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Abstract
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1 Introduction

In recent years, there are many 3D visualization and analysis techniques [Klette et al., 1998] applied to
the �eld of microscopy . These techniques have been successfully applied in light and electron microscopy.
But the advent of confocal microscopy has led to the rapid growth of 3D visualization of microscopic
structures.

We examine the 3D structure of biological images produced by confocal microscopy. For this study, we
use confocal images of cartilage chondrons.

Figure 1: (a) Two live chondrocytes. (b) Pericellular microenvironment.

Chondrons form the fundamental biomechanical and metabolic unit of articular cartilage. They consist
of two parts: the chondrocytes (see Fig. 1(a)), the cells of cartilage, which are surrounded by a specialized
structure called the pericellular microenvironment (see Fig. 1(b)) [Poole, 1997].

A considerable number of confocal studies have now established the molecular anatomy of the chondron
and it is now possible to accurately de�ne both the chondrocyte and the pericellular microenvironment
by confocal microscopy [Poole, 1997].



We do not however have an accurate description of chondron volume which is known to change when
articular cartilage is functionally loaded [Poole, 1997].

We therefore aimed to calculate, using reconstructed confocal images, the values of the chondrocyte, the
pericellular microenvironment and the total chondron volume. The unique new data resulting from this
study will be used to model the hypothesis [Poole, 1997] that the chondron functions biomechanically to
protect the vital role of the chondrocyte in the maintenance of normal cartilage. Failure of the chondron
in its biomedical role will ultimately lead to osteoarthritis and immobility in old age.

Volume investigation requires four steps:

1. data acquisition,

2. segmentation,

3. three-dimensional visualization,

4. analysis of 3D features.

In this report, we discuss the basic principle of confocal microscopy and how the images are obtained.
The problems encountered in segmentation will also be mentioned. Then, we illustrate the use of two
di�erent 3D reconstruction algorithms and how to calculate the volume and surface area of the chondron
using these two algorithms.

2 Data Acquisition

All data images in this project are collected from confocal microscopy. The basic optical principle used
in confocal microscopy is illustrated in Fig. 2.

Figure 2: Optical principle of confocal microscopy.

As seen from the �gure, the lens focuses all the light from the in-focus plane to the detector while the
pinhole cuts away the light that comes from the out-of-focus planes. The whole mechanism is controlled
by the computer and the focused beam is scanned in a raster fashion through a specimen. The signals
received by the detector are used to generate a digital image of the specimen. In this mechanism, laser
light is used instead of conventional light due to its high intensity, high degree of monochromaticity and
extremely long coherent properties.



To get the image of the di�erent structures of the same specimen, di�erent dyes are applied to the di�erent
structures. Then a particular excitation/emission wavelength is used to pick up a particular dye each
time and the signal received is used to generate the digital image of that structure. In this study, the dye
CMFDA was used to image the chondrocyte while type VI collagen stained with Texas Red was used to
image the pericellular microenvironment.

All data collected for this report are 8-bit images with a resolution of 512 x 512. For each scan of a
specimen, a maximum of 70 slices can be obtained. But since the whole mechanism is controlled by
the computer, it is possible to obtain 140 slices of the specimen by scanning it twice with a di�erent
displacement adjustment. In our project, two image sets are obtained for each chondron - chondrocyte
image and capsule image. Chondrocyte image is used to allocate the interior while capsule image is used
to allocate the exterior contour.

To ensure accurate analysis of the chondron volume, we prepare identical data set of spherical polystyrene
beads (see Fig. 3) speci�cally manufactured to a diameter of 15�m � 3% (Molecular Probes USA).
These beads contain alternate layers of red and green 
uorodromes which can be imaged separately,
and provide a convenient, inert, non-biological specimen for comparative purposes. These image sets are
used for veri�cation of calculation method used in di�erent 3D reconstruction algorithm since there is no
information about the surface area and volume of a chondron.

Figure 3: Confocal microscopy image of spherical polystyrene bead.

3 Segmentation

After the images have been collected, the next step is to de�ne or locate the interested image regions. This
is the most important but also di�cult step in volume investigation. As seen in Fig. 1, the boundary of
the chondrocytes and the pericellular microenvironment are very di�cult to de�ne or locate. Sometimes,
preprocessing of the images is necessary in order to simplify the segmentation process.

We applied some local operators to enhance the images during the preprocessing, mean(average), median,
maximum(dilation), minimum(erosion), opening and closing [Klette and Zamperoni, 1996]. These are
basic operators in image processing. Results of applying these operators are illustrated in Fig. 4. The
median operator seem to lead to a better image enhancement than the other local operators. After a
median operator has been applied to the image, we can possibly locate the interested region. Since the
chondron has a likely ellipse shape, an approximate way of describing the shape of chondron is ellipse
�tting [Russ, 1995]. Ellipse �tting has an advantage of calculating the features of the chondron such as
area and perimeter.

Since we are dealing with a 3D object, a local operator on a 2D image of a single slice may not be
appropriated. A possible approach is to combine several images of slices to specify the input for a 3D



Figure 4: Results of four image operators.

�lter to support the object segmentation. This approach will require a huge set of data,for example, one
output image on same location will require 4 to 8 raw image. Another approach is combining �tting
ellipse result on the volumetric data. The main idea is slicing the volumetric data into series of images
according to x-axis, y-axis and z-axis, then apply �tting ellipse algorithm on them. In this case, we
collect three series of ellipses with respect to di�erent axis (Fig. 5), then apply each series of ellipses on a
higher resolution of volumetric space, and then we can use the idea of maximum or minimum operators
to combine these data into a new volume data, which is called cumulative space. A voxel or 3D data
point of cumulative space is classi�ed as inside the object by a minimum operator if and only if this point
is included in either one of three series of �tted ellipses. The data point is included in the cumulative
space by a maximum operator if and only if this point is included in all three series of �tted ellipses.

Figure 5: Ellipse �tting with respect to di�erent axes.

The idea of a cumulative space can co-operate with di�erent segmentation methods, e.g. by using
cumulative space for interpolating curves or surfaces such as spline and b-splines [Foley et al., 1992] on
the original volume data. The �rst reason for choosing spline and b-spline is that the result of �tting
ellipse is not accurate for calculating 3D feature. Second, spline curve will maintain the C1 continuity
(end point) and C2 continuity (�rst derivation). Using spline curves allows a higher resolution and better
accuracy for 3D feature calculations. The reason of using cumulative space to recreate the volumetric
data is that we can improve the original data into a higher resolution and reveal the missing details
during the data collection.

4 Three-Dimensional Visualization

After the images have been preprocessed and/or segmented, a 3D model of these images has to be
reconstructed. There are many di�erent volume visualization algorithms that can be used to generate a
3D model of images sequence. Among these algorithms, Marching Cubes is the most common and widely
used approach in volume reconstruction for images sequences.



4.1 Marching Cubes Algorithm

The �rst Marching Cubes algorithm was invented by W. E. Lorensen and H. E. Cline for isosurface
extraction [Lorensen and Cline, 1987]. In this algorithm, two successive images are used to form a plane
of cubes where the corners of cubes are the pixels of the images. The corners of cubes are called voxels.

The voxels of each cube are then classi�ed according to the user de�ned threshold. The eight voxels of
the cube are numbered 1 through 8 as in Fig. 6(a). If the voxel's value is greater than or equal to the
threshold, the voxel is classi�ed as 'in' and labeled '1'. Otherwise, it is classi�ed as 'out' and labeled '0'.
The eight values of the voxel are then put in eight consecutive bit locations to form an 8-bit code. This
code is treated as binary and its decimal value becomes the index of the Lookup Table. The Lookup
Table then returns a sequence of edges' number according to the triangular surface formed within the
cube. In this algorithm, each cube is considered row by row, plane by plane. As the location of the
considered cube marches through the data set, W. E. Lorensen and H. E. Cline called this a marching
cubes algorithm.

Figure 6: (a) A cube with numbered voxels. (b) A cube with numbered edges. (c) An illustrated example.

The cube in Fig. 6(c) have four voxels classi�ed as 'in'. According to the numbering in Fig. 6(a), a bit
code 00101101 is formed. Its decimal value (i.e. 45) is used as the index of lookup table. If the edges of
the cube are numbered as in Fig. 6(b), the lookup table should return f 11, 10, 8, 8, 10, 0, 10, 1, 0, 5,
4, 9 g. From this, we can know that four triangular surfaces are generated and which edges are used to
form each surface.

To �nd out where the edge is intersected by the isosurface, linear interpolation is applied. If a voxel have
a value greater than the threshold while the other have a value less than the threshold, there should be
a point between these two voxels having a value equal to the threshold. The location of this point is
calculated using simple linear ratio.

Since each voxel can be labeled either '1' or '0', there totally 28 = 256 di�erent ways to label the voxels.
But these 256 cases can be reduced to 14 by re
ection, rotation and complementary symmetry. These
14 cases are shown in Fig. 7.

But these 14 cases are incomplete in the sense that they are generating surfaces which occasionally may
have holes. By adding eight more cases, the continuity of the surface can be guaranteed. (see Fig. 8).

However, since it is now more than one way to de�ne surfaces for a particular cube, it is di�cult to
decide which way should be used. To reduce the ambiguous cases, each cube can be broken up into �ve
tetrahedra and each tetrahedron is checked with a di�erent lookup table to get the intersected edges
[Shirley and Tuckman, 1990]. This approach is called marching tetrahedra algorithm. Another way to
reduce ambiguous cases is also described in [Nielson and Hamann, 1991].

4.2 Dividing Cubes Algorithm

The basic idea of this algorithm is similar to a hierarchical data structure called octree [Samet, 1993].
The voxels of a cube are classi�ed as in the Marching Cubes algorithm. If all the voxels having a value
greater than or equal to the threshold, the cube is said to be inside the object. If any voxel has a value



Figure 7: 14 major cases.

Figure 8: Eight more cases to improve the algorithm.

less than the threshold, the cube is subdivided into smaller cubes, and the smaller cubes are classi�ed
again. This process continues until the cube is subdivided into its minimum size. The minimum size is
determined by the accuracy wanted. The smaller the minimum size used, the higher the accuracy will
be. However, the processing time will increase exponentially when the minimum size used decreases.

This algorithm is easier to implement than the Marching Cubes algorithm since the Marching Cubes
algorithm has 22 major cases to be considered while this algorithm has only one recursion rule to be
handled.

Although this algorithm is easy to implement, there will be a problem in 3D feature analysis which will
be discussed in the next section.



5 Analysis of 3D Features

The 3D features to be analysed are volume and surface area of the object. To make it more e�cient,
these features are analysed during reconstruction process. This makes the way to analyze 3D features
depends on the reconstruction method used.

5.1 Marching Cubes Based Measurements

The Marching Cubes algorithm generates many triangular isosurfaces. The surface area of the object is
just the sum of the area of these triangular isosurfaces. So we only need a formula to calculate the area
of an arbitrary triangle.

Assume the length of the sides of an arbitrary triangle are a, b and c. The surface area of the triangle is
equal to

p
p(p� a)(p� b)(p� c)

where p = 1

2
(a + b + c).

To �nd the length of the sides of a triangle, we can use the vector formula as the vertices of the triangle
are in 3D space.

Let the vertices of one side of the triangle are (x1, y1, z1) and (x2, y2, z2). The length of the side is equal
to

p
(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2.

To calculate the volume of the object, we have to calculate the volume enclosed by the isosurface within
each cube. The sum of these volumes gives the volume of the object. Since a tetrahedron is the basic
structure of all regular volumetric shapes, a formula to calculate its volume is required.

Assume a tetrahedron formed by vertices (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and the origin. The volume
of the tetrahedron is equal to

1

6

��
�
�
�
�

x1 y1 z1

x2 y2 z2

x3 y3 z3

��
�
�
�
�
.

This formula is used to calculate the volume of a tetrahedron formed by three vertices and the origin. If
the tetrahedron is formed by four vertices with no origin, we have to transform the tetrahedron before
applying this formula.

To calculate the volume of the object, we have to subdivide the volume enclosed by the isosurface into
tetrahedra. Each tetrahedron is then transformed so that one of its vertices is at the origin before the
formula is applied. The total volume of these tetrahedra gives the volume of the object.

This formula gives a signed volume of the region spanned by these three vertices and the origin. So we
have to take the absolute value of the result of the formula before adding to the total volume.

5.2 Dividing Cubes Based Measurements

In Marching Cubes algorithm, surface area calculation is much easier than volume calculation. But in
Dividing Cubes algorithm, the volume calculation is much easier.

To calculate the volume of the object, we just simply calculate all the volumes of the cubes with all voxels
having the value greater than or equal to the threshold. The smaller the minimum size of the cube can
be subdivided, the higher the accuracy of the object's volume will be.



To calculate the surface area of the object, we have to calculate all the surface area of the faces of cubes
which are part of the object's surface. So even a cube is classi�ed as an 'inside' cube, it may have no
contribution to the surface area of the object. In other words, we have to consider if the cube is on the
object's surface and which faces of the cube contribute to the object's surface.

Figure 9: Illustrating the problem in Dividing Cubes algorithm.

A problem in this algorithm is illustrated in Fig. 9. In this �gure, the length of the zigzag line is used
to estimate the length of the straight line. However, the error is just the same whatever the size of the
zigzag line is. Similarly in 3D cases, whatever the minimum size of the cubes is, the error in surface area
calculation will be the same. However, a change in orientation of the object may cause a di�erence in
the accuracy of surface area calculation. It is because this change may cause an alignment between the
faces of the cubes and the object's surface. However, this depends on what the shape of the object is.
But there is no such problem in volume calculation.

5.3 Measurement of spherical polystyrene beads using Marching Cubes Al-

gorithm

For verifying the program, two sets of confocal microscopy images of spherical polystyrene beads are
collected. Each set of data have 70 images with a resolution of 512 pixels x 512 pixels. The actual size
of the data set is 99.645�m x 99.645�m x 18.354�m. The results are shown in the following tables.

The spherical polystyrene bead used for the images has a diameter of 15�m. So its volume is 1767.15�m3

and its surface area is 706.86�m2.

In the program, we can use either the exact intersection point or the middle point of the edge for
calculating 3D features. The di�erence in 3D features using di�erent points is shown in the tables.
Besides this, as mentioned before, in some cases of lookup table, there are more than one way to de�ne
surfaces within a cube. Since one way of de�ning surfaces is always enclosing a larger volume than the
other, the program can be set to use either larger volume con�guration or smaller volume con�guraton.
The di�erence is also shown in the tables.

One data set is used to get the results in Table 1, 2 and 3 while the other data set is used in Table 4 and
5. The data set used in Table 1, 2 and 3 have a higher voltage of lighting during acquisition than the
other. So the pixels of the images in these data set have higher density values. Comparing these tables,
it is found that the threshold value is very critical. Di�erent threshold is needed for di�erent data set.
Even for the same data set, di�erent threshold can result in di�erent accuracy of the volume and surface
area calculated. So segemntation plays an important role in 3D analysis.

For each table, it is found that there is only a slightly di�erence between using larger volume con�guration
and using smaller volume con�guration. Also, Using the middle point of the edge always results in larger
volume than using the exact intersection point.

When comparing Table 2 and Table 3, it is found that the volumes have only a slight change while the
surface area have a relatively larger increased. This is due to the fact that the median operator have a
'smoothing' e�ect on the boundary of the regions in the images.



using exact intersection point using middle point

using larger volume in �m3(error in %) 1780.83(0.77) 1796.21(1.64)
vol. con�g. surface area in �m2(error in %) 755.68(6.90) 822.64(16.38)

using smaller volume in �m3(error in %) 1780.87(0.78) 1796.29(1.64)
vol. con�g. surface area in �m2(error in %) 755.61(6.90) 822.55(16.37)

Table 1: Threshold = 240

using exact intersection point using middle point

using larger volume in �m3(error in %) 1747.71(-1.10) 1762.38(-0.27)
vol. con�g. surface area in �m2(error in %) 752.31(6.43) 817.91(15.71)

using smaller volume in �m3(error in %) 1745.76(-1.21) 1762.49(-0.26)
vol. con�g. surface area in �m2(error in %) 752.22(6.42) 817.91(15.71)

Table 2: Threshold = 245

using exact intersection point using middle point

using larger volume in �m3(error in %) 1742.96(-1.37) 1760.06(-0.40)
vol. con�g. surface area in �m2(error in %) 907.55(28.39) 1022.37(44.64)

using smaller volume in �m3(error in %) 1748.33(-1.06) 1767.34(0.01)
vol. con�g. surface area in �m2(error in %) 893.69(26.43) 1002.01(41.76)

Table 3: Threshold = 245, with no median operator

using exact intersection point using middle point

using larger volume in �m3(error in %) 1961.29(10.99) 1987.15(12.45)
vol. con�g. surface area in �m2(error in %) 1034.25(46.32) 1073.45(51.86)

using smaller volume in �m3(error in %) 1963.14(11.09) 1989.28(12.57)
vol. con�g. surface area in �m2(error in %) 1033.30(46.18) 1073.89(51.92)

Table 4: Threshold = 150

using exact intersection point using middle point

using larger volume in �m3(error in %) 1930.91(9.27) 1977.50(11.90)
vol. con�g. surface area in �m2(error in %) 1112.10(57.33) 1104.07(56.19)

using smaller volume in �m3(error in %) 1933.26(9.40) 1980.01(12.05)
vol. con�g. surface area in �m2(error in %) 1117.46(58.09) 1102.59(55.98)

Table 5: Threshold = 157

When comparing all tables, it is found that the errors in surface area are much larger than that in
volume. So it is quite obvious that Marching Cubes algorithm is good for volume calculation but not for
the surface area calculation. In the other words, an algorithm for calculating surface area is needed.

6 Conclusion

Segmentation of the confocal images of chondron is the most di�cult steps in 3D feature analysis. It
is di�cult to de�ne the boundary of chondrocyte and its pericellular microenvironment which in turn
causes the di�culty in reconstructing an accurate chondron's model. This also a�ects the accuracy of
the measurement of 3D features of the object.

The two reconstruction algorithms used in 3D visualization have their own advantages and disadvantages.
Marching Cubes algorithm is di�cult to implement but easy to calculate the surface area of the object.
Ambiguous cases in this algorithm cause the problem in both reconstruction and calculation. It is found



that this algorithm is good for volume but not surface area calculation. Dividing Cubes algorithm is
much easier to implement and to calculate the volume of the object. However, the surface area calculated
by this algorithm is just an approximation and the accuracy may vary with the orientation of the object.
To calculate the surface area, the algorithm for minimum Jordon Surfaces [Klette et al., 1998] can be
used.

A more complete 3D features analysis(including segmentation, 3D reconstruction and volume and surface
area calculation using both algorithms) will be given in the forthcoming report.
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