Segmentation of Scanned Insect Footprints
Using ART2 for Threshold Selection
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Abstract. In a process of insect footprint recognition, footprint seg-
ments need to be extracted from scanned insect footprints in order to
find out appropriate features for classification. In this paper, we use a
clustering method in a preprocessing stage for extraction of insect foot-
print segments. In general, sizes and strides of footprints may be different
according to type and size of an insect for recognition. Therefore we pro-
pose a method for insect footprint segment extraction using an improved
ART?2 algorithm regardless of size and stride of footprint pattern. In the
improved ART2 algorithm, an initial threshold value for clustering is
determined automatically using the contour shape of the graph created
by accumulating distances between all the spots within a binarized foot-
print pattern image. In the experimental results, applying the proposed
method to two kinds of insect footprint patterns, we illustrate that clus-
tering is accomplished correctly.

1 Introduction

Modern transportation also means that various kinds of insects change places
by vehicle, aircraft or ship. There are no problems in cases where native insects
travel within their habitat, but it may cause harm to the ecosystem or the
environment if insects enter an area outside of their habitat. In order to monitor
movements or presence of insects (e.g., in containers in airplanes or ships, or
in defined areas such as an island), special methods have been designed for the
monitoring of insects, taking their characteristics into account.

Examples of monitoring devices are illustrated in Figure 1. Such tunnels are
widely used for collecting footprints of small animals (such as rats or mice) and
of various kinds of insects. The acquired footprints are visually inspected or
scanned for automated reading; they are used for various monitoring tasks, for
example for verifying the presence of some insects, or for more detailed ecological
or biological studies as supported by those footprints [9,11].

The acquired insect footprints, using such tracking tunnel devices for col-
lection, are then typically identified by entomologists having expert knowledge
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Fig. 1. Tracking tunnel devices of varying sizes using Black Trakka  tracking cards
[3]: insects or small animals are attracted by a lure to walk into the tunnel, across the
inked area, leaving tracks on the white card.

about insect’s morphology [4]. The identification requires that individual foot-
prints are extracted (e.g., by using morphological features of each kind of insect
[5]) and then clustered into meaningful track patterns, but it may be hard to
extract, analyze and classify insect footprints even for the experienced human
specialist if available knowledge about entomology and visible patterns do not
match (e.g., if too many insects left traces on the same card).

For automated reading of such cards, we start with a method to extract au-
tomatically segments for later classification, with the aim to remove unnecessary
human preprocessing, improve time efficiency, and increase accuracy for insect
footprint recognition, possibly even for situations where expert knowledge about
entomology is not accessible.

In this paper, we propose a method for insect footprint segmentation using
an improved ART2 (Adaptive Resonance Theory) algorithm, regardless of size
and stride of each type of insect footprint. In the improved ART2 algorithm, the
threshold value for clustering is determined automatically using contour shape
of the graph created by accumulating distances between all of the “spots” of an
insect footprint pattern image scanned from one of those tracking cards. The
paper improves a method that was proposed in [12].

2 Improved Footprint Segmentation

First, we define four terms for describing our methodology. We define a “spot”
as a set of connected pixels in a binarized footprint image and a “region” as a set
of spots for each foot. And then we define a “segment” as a set of three regions
for front foot, mid foot and hind foot and a “pattern” as a set of segments in
a footprint image. This paper considers the following steps for collecting tracks,
scanning, and extracting footprint segments (For a graphical sketch of the overall
process, see Figure 2.):

Step 1: Insect footprints are acquired on tracking cards, placed into tracking
tunnel devices for some time.
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Fig. 2. Step graph of automatic insect footprint segmentation.

Step 2: Collected tracking cards are scanned at 1200dpi resolution, and with
256 gray levels. The scanned images are binarized using Abutaleb’s higher-order
entropy algorithm, which was already identifies as being a useful method for
binarization of scanned insect footprint images [12].

Step 3: An initial threshold value for ART2, a neural network algorithm for
clustering, is decided using the contour shape of the graph created by accumu-
lating distances between all the spots of a footprint pattern image.

Step 4: The decided threshold value is used in ART?2, and basic segments
of footprints are extracted automatically by the improved ART2 clustering al-
gorithm regardless of size and stride of each type of insect footprint.

2.1 Abutaleb’s Higher-Order Entropy Binarization Algorithm

Quality of the binarization process is crucial for the overall performance of recog-
nition. Various kinds of binarization methods have been developed during the
past 20 or more years; see, for example, [8,10]. In this paper we use the bi-
narization method proposed by Abutaleb [1] which can be briefly explained as
follows:

The histogram and the probability mass function (PMF) of the image are
given, respectively, by h(g) and by p(g), for g = 0...G, where G is the maximum
luminance value in the image (typically G = 255). If the gray value range is not
explicitly indicated as being equal t0 [gmin, gmax], it is assumed to extend from
0 to G. The cumulative probability function is defined as follows:

Plg) =3 p(i) (1)

The foreground (i.e., object) and background PMFs are expressed as P(g),
for 0 < g < T, and Py(g), T+ 1 < g < G, respectively, where T is the thresh-



old value. The foreground and background area probabilities are calculated as
follows:

T G
Pi(T)=Pr=> plg), R(T)=P,= > plg. (2)
9=0 g=T+1

The Shannon entropy, parametrically dependent on the threshold value T for
the foreground and background, is formulated as:

T G
Hp(T) ==Y psl9)logps(g) , Hy(T)=— > m(g)logple)  (3)
9=0 g=T+1

The mean and variance of the foreground and background as functions of the
thresholding level T are denoted as:

T T
mp(T) =Y g-plg)  o7(T) =2 [g—ms(T)]°p(g),
g=0 g=0
G G
my(T)= > g-pl9)  o(T)= Y [9—m(T)]°p(g) (4)
g=T+1 g=T+1

Abutaleb’s binarization algorithm assumes the joint entropy of two related
random variables, namely, the image gray value g at a pixel, and the average
gray value g of a neighborhood centered at that pixel. Using the 2-D histogram
p(g,g), for any threshold pair (T, T), one can calculate the cumulative distribu-
tion P(T,T), and then define the foreground entropy as follows:

H:—XT:XT: p(9:9) . Pg:9) 5)
U P(T,T) ®P(T,T)

3

Similarly, one can define the background region’s second order entropy. Un-
der the assumption that the off-diagonal terms, that are the two quadrants
[(0,T),(T,G)] and [(T, G), (0, T)] are negligible and contain elements only due
to image edges and noise, the optimal pair (7', T') can be found as the minimizing
value of the 2-D entropy functional. In this algorithm, the following equation is
used for finding an optimal threshold value:

(Topt, Topt) = arg min{log[P(T, T)[1—P(T,T)||+H/P(T,T)+H,/[1-P(T,T)]}

where -
_ r(9,9) r(9,9)
Hy = _; ; PT.T) log PT.T) and
Ho— _ XG: XG: p(9:9) ., P9:9) (©)
T 1-P(I,T) ®1- P(T,T)



2.2 Clustering Method

Insect footprint patterns are composed of sets of segments made by insect’s feet,
and these segments appear in the footprint image repeatedly and dispersedly. In
general, it is hard to detect segments which identify a footprint (from a scanned
footprint image). Meaningful groups of regions, segments identifying a single
footprint, can be extracted using specific morphological characteristics defined
by species, body size, leg positions and stride of an insect (see conventional
research [4,5,7] on insects).

In this paper, we propose a method for the extraction of footprint segments
using an ART?2 algorithm, which is a neural network algorithm that has a good
performance in clustering [2,6]. The ART2 algorithm can cluster and extract
footprint segments easily without any morphological features.

With the ART?2 algorithm, the clustering process can be performed in real
time regardless of the number of massively generated data as clusters are cre-
ated dynamically. The ART2 algorithm is an unsupervised learning neural net-
work where stability (a known weakness of conventional competitive learning
algorithms) is supplemented. The ART?2 algorithm automatically integrates new
learning results into former learning results in order to keep former learning
results. The ART2 learning algorithm used in this paper is as follows:

Step 1: The k** input datum is defined as xj, and the center of the 7"

cluster is defined as w;.

Step 2: A cluster j*, which has a minimum distance to the new input datum
Tk, is selected as the winner cluster. The distance between center of a cluster
and input datum is calculated by using the Euclidean distance as shown in the
following equation:

|2 — wj«|| = min ||z —ij (7)

Step 3: We perform the vigilance test for an input datum. If the distance be-
tween the input datum and the winner cluster is smaller than threshold value(o),
then this input datum is accepted as similar datum with the winner cluster, and
the center of the winner cluster is updated using this input datum. If the distance
between the input datum and the winner cluster is not smaller than threshold
value(o), then a new cluster is created by this input datum. This process is
performed by using the following equation:

g + wold . ||Clusterdtd
<o, w¥Y= r J H J (8)

J HCluster?id ‘ +1

if (o — w;

old

where HClusterj*

‘ means the number of input data included in the j** cluster.

Step 4: Step 1 to Step 3 are repeated until no input datum remains. If the
whole learning process is iterated as predefined (e.g., that the number or centers
of clusters does not change anymore), the learning process is terminated.



2.3 Automatic Threshold Selection

We use the ART?2 algorithm, an unsupervised learning algorithm, for clustering
insect footprint spots. But the threshold value(o) in the ART?2 algorithm is set
by characteristics of input data heuristically, and the threshold value is of crucial
importance for the performance of clustering.

When we cluster insect footprint spots by ART2 algorithm, it is difficult to
preselect an initial threshold value because the sizes of feet and strides vary with
the kinds of insects. For example, the Black Cockroach, one of our test insects,
has dense foot intervals, and the Native Bush Cockroach, another test insect,
has sparse foot intervals. So, if we set a threshold value for the Black Cockroach
to obtain good clustering results, it has an improper effect on the Native Bush
Cockroach segmentation, and if we set a threshold value for the Native Bush
Cockroach, it also has improper effect on the Black Cockroach processes.

In order to solve this difficulty, we used the contour shape of the graph created
by accumulating distances between all the spots of a footprint pattern image for
an automatic setting of a threshold value used in the ART2 algorithm. But the
acquired graph (by accumulating distances) has undesirable peaks due to noisy
spots; so, we applied a median filter to smooth the contour of the graph.
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Fig. 3. Accumulation graph of distances between footprint spots.

Figure 3 shows a graph of common contour shape by accumulating distances
between all the spots imprinted in a general insect footprint pattern image, and
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Fig. 4. A segment of an insect footprint image.



this figure represents stride and feet density of an insect. In Figure 3, “zone a”
having first peak value represents accumulated distances within each front foot
(“zone al” in Figure 4), mid foot (“zone a2” in Figure 4), hind foot (“zone a3”
in Figure 4), and “zone b” having second peak value represents accumulated
distances between each spot in “zone b” in Figure 4. In this paper, we used the
second peak value in “zone b” including front, mid, and hind legs as an initial
threshold value(o) for accurate clustering in the ART2 algorithm.

Figure 5 shows a graph generated by a test insect footprint image, and Figure
6 shows a graph processed by a median filter in order to find the local maxima
values in the graph effectively.

Fig. 5. Graph created by accumulating distances between all the spots.

Fig. 6. Graph after applying a median filter to the graph of Figure 5.

2.4 Segment Extraction

In this paper, we proposed a method to set an initial threshold value in the
ART?2 algorithm using the graph created by accumulating distances between all
the spots of a footprint pattern for effective segment extraction. For segment
extraction using a clustering method, the center of gravity and the size of each
spot area found by linked pixels from a binarized image are utilized. The position
of the center of gravity is used for center coordinates for clustering, and the size
information is used for extracting final segments. Figure 7 shows a sample spot
area, and also shows the center of gravity and radii (width and height) of the
spot area.
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Fig. 7. Center of gravity and used radii within a spot area.
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Fig. 8. Steps for segment extraction using the center of gravity and radii.

P(L, R) denotes the coordinates in a 2-dimensional plane of an scanned foot-
print image; the whole spot area is given by P(Lmin, Rmin), P(Lmax, Rmax) CO-
ordinates. These coordinates are utilized for boundary coordinates in extracted
segments by clustering results. Figure 8 shows each step from clustering by cen-
ter of gravity and the proposed ART2 algorithm to segment extraction using
size information.

3 Experimental Results and Analysis

We restricted experiments on two kinds of insects (Black Cockroaches and Native
Bush Cockroaches) which illustrate the typical difficulty of dealing with different
sizes of feet and stride lengths. Figure 9 shows 256 gray level insect footprints;

Fig.9. A sample image (left) and the binarized image (right) using Abutaleb’s algo-
rithm.
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Fig. 11. Results of segment extraction for the Native Bush Cockroach.

the image (left) is acquired by scanning a tracking card, and the binarized im-
age (right) is obtained by using Abutaleb’s binarization algorithm. Figure 10
shows extracted segment images from a Black Cockroach footprint image using
the proposed method, and Figure 11 shows extracted segment images from a
Native Bush Cockroach image. Table 1 shows experimental results of segment

Table 1. Results of footprint segment extraction

Native Bush Cockroach Black Cockroach
N1 N2 N3 B1 B2 B3
Initial Threshold Value 205 235 400 295 290 330

Type of Insect

Number of Test Images 9 11 11 18 15 14
# of Correct Extraction 7 11 10 17 15 11
# of Incorrect Extraction 2 0 1 1 0 3

Success Ratio 77.8% 100% 90.9% 94.4% 100% 78.6%




extraction, using three scanned cards for Black Cockroaches and Native Bush
Cockroaches each. If there are noisy ink traces (e.g., by the abdomen of an insect,
or by insect foot dragging during tracking card acquisition), then we obtain too
many noise spots in the binarized images. Some low success ratios in Table 1 are
caused by such noisy spots. Thus, the next step is to develop an effective noise
removal method.

4 Conclusions

In this paper, we proposed a clustering method for extracting insect footprint
segments as a preprocessing stage of insect footprint recognition. We improved
the ART?2 algorithm by an automatic threshold value setting (by using the con-
tour shape of the graph created by accumulating distances between all the spots
of footprint pattern) in the proposed clustering method. In the experiments,
using two kinds of insect footprint patterns (with clearly understandable differ-
ences), the clustering results of the proposed method were almost the same as
those of a human expert.
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