
[35]: 

1

1

1 c p

e r Q
G G

 
 


                 (2.46) 

Where, 

 
1

1

2

i i
j

i
X X e d







 

 
 
 

                 (2.47) 

  This means that Q must be greater than the input of Delta-Sigma modulator 

to keep the system stable. 
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2.3.3 MATLAT toolbox for Δ-Σ Modulator 

  In order to widely apply the Delta-Sigma modulator on different types of 

control methods and systems simulation, a MATLAT toolbox which includes a 

BS-converter and a BS-inverter is developed. 

a) BS-converter 

Firstly, a block model of BS-converter is developed. 

Below in figure 2.7 shows the block for the Delta-Sigma modulator, it converts 

the input signal to a digital signal. 

 

Figure 2.7. A block model for Delta-Sigma modulator in MATLAB 

The internal structure of the block is shown in figure 2.8. 

 

Figure 2.8. The internal structure of the BS-converter 

where Q is the parameter of the modulator block. 

Q must be greater than or equal to the modulator input to ensure the stability 

of Delta-sigma modulator. 
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b) BS-inverter 

Then, it is necessary to check if the output signal represents the true input 

signal. So a block model of BS-inverter is also developed. The digital signal 

can be assumed as the input signal with high frequency noises, so the 

BS-inverter is actually a low pass discrete filter. [7]
 

The inverter block is shown in figure 2.9 and its internal structure is shown 

as figure 2.10. 

 

Figure 2.9. A block model for BS-inverter in MATLAB 

 

Figure 2.10. The internal structure of the BS-inverter 

K is the parameter of the inverter and it is obtained from: 

2

1 2

s c

s c

f f
K

f f







                       (2.48) 

where fs is the sampling frequency and fc is the cutoff frequency. 

Consider a sine wave input signal shown in figure 2.11 and check if the inverter 

works. The simulation result is shown in figure 2.12. It is observed that 

although some attenuation occurs because of the filter, it still restores the input 

signal. 
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Figure 2.11. The simulation of the inverter in MATLAB 

 
Figure 2.12. Original input signal (top) and the output signal though BS-inverter 

2.3.4 Bit-Stream Based discrete time MPC Control for Linear System 

Considering the isolated thermal power system discussed in 2.2.3. The MPC 

control law is not changed. 

As mentioned in 2.3.2, in order to convert the control loop to a bit-stream 

based model, a Delta-Sigma modulator is adopted to convert the error signal e 

into a switch signal ˆ e  which is shown in figure 2.13. 
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Figure 2.13. Bit-stream based MPC control system. 

Figure 2.14 shows the steady state and load disturbance response of the 

bit-stream based MPC control system. 

 

Figure 2.14. Steady state and Load disturbance response of Bit-stream MPC control system. 

We could see that the system keeps its stability and robustness after adopting 

the Delta-Sigma modulator. 

2.4 Summary 

The model predictive controller in discrete time domain has several advantages 

compared with conventional controllers. Also after adding Delta-Sigma 

modulator the system performance remains the same. 

  However, comparing the system response of MPC and bit-stream based MPC 
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in figure 2.15, we could find that the bit-stream based MPC has more ripples 

thus has more noise than MPC. 

 

Figure 2.15. Ripples of MPC and Bit-stream MPC control system. 

  This phenomenon happens because bit-stream technology is more suitable 

for continuous time system because the Delta-Sigma modulator contains a 

switch with specific operating frequency and that would lead to some noise. In 

discrete time system, if the switch frequency is different from the system 

sampling frequency, the system would become unstable. Therefore, the switch 

frequency of the modulator should be the same as the system sampling 

frequency, in this case 100Hz, and thus lower frequency of switch operation 

would lead to a higher noise. 

  The next chapter would investigate the performance of Delta-Sigma 

modulator in continuous time domain which may reduce the ripples in a higher 

frequency. 
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Chapter 3 

Bit-Stream based Continuous Time Model 

Predictive Control for Linear System 

3.1 Introduction 

In chapter 2, the performance of MPC and bit-stream based MPC were 

demonstrated on specific system. However, comparing with traditional MPC, 

bit-stream based MPC has some flaws in controlling the discrete time systems 

as the switching frequency should be the same as the system sampling 

frequency. 

The rest of the present study therefore focus on continuous time systems. 

The research on continuous time MPC (CMPC) design is based on discrete 

time approach and can overcome some of the disadvantages of discrete time 

MPC. This control algorithm was proposed by Demircioglu et al. in 1991 [8].  

This chapter firstly introduce the linear CMPC algorithm based on state 

space model in section 3.2. Then a bit-stream based CMPC is brought up in this 

condition. After all of this, both CMPC and bit-stream based CMPC are applied 

on a specific system and simulations are obtained in order to investigate the 

performance of these controllers. 
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3.2 CMPC for linear system 

3.2.1 Control Law 

Consider a system which can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )A s Y s B s U s C s X s                (3.1) 

where A(s), B(s) and C(s) are the polynomials in the Laplace operator s. Y(s), 

U(s) and X(s) are the system output, control input and disturbance input.  

Firstly we predict the future output in a time period of T in time domain: 

ˆ( )y t T                          (3.2) 

This predictor can be expressed by a Taylor series expansion, thus: 

0

ˆ( ) ( ) ( )
!

yN k

k

k

T
y t T y t y t

k

                    (3.3) 

where 

ˆ( )
( )

k

k k

d y t
y t

dt
  

and Ny is the order of the predictor. 

As discussed in [8], generally speaking, large future time T corresponding to a 

high order of predictor Ny in order to achieve a good prediction. 

  In Laplace domain, the kth derivative corresponds to orders of s. Thus the 

system output in Laplace domain can be written as: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

k k
k

k

s B s s C s
Y S s Y s U s X s

A s A s
              (3.4) 

where X(s) is the disturbance. 
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  Assume that the disturbance term can be decomposed as: 

( )( )
( )

( ) ( )

k

k
k

F ss C s
E s

A s A s
                    (3.5) 

  Then the output equation is derived as, 

* *( ) ( ) ( )k k kY s Y s E s                     (3.6) 

where 

* ( )( )
( ) ( )

( ) ( )

k

k
k

F ss B s
Y s U s

A s A s
                  (3.7) 

and 

*( ) ( )k kE s E X s                     (3.8) 

  Substituting (3.1) and (3.5) into (3.7) we could get, 

*( ) ( ) ( )k k
k

E B F
Y s U s Y s

C C
                   (3.9) 

  The term kE B

C
 is not a proper transfer function fork d , where d is the 

relative order of the system. This term can be written as a strictly proper part 

and a remainder polynomial.  

k k
k

E B G
H

C C
                       (3.10) 

  So, (3.9) can be written as: 

*( ) ( ) ( ) ( )k k
k k

realizable

G F
Y s H U s U s Y s

C C
                  (3.11) 

  The equation has both realizable and unrealizable part. We define the 

realizable part as: 

0 ( ) ( ) ( )k k
k

G F
Y s U s Y s

C C
                  (3.12) 

  Thus, 

* 0( ) ( ) ( )k k kY s H U s Y s                  (3.13) 
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  In the time domain, (3.13) is expressed as: 

* 0( ) ( )k k ky t h u y t                     (3.14) 

where hk is a row vector, it contains the coefficients of Hk polynomial. The 

elements of hk are the system Markov parameters. 

  u is a column vector which contains the derivatives of the input: 

[1] [ ]( ) ( ) ( )
T

k pu u t u t u t                  (3.15) 

where 

[ ] ( )i
i

i

d u t
u

dt
  

As stated in [8], the prediction is established by the Taylor series expansion 

of the system output. Thus we could express the T time predictor in matrix 

form as: 

* 0( )
y yN Ny t T T Hu T Y                    (3.16) 

where 

2

1
2! !

y

y

N

N

y

T T
T T

N

 
  
  

 

0 0 0

1( ) ( ) ( )
y

T

NY y t y t y t 
 

 

and H is the Markov parameter matrix of the polynomials Hk which dimension 

   1 1y yN N d    . 

  When d=1, H is written as: 

1

2 1

1 2 1

0 0 0 0

0 0 0

0 0

y y yN N N

h

h hH

h h h h 

 
 
 
 
 
 
 
 

               (3.17) 
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  The aim of CMPC is to control the predicted future output as close as 

possible to the future set point. This means that the future set point has to be 

known. 

  However, in many cases, the exact future set point is unknown. In that case, 

we usually assume a constant set point w into the future. If we try to control the 

predicted future to match this constant set point, the output would follow the 

future set point very fast but also an overshoot may occur. To avoid the 

overshoots, we could consider a smooth approximation from output to the 

constant set point as shown in figure 3.1. 

 
Figure 3.1 the Smooth Approximation 

The reference trajectory R(t,T) will be taken as the output of the rational 

transfer function with numerator Rn and denominator Rd. And 

 ( ) ( )( )
( , )

( )

n

d

w t y tR s
R t s

R s s


                   (3.18) 

The Laplace operator s denotes the Laplace transform with respect to future 

variable T. The Taylor series expansion of Rn/Rd can be expressed as: 

1

0

yN

n
i

id

R
r s

R





                       (3.19) 

where ri is the Markov parameter of Rn/Rd. Substituting (3.19) to (3.18) and 
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taking the inverse Laplace transform, the smooth approximation of reference 

trajectory in matrix form is: 

*( )
yNR t T T w                        (3.20) 

where  

0 1

[ ( ) ( )]

y

T

N

w R w t y t

R r r r

 

 
 

                  (3.21) 

  How to choose the reference trajectory, a constant future set point or a 

smooth approximation, would depend on the requirement of the system. A 

constant future set point would lead to a fast system respond with overshoot 

and a smooth approximation would lead to a slow system response with no 

overshoot.  

In discrete time MPC, the other key parameter of the controller design is 

control horizon Nu. And in continuous time, it is called control order and is 

defined by: 

[ ]       ( ) 0k

uFor k N u t   

where [ ] ( )
( )

k
k

k

d u t
u t

dt
  

By introducing the control order, the dimension of vector u is reduced to 

(Nu+1)X1 and Markov parameter matrix is reduced to (Ny+1)X(Nu+1). 

The control law is based on minimizing at the instant t a quadratic cost 

function of the output tracking error and the control values. And in CMPC, the 

cost function is defined as: 
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2

1

2 1

* * * *

* *

0

( ) ( ) ( ) ( )

         ( ) ( )

TT

T

T T
T

J y t T R t T y t T R t T dT

u t T Qu t T dT


            

  





     (3.22) 

where T1 is the minimum prediction horizon, T2 is the maximum prediction 

horizon, Q is the control weighting and the truncated Taylor series expansion 

form of the predicted future input is: 

*( )
uNu t T T u                        (3.23) 

2

1
2! !

u

u

N

N

u

T T
T T

N

 
  
 

                  (3.24) 

[ ][1]( ) ( ) ( )u
T

N
u u t u t u t                    (3.25) 

Thus we could minimization J to get a result: 

0( )u K w Y                        (3.26) 

where 

1( )T T

y u yK H T H QT H T                  (3.27) 

2

1
y y

T
T

y N N
T

T T T dT                      (3.28) 

2 1

0 u u

T T
T

u N NT T T dT


                     (3.29) 

  By taking the first row of K be k, the control law of CMPC is expressed as, 

0( ) ( )u t k w Y                      (3.30) 

When the system is linear, the state space approach and transfer function 

approach of design CMPC are almost the same. However, for nonlinear 

systems, the design of CMPC needs to be done using state space approach. 

Therefore, it is necessary to design linear system using state space approach for 

the further use of nonlinear system design.  

Consider a state space system with the form: 



5390378 Bo Yu 

- 37 - 

x Ax Bu

y Cx

 



                     (3.31) 

where x, y, u are state variable, system output and system input (control input). 

Because the disturbance doesn’t have an effect on the predictive output and 

also for simplicity, the disturbance part is omitted. 

  The future development of a continuous signal can be obtained by taking 

derivatives. Thus we could repeat differentiation of y and get: 

,( ) ( ) ( )
y y y y uN N N N NY t O x t H U t                   (3.32) 

where Ny is the order of highest derivative of output y 

      Nu is the order of highest derivative of output u. 

  The output derivatives vector is written as 

[ ][1] [2]( ) y

y

T
N

NY t y y y y 
 

              (3.33) 

  The input derivative vectors is written as  

[ ][1] [2]( ) u

u

T
N

NU t u u u u                 (3.34) 

  
yNO is the extended observability matrix with  1yN n   dimension. n is the 

dimension of system state variables. 

2 y

y

T
N

NO C CA CA CA 
 

              (3.35) 

  ,y yN NH is the Markov matrix: 

,

1 2 3 1

0 0 0 0

0 0 0

0 0
y y

y y y y u

N N

N N N N N

CB

CAB CBH

CA B CA B CA B CA B
    

 
 
 
 
 
 
 
 

     (3.36) 

  The predicted output Y(t) is defined as 
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,
ˆ ˆ( ) ( ) ( )

y y y y uN N N N NY t O x t H U t                (3.37) 

  The control weighting is set to zero because it is not considered as important 

as prediction order and control order [9]. It is assumed that the reference 

signal ( , )w t   has a Taylor series expansion. We use τ to indicate time, then the 

reference signal can be expressed as: 

( , ) ( ) ( )w t T W t                      (3.38) 

where 

2

( ) 1
2! !

yN

y

T
N

 
 

 
  
  

 

0( ) ( ) ( ( ) ( ))W t R y t R w t y t    

  The R term is a column vector containing the Markov parameters of a 

reference dynamic system [8]. The first element of R0 is 1 and rest are 0. For 

simplicity, set R equals to R0. 

  Then 

0( ) ( )W t R w t                      (3.39) 

  Consider the following cost function: 

2

1

* * * *( ) ( ) ( ) ( )
T

J y t W t y t W t d



                      (3.40) 

  Parameterize the future time variable T into the scale  0,1  , get 

1 2 1( )                           (3.41) 

  Then substituting (3.37) and (3.39) into (3.40), we could write the cost 

function as 
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1

, ,
0

, 1 2 ,

( ) ( )

  ( , )

y y y u y y y u

y y y u y y y u

T
T

N N N N N N N N

T

N N N N N N N N

J O x H U W T T O x H U W d

O x H U W T O x H U W

  

 

       
   

       
   


 (3.42) 

where 

1

1 2
0

( , ) ( ) ( )TT T T d       

The elements of matrix 
1 2( , )T    can be calculated from the equation 

     

1 1

2 1
1 2( , )

1 ! 1 ! 1

i j i j

ijT
i j i j

 
 

   


   
              (3.43) 

then we can obtain the matrix 
1 2( , )T   . 

  Set the result of first derivative of the cost function to zero we could obtain

uNU . The first element of 
uNU  is used as the control input.  

     
1

, 1 2 , , 1 2
ˆ, , ( )

u y y y y y y y

T T

N N N N N N N NU H T H H T W O x t   


    
   

    (3.44) 

3.2.2 Simulation Result 

  Consider the isolated thermal power system discussed in 2.2.3. This time we 

don’t need to transfer the system from continuous time to discrete time.  

  Thus, figure out the system function as 

     

     

0.05 6 0 0

0 3.3333 3.3333 0

3.125 0 12.5 7.5

1 0 0

x t x t u t

y t x t

    
    

      
        
 

     (3.45) 

  Then choose the parameters of MPC controller 

1 24, 1, 0, 1,y uN N       

  Therefore we could calculate the control law of the control input: 

      ( )w y xu t K w t K y t K x t                  (3.46) 
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  In this case 

[ 0.4277 0.7126 1.0511]

1

0.4480

x

y

w

K

K

K

  





 

  Then we could build the system model in MATLAB/Simulink in figure 3.2 

and obtain the simulation results of the original system and the CMPC control 

system. 

 
Figure 3.2.System model for the original plant system and the CMPC control system.. 

  Figure 3.3 shows the simulation results. 

 

Figure 3.3.System step response of the original plant system and the CMPC control system. 

  We could find out that the CMPC control system has a faster reaction and 

also it tracks the reference signal with higher accuracy. 
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3.3 Bit-Stream Based CMPC Control for Linear System 

Considering the isolated thermal power system. The MPC control law is not 

changed. 

In order to convert the control loop to a bit-stream based model, a 

Delta-Sigma modulator is adopted between the controller and the system to 

reduce the communication channel which is shown in figure 3.4. 

 

Figure 3.4. Bit-stream based CMPC control system. 

Figure 3.5 shows the step response of the bit-stream based CMPC control 

system. 

 

Figure 3.5. Step response of the bit-stream based CMPC control system 

Compare the results between the plant system, CMPC control system and 
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bit-stream based CMPC control system, we could find that the system keeps its 

stability and performance after adopting the Delta-Sigma modulator and both 

CMPC and bit-stream based CMPC improve the system’s reaction speed and 

reference tracking ability. 

3.4 Summary 

Model predictive control in continuous time domain also has a wonderful 

performance as in discrete time domain. Without the numerical sensitivity and 

sample rate selection, it becomes even more powerful [8, 10]. 

 

Figure 3.6. Ripples of linear MPC and Bit-stream based linear MPC 

  Figure 3.6 shows the ripples of bit-stream based linear MPC compared to the 

ordinary MPC. We could hardly find the difference between these two 

controllers. This means that in continuous time domain, the performance of 

bit-stream based MPC becomes better as the switch could work in high 

frequency in order to reduce the noise. 
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Chapter 4 

Continuous Time Bit-Stream based Model 

Predictive Control for Nonlinear System 

4.1 Introduction 

Model predictive control is now one of the most popular method in control 

engineering. In chapter 3, Continuous time model predictive controller for 

linear system was introduced and the simulation results shows that linear 

CMPC has a good performance in control stability and reference tracking.  

However, linear systems, in most instances, are simplified models in ideal 

conditions of practice systems. Most of the systems in practice are nonlinear. In 

this situation, the linear controllers are inadequate even for moderately 

nonlinear processes [11]. Several results have been reported in recent past to 

extend the linear MPC to nonlinear systems [12, 13, 14]. 

  In this chapter, the nonlinear CMPC algorithm is introduced and applied on 

two classic nonlinear systems. After that, Delta-Sigma modulators are adopted 

to obtain a bit-stream based nonlinear MPC. Both nonlinear MPC and 

nonlinear bit-stream based MPC are simulated to investigate the performance 

of the controllers. 
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4.2 CMPC for nonlinear system 

4.2.1 Control Law 

Consider a nonlinear system which is described by the state space model: 

 ,

( )

x F x u

y G x






                      (4.1) 

and assume that the function F and G have Nyth derivation. Following the 

similar steps as the linear CMPC controller, we could express the output vector 

Y as 

      ,Y t O x t U t                    (4.2) 

where O is output derivative vector and 

[ ][1] [2]( ) y
T

N
Y t y y y y 

 
 

  The predictor of the nonlinear CMPC is designed as an equation of a variable 

time T into the future. By expanding time T using Taylor series to Nyth order, 

we could obtain 

2

( ) 1
2! !

yN

y

T
N

 
 

 
  
  

                 (4.3) 

  Therefore the output at a future time τ becomes 

     ,Y t T Y t                     (4.4) 

  After setting the initial time τ1 and final time τ2, the time τ is selected into the 

scale  0,1  as 

1 2 1( )                            (4.5) 

  Similarly as the CMPC, the reference trajectory approximation equation is 
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given as 

0( ) ( ) ( ( ) ( ))W t R y t R w t y t                   (4.6) 

  Also 

0( ) ( )W t R w t                      (4.7) 

  The optimization problem can now be considered as the minimization with 

respect to U of the cost function J. 

       

         

         

1

0

1

0

1 2

, ,

  , ( ) ( ) ,

  , ( , ) ,

T

T
T

T

J y t w t y t w t d

O x t U t W T T O x t U t W d

O x t U t W T O x t U t W

  

  

 

        

        

        



     (4.8) 

where 

1

1 2
0

( , ) ( ) ( )TT T T d       

  The elements of the matrix 1 2( , )T    is calculated by 

     

1 1

2 1
1 2( , )

1 ! 1 ! 1

i j i j

ijT
i j i j

 
 

   


   
               (4.9) 

  This optimization problem needs to be solved numerically for u(t) at each 

time instant. This usually involves a computational delay and is a major issue in 

implementation of the controller [15].  

4.2.2 Simulation Result 

a) Rossler System. 

The performance of the nonlinear CMPC was simulated considering Rossler 

system which is described by the equations [16]: 
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1 2 3

2 1 2

3 1 3 3

x x x

x x ax u

x b x x cx

 


  
   

                   (4.10) 

In this case a=0.2, b=0.2, c=5.7. 

  Because u is contained in
2x , thus let

2y x . 

2

2 1 2

y x

y x x ax u




   
                   (4.11) 

  Choose Ny=2, τ1=0, τ2=1. 

  Then  

       2

1 2

,
x

O x t U t Y t
x ax u

 
   

  
           (4.12) 

0

( )
( ) ( )

0

w t
W t R w t

 
   

 
               (4.13) 

  Therefore we could express the cost function 

         1 2, ( , ) ,
T

J O x t U t W T O x t U t W                (4.14) 

  And calculate the u(t) to minimize the cost function J. 

  The result is 

1 21.5 ( ) ( ) 1.7 ( )u w t x t x t                    (4.15) 

  After that we could build the system model in MATLAB/Simulink and get 

the results of the simulation of both the original plant system and the system 

with CMPC. Figure 4.1 shows the system models in Simulink.  
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Figure 4.1. System models of Rossler system and CMPC system 

  Figure 4.2 shows the step response of the two system models. 

 

Figure 4.2. Step response of Rossler system and CMPC system 

  We could see from the figure that the original system step response goes to 

infinity while the system with CMPC is tracking the reference signal well.  

 



5390378 Bo Yu 

- 48 - 

b) Lorenz System 

Then consider the Lorenz system which is described by the equations [17, 18]: 

1 1 2

2 1 2 1 3

3 1 2 3

x x x

x rx x x x

x x x bx u

   


  
   

                   (4.16) 

In this case σ=10, r=28, b=8/3. 

  Because u is contained in
3x , thus let

3y x . 

3

3 1 2 3

y x

y x x x bx u




   
                   (4.17) 

  Choose Ny=2, τ1=0, τ2=1. 

  Then  

       3

1 2 3

,
x

O x t U t Y t
x x bx u

 
   

  
           (4.18) 

0

( )
( ) ( )

0

w t
W t R w t

 
   

 
               (4.19) 

  Therefore we could express the cost function 

         1 2, ( , ) ,
T

J O x t U t W T O x t U t W                (4.20) 

  And calculate the u(t) to minimize the cost function J. 

  The result is 

3 1 2

1

2
u w x x x                    (4.21) 

  After that we could build the system model in MATLAB/Simulink and get 

the results of the simulation of both the original plant system and the system 

with CMPC. Figure 4.3 shows the system models in Simulink.  
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Figure 4.3. System models of Lorenz system and CMPC system 

  Figure 4.4 shows the step response of the two system models. 

 

Figure 4.4. Step response of Lorenz system and CMPC system 

  We could see from the figure that the original system step response cannot 

follow the input signal while the system with CMPC is following the reference. 
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4.3 Bit-Stream Based CMPC Control for Nonlinear System 

Considering the Rossler system. The CMPC control law is not changed. 

In order to convert the control system to a bit-stream based model, 

Delta-Sigma modulators are adopted between the controller and the system to 

reduce the communication channel which is shown in figure 4.5. 

 
Figure 4.5. Bit-stream based nonlinear CMPC control system for Rossler system 

Figure 4.6 shows the step response of the bit-stream based nonlinear CMPC 

control system. 

 

Figure 4.6. Step response of the bit-stream based CMPC control system for Rossler system 

Then considering the Lorenz system. The CMPC control law is also not 
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changed. 

In order to convert the control system to a bit-stream based model, 

Delta-Sigma modulators are adopted between the controller and the system to 

reduce the communication channel which is shown in figure 4.7. 

 
Figure 4.7. Bit-stream based nonlinear CMPC control system for Lorenz system 

Figure 4.8 shows the step response of the bit-stream based nonlinear CMPC 

control system. 

 

Figure 4.8. Step response of the bit-stream based CMPC control system for Lorenz system 

Compare the results between the plant systems, nonlinear CMPC control 

systems and bit-stream based nonlinear CMPC control systems, we could find 

that the system keeps its stability and performance after adopting the 
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Delta-Sigma modulator and both CMPC and bit-stream based CMPC improve 

the system’s reference tracking performance. 

4.4 Summary 

A state space formulation of nonlinear continuous time MPC has been 

presented and apply on two classic nonlinear systems, Rossler system and 

Lorenz system. The simulation results are satisfying. It shows the stability and 

tracking ability both of MPC and bit-stream based MPC.  

  The bit-stream based CMPC is also powerful while controlling the nonlinear 

system as the high frequency of switch would reduce the output noise. In the 

next chapter, the bit-stream CMPC would be implemented on a DC servo motor 

via HILINK board to investigate its performance. 
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Chapter 5 

Hardware Implementation 

5.1 Introduction 

The performance of bit-stream based discrete and continuous time model 

predictive controllers have been shown in chapter 2, 3 and 4 using simulations 

based on Matlab toolkit.  

Today, with the fast development of computers, most modern advanced 

control systems are implemented digitally and controlled by computers, for 

example, the HILINK platform. The HILINK platform offers a seamless 

interface between physical plants and Matlab/Simulink for implementation of 

hardware-in-the-loop real-time control systems. It is fully integrated into 

Matlab/Simulink and has a broad range of inputs and outputs. It allows quick 

test and iteration of control strategies in real-time with a real plant in the loop. 

The HILINK platform is a complete and low-cost real-time control system 

development package and it can be applied for both educational and industrial 

control systems. 

This chapter is organized as follows: the hardware implementation strategy is 

introduced in the section 5.2 with brief description of the function of the 

HILINK platform and its realization via Matlab. Section 5.3 gives the model of 

the DC servo motor and theoretically controls the motor using bit-stream based 
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MPC. The results of the implementation are included in section 5.4 with 

summary in section 5.5. 

5.2 Hardware Implementation Strategy 

 

Figure 5.1. The HILINK control board. 

The HILINK platform consists of the real-time control board (hardware) and 

the associated Matlab interface (software). The hardware of the HILINK 

platform has 8 x 12 bit analog inputs, 2 x 16 bit capture inputs, 2 x 16 bit 

encoder inputs, 1 x 8 bit digital input, 2 x 12 bit analog outputs, 2 x 16 bit 

frequency outputs, 2 x 16 bit pulse outputs and 1 x 8 bit digital output. The 

board also contains two H-bridges with 5 A capability to drive external heavy 

loads. Some inputs and outputs are multiplexed to simplify the hardware. The 

board is interfaced to the host computer that runs Matlab through a serial port. 

The software of the HILINK platform is fully integrated into 
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Matlab/Simulink/Real-Time Windows Target and comes with Simulink library 

blocks associated with each hardware input and output. The library contains 

Analog Input Block, Capture Input Block, Encoder Input Block, Digital Input 

Block, Analog Output Block, Frequency Output Block, Digital Output Block 

and Pulse Output Block. The platform achieves real-time operation with 

sampling rates up to 3.8 kHz. 

The hardware implementation uses the HILINK control board to control a 

DC servo motor via Matlab/Simulink.  

 

Figure 5.2. DC servo motor platform 

  The DC servo motor receives up to 12V from the power supply, and is 

capable of rotating in both directions at a maximum speed of approximately 

515 rad/s. A marker point on the flywheel can be used to visually determine the 

angular position. MATLAB and Simulink will enable the system to be 

controlled in real-time. Simulink Real-Time Windows Target will be used to 

compile Simulink blocks into real-time code and communicate with the 

RS 232 serial 

communication Power supply 

HILINK control 

board 

DC servo 

motor 
Quadrature 

encoder 

Aluminium 

flywheel 



5390378 Bo Yu 

- 56 - 

HILINK control board. Special input/output blocks are used to communicate 

between the Simulink blocks and the hardware (green colored blocks in Figure 

5.3). A low-pass filter has also been applied to the speed measurement output 

(block C1). This is because the unfiltered shaft speed is measured at revolutions 

per sample time, which is too coarse for some speed settings. 

 

Figure 5.3 HILINK input/output Simulink blocks.  

5.3 Theoretical Control Simulation 

The speed response model of the DC servo motor is shown below as a 

first-order linear transfer function. 

( ) 41
( )

( ) 0.2 1

Y s
G s

U s s
 


                    (5.1) 

  In this implementation, a bit-stream based MPC would be designed to 

control the position of the DC servo motor. Thus, the system model would be 

extended to: 

2

( ) 41 1 41
( )

( ) 0.2 1 0.2

Y s
G s

U s s s s s
   

 
              (5.2) 

which indicates the position response. 
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Firstly, transform the transfer function to a state space function. 

Because: 

2

( ) ( ) ( ) 1
( ) 41

( ) ( ) ( ) 0.2

Y s Y s Z s
G s

U s Z s U s s s
    


           (5.3) 

Thus 

 
2

( ) 41 ( )

( ) (0.2 ) ( )

Y s Z s

U s s s Z s




 
                  (5.4) 

Make Inverse Laplace Transform, 

41

0.2

y z

u z z




 
                      (5.5) 

Assume 

1

1 2

2 2

1

5 5 5 5

41 41

x z

x x z

x z u z x u

y z x




 


     
  

               (5.6) 

So we could get the system state space function: 

 

1 1

2 2

1

2

0 1 0

0 5 5

41 0

x x
u

x x

x
y

x

      
       

      


 
  

 

                  (5.7) 

Therefore, we could calculate the control law of CMPC of the system: 

 

0.0198

0 0.4522

1

w

x

y

k

k

k

 







                    (5.8) 

1

2

[ ]w y x

x
u k w k y k

x

 
    

 
                     (5.9) 

However, we can’t get the state variable X in hardware implementation. 

Note that 
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 1

2 1 1

2

0.4522 0.4522 0.0110 41 0.0110x

x
k x x x y

x

 
     

 
    (5.10) 

And because y indicates the position of the DC motor and thus y  indicates 

the speed of the DC motor. 

And finally after getting the control law of CMPC, we could get the 

bit-stream based CMPC of the DC servo motor: 

 

Figure 5.4 Simulation of Bit-stream based CMPC of DC servo motor 

Figure 5.5 shows the result of the simulation and the position is following 

the reference and we can also see the change of the speed. 

 

Figure 5.5 Simulation result of DC motor control 
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5.4 Implementation Results 

  After successfully controlling the DC servo motor in Simulink, next the 

bit-stream based CMPC is implemented considering the DC servo motor 

system. 

  The close-loop system is shown in figure 5.6 and the block Servo Motor 

System has already been shown in figure 5.3.  

 
Figure 5.6 the real-time target control for DC motor 

  For the hardware implementation, several different kinds of references have 

been used to examine the performance of the bit-stream based CMPC. 

  Figure 5.7 shows the step response of the system. 

 

Figure 5.7 Step reference witch X-axis defined by time (S)  

  The green line indicates the reference and we could see that with the 



5390378 Bo Yu 

- 60 - 

reference changing, the position output follows the reference. 

 
Figure 5.8 Ramp reference witch X-axis defined by time (S)  

  Figure 5.8 shows the result of the position output while adopting a ramp 

reference. We could see that the output follows the reference with a small time 

delay. 

 
Figure 5.9 Sine wave reference witch X-axis defined by time (S)  

  Figure 5.9 shows the position output while using a sine wave reference. We 

could see that there is also a time delay occurring. And the output still follow 

the reference with a constant time delay.  
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5.5 Summary 

The performance of the linear bit-stream based continuous time model 

predictive controller was demonstrated by controlling a real physical plant. The 

physical plant consists of a DC servo motor and a HILINK control board.  

The system is to drive the motor under 12 voltage and control its position to 

follow the given reference. In the hardware implementation, the system cannot 

ideally have no noise as the simulation in Matlab. Thus a low pass filter is 

adopted to reduce the ripples of the speed output. 

However, because of the switch in the bit-stream modulator, the output 

would inevitably have some ripples. But this noise has a much smaller 

influence on the position than on the speed and that’s the reason we chose to 

control the position output of the DC servo motor. 

With different kinds of reference, the performance of bit-stream based 

CMPC is commendable. While tracking a dynamic reference, how to further 

reduce the delay of the system output worth a deep study. 
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Chapter 6 

Conclusions 

Model predictive control has made a significant impact on industrial process 

control systems since it was originated in the late seventies. It was brought up 

to solve the existing problems of the traditionally used self-tuning control such 

as lacking robustness. With over forty years’ development, Model predictive 

control gradually becomes the most important approach to the advanced control 

of complex industrial processes.  

However, traditional MPC is too complex to be implemented in real-time 

embedded systems. Especially recent years, networked control systems are 

widely applied in industrial field. In a networked control system there may be 

very limited resources, in this situation bit-stream technique is put forward. It 

converts either analog or multi-bits digital signal into bit-stream (single-bit) 

output through a Delta-Sigma (Δ-Σ) modulator. Bit-stream signal processing is 

mainly proposed to reduce the silicon consumption and the physical areas for 

routing bit-parallel signals in digital integrated circuits such as FPGA and VLSI. 

Furthermore, bit-stream technique reduces the number of interface channels 

between the subsystems from multiple to single channel, thereby consumes 

significantly less hardware resources compared to traditional multi-bit 

processing. In control and power electronics applications, a pulse width 

modulator (PWM) is not needed anymore since the bit-stream signal is like a 
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fine-grained PWM and hence, it can derive DC-DC converters directly. 

The study begins with a review of model predictive control in discrete time 

domain and the bit-stream technique. For further use of bit-stream technique, 

several toolboxes are developed in Simulink of Matlab. Then the discrete time 

MPC is adopted with bit-stream technique. The model predictive controller in 

discrete time domain has several advantages compared with conventional 

controllers. Also after adding Delta-Sigma modulator the system performance 

almost doesn’t change. We still could find that the bit-stream based MPC has 

more ripples thus has more noise than MPC. This phenomenon happens 

because the Delta-Sigma modulator contains a switch with specific operating 

frequency and that would lead to some noise. In discrete time system, if the 

switch frequency is different from the system sampling frequency, the system 

would become unstable. Therefore, the switch frequency of the modulator 

should be the same as the system sampling frequency, in this case 100Hz, and 

thus lower frequency of switch operation would lead to a higher noise. 

To overcome the limitations and difficulties associated with discrete time 

controllers, continuous time approach to controller design was preferred. 

Therefore the next part of the research begins with designing controllers using 

continuous time domain. Initially continuous time model predictive controller 

(CMPC) was designed for linear systems based on the state space model of the 

system and combined with bit-stream technique. In continuous time domain, 
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the performance of bit-stream based MPC becomes better as the switch could 

work in high frequency in order to reduce the noise. 

In practice most of the systems are nonlinear to some extent. Therefore the 

study then focuses on the design of CMPC for nonlinear systems based on state 

space models of the system. And also bit-stream technique is used on the 

NLCMPC. The bit-stream based CMPC still has a good performance while 

controlling the nonlinear system as the switch could work in a high frequency 

to reduce the output ripple.  

The last phase of the research deals with hardware implementation of 

bit-stream based CMPC using HILINK. The HILINK platform offers a 

seamless interface between physical plants and Matlab/Simulink for 

implementation of hardware-in-the-loop real-time control systems. It is fully 

integrated into Matlab/Simulink and has a broad range of inputs and outputs. It 

allows quick test and iteration of control strategies in real-time with a real plant 

in the loop. A DC servo motor has been considered for such implementation. 

Because of the switch in bit-stream modulator, the output speed is more 

sensitive with this noise, in this case the position is chosen to be controlled. 

With different kinds of reference, the performance of bit-stream based CMPC is 

commendable. While tracking a dynamic reference, how to further reduce the 

delay of the system output worth a further research. 
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