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Abstract

This paper describes how to propagate approximately additive random perturbations
through any kind of vision algorithm step in which the appropriate random
perturbation model for the estimated quantity produced by the vision step is also an
additive random perturbation. We assume that the vision algorithm step can be mo-
deled as a calculation (linear or non-linear) that produces an estimate that minimizes
an implicit scaler function of the input quantity and the calculated estimate. The only
assumption is that the scaler function be non-negative, have finite first and second
partial derivatives, that its value is zero for ideal data, and that the random per-
turbations are small enough so that the relationship between the scaler function evalu-
ated at the ideal but unknown input and output quantities and evaluated at the ob-
served input quantity and perturbed output quantity can be approximated sufficiently
well by a first order Taylor series expansion.
The paper finally discusses the issues of verifying that the derived statistical behavior
agrees with the experimentally observed statistical behavior.
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vision algorithm step can be modeled as a calculation (linear or non-linear) that produces an estimate

that minimizes an implicit scaler function of the input quantity and the calculated estimate. The only

assumption is that the scaler function be non-negative, have �nite �rst and second partial derivatives, that
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1 Introduction

Each real computer vision problem begins with one or more noisy images and has many algorithmic

steps. Development of the best algorithm requires understanding how the uncertainty due to the random

perturbation a�ecting the input image(s) propagates through the di�erent algorithmic steps and results

in a perturbation on whatever quantities are �nally computed. Perhaps a more accurate statement would

be that the quantities �nally computed must really be considered to be estimated quantities.

Once we have the perspective that what we compute are estimates, then it becomes clear that even

though the di�erent ways of estimating the same quantity typically yield the same result if the input

quantities are not a�ected by a random perturbation, it is certainly not the case that the di�erent ways of

estimating the same quantities yield an estimate with the same distribution when the input is perturbed

by a random perturbation. It is clearly the case that the distribution of the estimate depends on the

distribution of the input random perturbation and the method or type of estimate.

With this in mind, it is then important to understand how to propagate a random perturbation through

any algorithm step in a vision problem. The di�culty is that the steps are not necessarily linear computa-

tions, the random perturbations are not necessarily additive, and the appropriate kinds of perturbations

change from algorithm step to algorithm step. Nevertheless, there are many computer vision and image

analysis algorithm steps in which the appropriate kind of random perturbation is additive or approxi-

mately additive. And for these kinds of steps one basic measure of the size of the random perturbation

is given by the covariance matrix of the estimate.

In this paper, we describe how to propagate the covariance matrix of an input random perturbation

through any kind of a calculation (linear or non-linear) that extremizes an implicit scaler function, with

or without constraints, of the perturbed input quantity and the calculated output estimate. The only

assumption is that the scaler function to be extremized have �nite second partial derivatives and that the

random perturbations are small enough so that the relationship between the scaler function evaluated at

the ideal but unknown input and output quantities and the observed input quantity and perturbed output

quantity can be approximated su�ciently well by a �rst order Taylor series expansion. The propagation



relationships do not depend on what algorithm is used to extremize the given scalar function.

As a related case, the given propagation relationships also show how to propagate the covariance of the

coe�cients of a function for which we wish to �nd a zero to the covariance of any zero we can �nd.

The analysis techniques of propagation of errors is well known in the photogrammetry literature. The

Manual of Photogrammetry (Slama, 1980) has a section showing how to determine the variance of Y

where Y = F (X) from the variance of X. The generalization of this to �nd the covariance matrix for Y

given the covariance matrix for X is rather straightforward. Just expand F around the mean of X in a

�rst order Taylor expansion and consider that Y is a linear function T of X. Once the coe�cients of the

linear combination is known, so that the randomness of Y can be approximated by Y ��Y = T (X��X ),
then the covariance matrix �Y of Y is easily seen to be given in terms of T and the covariance matrix �X

of X by �Y = T�XT
0 (Mikhail, 1976; Koch, 1987). This only works well for cases where the function

F can be given explicitly. The problem we discuss here is one in which the function F is not given

explicitly, but Y is related to X in a speci�c way. The techniques we employ are well-known in statistical

and engineering communities. There is nothing sophisticated in the derivation. However, this technique

is perhaps not so well known in the computer vision community. There are many recent vision-related

papers that could be cited to illustrate this. See for example Weng, Cohen and Herniou (1992), Wu and

Wang (1993), or Williams and Shah (1993).

The paper concludes with a discussion of how to validate that the software which we use to accomplish

the calculation we desire actually works. We argue that this validation can be done by comparing the

predicted statistical behavior with the experimentally observed statistical behavior in a set of controlled

experiments.

2 The Abstract Model

The abstract model has three kinds of objects. The �rst kind of object relates to the measurable quantities

or data. There is the unobserved N � 1 vector X of the ideal unperturbed measurable quantities. We

assume that each component of X is some real number. Added to this unobserved ideal unperturbed

vector is an N � 1 unobserved random vector 4X of noise. The observed quantity is the randomly

perturbed vector X +4X.

The second kind of object relates to the unknown parameters. There is the unobserved K � 1 vector �.

We assume that each component of � is some real number. Added to this ideal unperturbed vector is a

K �1 unobserved vector 4� that is the random perturbation on � induced by the random perturbation

4X on X. The calculated quantity is the randomly perturbed parameter vector �̂ = � +4�.

The meaning of the data vector X and the parameter vector � is that there is physical process which

produces X on the basis of �. And the law governing this production process is known. The third kind

of object directly relates to this law. It is a a continuous non-negative scaler valued function F which

relates the unobserved vectors X and �: F (X;�) = 0. And since F is non-negative, this is the smallest

value that F can take. Therefore, for a given X, the corresponding � must minimize F (X;�).

Of course neither X nor � are observed. Rather only X̂ , the randomly perturbed value of X is observed.

From it we desire to infer the value for �. But because X̂ = X +4X is random, the inferred value

�̂ = � + 4� that we compute for � will be random. And it will not be the case that F (X̂; �̂) = 0.

However, the estimation problem that we set up to infer a value �̂ for � will minimizeF (X̂; �̂). Therefore,

in this situation it is natural to require that the function F to have �nite �rst and second partial derivatives

with respect to each component of � and X, including all second mixed partial derivatives taken with

respect to a component of � and with respect to a component of X.

The basic inference problem is: given X̂ = X +4X, determine a �̂ = � +4� to minimize F (X̂; �̂)

given the fact that � minimizes F (X;�). And for this estimate �̂ we want to compute its covariance

matrix.

If �̂ is computed by an explicit function h, so that �̂ = h(X̂), the function F is just given by F (X;�) =



(� � h(X))0(�� h(x)). However, our development will handle as well the determining of the covariance

of a �̂ which is known to minimize F (X̂; �̂), without requiring any knowledge of how the minimizing �̂

was computed.

It is not unusual for some computer vision problems to be constrained problems. In this case the parameter

vector � satis�es some constraints which we represent as s(�) = 0. The unobserved ideal �, satisfying

the constraints s(�) = 0, and the unobserved ideal X minimize the scalar function F . In the constrained

problem, X̂ = X + 4X is observed and the problem is to determine that �̂ = � +4� satifying the

constraints s(�̂) = 0 which minimizes F (X̂; �̂).

We will see that the covariance matrix for �̂ will be a function of the unobserved unperturbed X and

�, the covariance matrix for the perturbation 4X, and the partial derivatives of F evaluated at X and

�. And we will be able to develop estimates for this covariance matrix in terms of the observed X̂, the

inferred �̂, the covariance matrix for the perturbation 4X, and the partial derivatives of F evaluated at

X̂ and �̂.

Finally, we say what this abstract model is not. It is not a model for the general problem in which the

covariance matrix for X̂ is known and the inferred value for �̂ minimizes a non-negative F (X̂; �̂). It is

not a model for this problem because this problem does not have the assumption that there is an ideal

X and � and the ideal � minimizes F (X;�) and this minimum value of F is 0.

3 Example Computer Vision Problems

There is a rich variety of computer vision problems which �t the form of the abstract model. In this section

we outline a few of them, speci�cally: curve �tting, coordinated curve �tting, local feature extraction,

exterior orientation, and relative orientation. Other kinds of calculations in computer vision such as

calculation of curvature, invariants, vanishing points, or points at which two or more curves intersect, or

problems such as motion recovery are all examples of problems which can be put in the abstract form as

given above.

3.1 Curve Fitting

In the general curve �tting scenario, there is the unknown free parameter vector, �, of the curve and the

set of unknown ideal points on the curve fx1; : : : ; xNg. Each of the ideal points is then perturbed. If4xn
is the random noise perturbation of the nth point, then the observed point nth point is x̂n = xn +4xn.
The form of the curve is given by a known function f which relates a point on the curve to the parameters

of the curve. That is, for each ideal point xn we have f(xn;�) = 0. We also assume that the parameters

of the curve satisfy its own set of constraint equations: h(�) = 0. The curve �tting problem is then to

�nd an estimate �̂ to minimize �N
n=1f

2(x̂n; �̂) subject to h(�̂) = 0. To put this problem in the form of

the abstract problem we let

X = (x1; : : : ; xN )

X̂ = (x1 +4x1; : : : ; xn +4xN )

F (X;�;�) = �N
n=1f

2(xn;  ) + h(�)0�

Then the curve �tting problem is to �nd �̂ and �̂ to minimize F (X̂; �̂; �̂) where F (X;�;�) = 0.

3.2 Coordinated Curve Fitting

In the coordinated curve �tting problem, multiple curves have to be �t on independent data, but the

�tted curves have to satisfy some joint constraint. We illustrate the discussion in this section with a

coordinated �tting of two curves and a constraint that the two curves must have some common point at

which they are tangent.



Let (x1; : : : ; xI) be the ideal points which are associated with the �rst curve whose parameters are  1
and whose constraint is h1( 1) = 0. Each point xi satis�es f1(xi;  1) = 0; i = 1; : : : ; I.

Likewise, let (y1; : : : ; yJ ) be the ideal points which are associated with the second curve whose parameters

are  2 and whose constraint is h2( 2) = 0. Each point yj satis�es f2(yj ;  2) = 0; j = 1; : : : ; J .

The coordinated constraint is that for some unknown z,

f1(z;  1) = 0

f2(z;  2) = 0

@f1

@z
(z;  1) =

@f2

@z
(z;  2)

The observed points x̂i and ŷj are related to the corresponding ideal points by

x̂i = xi +4xi

ŷj = yj +4yj

To put this problem in the framework of the abstract model, we take

X̂ = (x̂1; : : : ; x̂I; ŷ1; : : : ; ŷJ )

�̂ = ( ̂1;  ̂2; ẑ)

�̂ = (�̂1; �̂2; �̂3; �̂4; �̂5)

and de�ne

F (X̂; �̂; �̂) = �I
i=1f

2
1 (x̂i;  ̂1) + �J

j=1f
2
2 (yj ;  2) + �̂1h1( ̂1) + �̂2h2( ̂2)

+ �̂3f1(z;  ̂1) + �̂4f2(z;  ̂2) + �̂5[
@f1

@z
(z;  1)�

@f2

@z
(z;  2)]

The coordinated curve �tting problem is then to determine a �̂ and �̂ to minimize F (X̂; �̂; �̂), where

the perturbed �̂ is considered related to the ideal � by �̂ = � +4�.

3.3 Local Feature Extraction

There are a variety of local features that can be extracted from an image. Examples include edges,

corners, ridges, valleys, ats, saddles, slopes, hillsides, saddle hillsides, etc. Each local feature involves

the calculation of some quantities assuming that the neighborhood has the feature and then a detection

is performed based on the calculated quantities. For example, in the simple gradient edge feature, the

quantity calculated is the gradient magnitude and the edge feature is detected if the calculated gradient

magnitude is high enough. Here we concentrate on the calculation of the quantities associated with the

feature and not the detection of the feature itself.

To put this problem in the setting of the abstract problem, we let � be the vector of unknown free

parameters of the feature and X be the unobserved neighborhood array of noiseless brightness values.

We let X̂ be the perturbed observed neighborhood array of brightness values, X̂ = X+4X, and �̂ be the

calculation of the required quantities from the perturbed brightness values X̂ . The form the of feature is

given by the known function f which satis�es that f(X;�) = 0. The feature extraction problem is then

to �nd the estimate �̂ to minimize F (X̂;�) = f2(X̂; �̂).

3.4 Exterior Orientation

In the exterior orientation problem, there is a known 3D object model having points (xn; yn; zn); n =

1; : : : ; N . The unobserved noiseless perspective projection of the point (xn; yn; zn) is given by (un; vn).



The relationship between a 3D model point and its corresponding perspective projection is given by a

rotation and translation of the object model point, to put it in the reference frame of the camera, followed

by a perspective projection. So if  represents the triple of tilt angle, pan angle, and swing angle of the

rotation, t represents the x-y-z-translation vector, and k represents the camera constant (the focal length

of the camera lens), we can write:

(un; vn)
0 =

k

rn
(pn; qn)

0 where

(pn; qn; rn)
0 = R( )(xn; yn; zn)

0 + t

and where R( ) is the 3� 3 rotation matrix corresponding to the rotation angle vector  .

The function to be minimized can then be written as:

fn(un; vn;  ; t) = f(un; vn; xn; yn; zn;  ; t) where

f(un; vn; xn; yn; zn;  ; t) = [un � k
(1; 0; 0)(R( )(xn; yn; zn)

0 + t)

(0; 0; 1)(R( )(xn; yn; zn)0 + t)
]2

+ [vn � k
(0; 1; 0)(R( )(xn; yn; zn)

0 + t)

(0; 0; 1)(R( )(xn; yn; zn)0 + t)
]2

To put this problem in the form of the abstract description we take

X = (u1; v1; : : : ; un; vn)

X̂ = (û1; v̂1; : : : ûn; v̂n)

� = ( ; t)

�̂ = ( ̂; t̂)

and de�ne

F (X̂; �̂) = �N
n=1f

2
n(ûn; v̂n; �̂)

The exterior orientation problem is then to �nd a �̂ to minimize F (X̂; �̂), given that F (X;�) = 0. And

because F is non-negative it must be that � minimizes F (X;�).

3.5 Relative Orientation

The relative orientation problem can be put into the form of the abstract problem in a similar way to

the exterior orientation problem. We let the perspective projection of the nth point on the left image be

(unL; vnL) and the perspective projection of the nth point on the right image be (unR; vnR). Then we

can write that

(unL; vnL)
0 =

k

zn
(xn; yn)

0 and that

(unR; vnR)
0 =

k

rn
(pn; qn)

where (pn; qn; rn) is the rotated and translated model point as given in the description of the exterior

orientation problem.

The observed perspective projection of the nth model point is noisy and represented as (ûn; v̂n) = (un +

4un; vn +4vn). Then taking

X = (u1L; v1L; u1R; v1R; : : : ; uNL; vNL; uNR; vNR)

X̂ = (û1L; v̂1L; û1R; v̂1R; : : : ; ûNL; v̂NL; ûNR; v̂NR)

� = (x1; y1; z1; : : : ; xN ; yN ; zN ;  ; t)

�̂ = (x̂1; ŷ1; ẑ1; : : : ; x̂N ŷN ; ẑN ;  ̂; t̂)



the relative orientation problem is to �nd �̂ to minimize

F (X̂; �̂) = �N
n=1f(unR; vnR; xn; yn; zn;  ; t) + f(unl; vnL; xn; yn; zn; 0; 0)

4 Zero Finding

Zero �nding such as �nding the zero of a polynomial in one or more variables occurs in a number of vision

problems. Two examples are the three point perspective resection problem and some of the techniques for

motion recovery. The zero �nding problem is precisely in the form required for computing the covariance

matrix �
4� as described in the solution section. Let X be the ideal input vector and X̂ be the observed

perturbed input vector. Let � be a K�1 vector zeroing the K�1 function g(X;�); that is, g(X;�) = 0.

Finally, let �̂ be the computed vector zeroing g(X̂; �̂); that is, g(X̂; �̂) = 0.

5 Solution: Unconstrained Case

For the purpose of covariance determination of the computed �̂ = � +4�, the technique used to solve

the extremization problem is not important, provided that there are no singularities or near singularities

in the numerical computation proceedure itself.

To understand how the random perturbation 4X acting on the unobserved vector X to produce the

observed vector X̂ = X + 4X propagates to the random perturbation 4� on the true but unknown

parameter vector � to produce the computed parameter vector �̂ = � + 4�, we can take partial

derivatives of F with respect to each of the K components of � forming the gradient vector g of f . The

gradient g is a K � 1 vector function.

g(X;�) =
@F

@�
(X;�)

The solution �̂ = � +4� extremizing F (X +4X;� +4�), however it is calculated, must be a zero

of g(X +4X;� +4�). Now taking a Taylor series expansion of g around (X;�) we obtain to a �rst

order approximation:

gK�1(X +4X;�+4�) = gK�1(X;�) +
@g

@X

0 K�N

(X;�)4XN�1 +
@g

@�

0 K�K

(X;�)4�K�1

But since �+4� extremizes F (X +4X;�+4�), g(X +4X;�+4�) = 0. Also, since � extremizes

F (X;�), g(X;�) = 0. Thus to a �rst order approximation,

0 =
@g

@X

0

(X;�)4X +
@g

@�

0

(X;�)4�

Since the relative extremum of F is a relative minimum, the K �K matrix

@g

@�
(X;�) =

@f2

@2�
(X;�)

must be positive de�nite for all (X;�). This implies that @g
@�

(X;�) is non-singular. Hence ( @g
@�

)�1 exists

and since it is symmetric we can write:

4� = �f
@g

@�
(X;�)g�1

@g

@X

0

(X;�)4X

This relation states how the random perturbation 4X on X propagates to the random perturbation 4�

on �. If the expected value of 4X, E[4X], is zero, then from this relation we see the E[4�] will also

be zero, to a �rst order approximation.

This relation also permits us to calculate the covariance of the random perturbation 4�.



�
4� = E[4�4�0]

= E[�(
@g

@�
)�1

@g

@X

0

4X(�(
@g

@�
)�1

@g

@X

0

4X)0]

= (
@g

@�
)�1

@g

@X

0

E[4X4X0]
@g

@X
(
@g

@�
)0
�1

= (
@g

@�
)�1

@g

@X

0

�
4X

@g

@X
(
@g

@�
)
�1

Thus to the extent that the �rst order approximation is good, (i.e. E[4�] = 0), then

��̂ = �
4�

The way in which we have derived the covariance matrix for 4� based on the covariance matrix for 4X
requires that the matrices

@g

@�
(X;�) and

@g

@X
(X;�)

be known. But X and � are not observed. X +4X is observed and by some means � +4� is then

calculated. So if we want to determine an estimate �̂�̂ for the covariance matrix ��̂, we can proceed by

expanding g(X;�) around g(X +4X;�+4�).

g(X;�) = g(X +4X;�+4�)�
@g

@X

0

(X +4X;�+4�)4X �
@g

@�

0

(X +4X;�+4�)4�

Here we �nd in a similar manner,

4� = �(
@g

@�
(X +4X;� +4�))�1

@g

@X
(X +4X;�+4�)4X

This motivates the estimator �̂
4� for �

4� de�ned by

�̂
4� = (

@g

@�
(X̂; �̂)

�1 @g

@X

0

(X̂; �̂)�
4X

@g

@X
(X̂; �̂)(

@g

@�
(X̂; �̂)

�1

So to the extent that the �rst order approximation is good, �̂�̂ = �̂
4�.

The relation giving the estimate �̂�̂ in terms of the computable

@g

@�
(X̂; �̂) and

@g

@X
(X̂; �̂)

means that an estimated covariance matrix for the computed �̂ = �+4� can also be calculated at the

same time that the estimate �̂ of � is calculated.

5.1 Bayesian Mean Estimation

Consider the case when we observe a random vector X̂ which is known to come from a Normal distribution

with unknown mean � and known covariance matrix �X̂ . The prior distribution on � has mean 0 and

known covariance matrix ��. From the observation X̂ we are to �nd �̂, the most probable value for the

mean �. In this case the function F to be minimized by choice of �̂ is:

F (X̂; �̂) = (X̂ � �̂)0��1
X̂
(X̂ � �̂) + �̂0��1� �̂



In this case we can compute

g(X̂ ; �̂) =
@F

@�

= �2�X̂(X̂ � �)0 + 2���

We can �nd the optimal value for �̂ by solving for that �̂ that makes g(X̂; �̂) = 0. We �nd that

�̂ = (�X̂ + ��)
�1�X̂X̂

From this it is easy to explicitly determine ��̂.

��̂ = (�X̂ + ��)
�1�X̂ (�X̂ + ��)

�1

Proceeding to compute the covariance matrix of X̂ implicitly, we have

@g

@�
= 2�X̂ + 2��

and
@g

@X
= �2�X̂

Now substituting into the equation for the implicit computation of ��̂ there results

��̂ = (2�X̂ + 2��)
�1(�2�X̂ )�X̂ (�2�X̂)(2�X̂ + 2��)

�1

= (�X̂ +��)
�1�X̂(�X̂ + ��)

�1

Notice that in this case the covariance matrix for the estimate �̂ does not depend on the ideal, non-

observed value for X. But this is not always the case as our next example shows.

5.2 Regression

As a special and classic case of the unconstrained optimization, we consider the regression problem of

�nding � to minimize F (X;�) = (X � J�)0��1X (X � J�). For this F ,

g(X;�) =
@F

@�
= �2J 0��1X J�

Hence,
@g

@�
= 2J 0��1X J

and
@g

@X
= �2��1X J

Then,

�� = (2J 0��1X J)�1(�2��1X J)�X (�2�
�1
X J)0(2J 0��1X J)�1

= (J 0��1X J)�1



5.3 Line Fitting

Another special case of the unconstrained optimization problem is the general line-�tting problem, which

we illustrate for two-dimensional data. Assume that the unobserved points unperturbed points (xn; yn),

n = 1; : : : ; N , lie on a line xn cos � + yn sin � � � = 0. In the line-�tting problem, we observe (x̂n; ŷn),

noisy instances of (xn; yn). (x̂n; ŷn) are related to (xn; yn) by the noise model:

�
x̂n
ŷn

�
=

�
xn
yn

�
+ �n

�
cos �

sin �

�

where �n are independent and identically distributed as N (0; �2).

To estimate the best �tting line parameters (�̂; �̂) using the least squares method, we use the criterion

function which is the sum of the squared distances between the observed points and the �tted line:

F (X;�) =

NX
n=1

(xn cos � + yn sin � � �)
2

where X = (x1; y1; : : : ; xN ; yN ) and � = (�; �).

Now,

g2�1(X;�) =
@F

@�
=

0
@ @F

@�

@F
@�

1
A

Letting

�x =
1

N

NX
n=1

xn

�y =
1

N

NX
n=1

yn

S2x =

NX
n=1

(xn � �x)
2

S2y =

NX
n=1

(yn � �y)
2

Sxy =

NX
n=1

(xn � �x)(yn � �y);

we can compute

@F
@�

= (S2y � S2x +N (�2y � �2x)) sin 2� + 2(Sxy + N�x�y) cos 2� + 2N�(�x sin � � �ycos�)

@F
@�

= �2N (�x cos � + �y sin � � �)

Then,
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0
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1
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0
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@2F
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@�@�
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@�@�

@2F
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where

@2F
@�2

= 2[S2y � S2x + N (�2y � �2x)] cos 2� � 4(Sxy + N�x�y) sin 2� + 2N�(�x cos � + �y sin �)

@2F
@�2

= 2N

@2F
@�@�

= @2F
@�@�

= 2N (�x sin � � �y cos �)

And,
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@2F
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(1)

where

@2F

@�@xn
= 2[�xn sin 2� + yn cos 2� + � sin �]

@2F

@�@yn
= 2[xn cos 2� + yn sin 2� � � cos �]

@2F

@�@xn
= �2 cos �

@2F

@�@yn
= �2 sin �

Since the parametric equation of the line is given by�
xn
yn

�
= �

�
cos �

sin �

�
+ �n

�
� sin �

cos �

�

substituting the above expressions for xn and yn into the partial derivatives, we obtain

@2F

@�@xn
= 2�n cos �

@2F

@�@yn
= 2�n sin �

@2F

@�@xn
= �2 cos �

@2F

@�@yn
= �2 sin �

For the given noise model, the covariance matrix �X is given by:



�X = �2

0
BBBBBBBBBBBBBBBBBBBBB@

cos2 � sin � cos � : : : 0 0 0

sin � cos � sin2 � 0 : : : 0 0

0 0 cos2 � sin � cos � : : : 0

0 0 sin � cos � sin2 � : : : 0

...

0 0 : : : 0 cos2 � sin � cos �

0 0 0 : : : sin � cos � sin2 �

1
CCCCCCCCCCCCCCCCCCCCCA

Now we can easily do the required multiplications.
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@g

@X
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2
n �
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n=1 �n

�
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!

De�ne

�� =
1

N

NX
n=1

�n

S2� =

NX
n=1

(�n � ��)
2

Then we have that

�x = � cos � � �� sin �

�y = � sin � + �� cos �

S2x = sin2 �S2�

S2y = cos2 �S2�

Sxy = � sin � cos �S2�

Thus,

�2y �mu2x = (�2� � �2) cos 2� + 2��� sin 2�

�x�y =
�2 � �2�

2
sin 2� + ��� cos 2�

�x cos � + �y sin � = �

Then, after substituting these expressions and simplifying, 
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Using these expressions, the covariance matrix of �, ��, can be computed as:

�2�2
� =

0
@ ��� ���

��� ���

1
A

=
@g

@�

�1

(X;�)
@g

@X

0

(X;�)�X

@g

@X
(X;�)
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@�

�1

(X;�)

We will �nd that

�� =

 1
S2
�

��
S2
�

��
S2
�

1
N
+

�2
�

S2
�

!

This result has a simple geometric interpretation. In the coordinate system of the line where 0 is the

point on the line closest to the origin, �� is the mean position of the points and S2� is the scatter of the

points. �� acts like a moment arm. If the mean position of the points on the line is a distance of j��j
from the origin on the line, then the variance of the estimated � increases by �2��

2=S2�. This says that

the variance of the estimate � is not invariant to the translation of the coordinate system, a fact that is

typically overlooked.

An immediate application of having the covariance of the estimated parameters of �tted lines is for

grouping. One of the grouping questions is whether or not two �tted line segments should be grouped

together because they are part of the same line. Depending on the grouping application, it may make

a di�erence how far apart the line segments are. However the issue of whether the �tted line segments

could have arisen from the same underlying line can in either case be answered using the covariance of

the �tted parameters.

Let �̂1 be the (�; �) estimated line parameters from the �rst line segment and let �̂2 be the estimated

line parameters from the second line segment. Let ��̂1

be the covariance matrix associated with �̂1 and

let ��̂2

be the covariance matrix associated with �̂2. The hypothesis to be tested is that �1 = �2. A

test statistic for this hypothesis is

�2 = (�̂1 � �̂2)
0(��̂1

+��̂2

)�1(�̂1 � �̂2)

Under the null hypothesis, �2 has a Chi-square distribution with 1 degree of freedom. And we can reject

the null hypothesis that �1 = �2 at the � signi�cance level if �2 < T� where the probability that a �2

variate with 1 degree of freedom is less than � is T�.

6 Solution: Constrained Case

The constrained problem is given X̂ , determine that �̂ satifying the constraints s(�̂) = 0 which minimizes

the function F (X̂; �̂). Using the Lagrange multiplier method, the function to be minimized is F (X̂; �̂)+

s(�̂)0�̂. As before, we de�ne g(X;�) = @
@�
F (X;�). We must have at the minimizing (X̂; �̂),

@

@�
(F (X̂; �̂) + s(�̂)0�̂) = 0

And in the case of no noise with the squared criterion function as we have been considering, F (X;�) = 0.

And this is the smallest F can be. Hence it must be that g(X;�) = @F
@�

(X;�) = 0. This implies that
@s
@�

(�)� = 0, which will only happen when �=0 since we expect @s
@�

, a K � L matrix where K > L, to

be of full rank.



De�ne

S(X;�;�) =

�
g(X;�) + @s

@�
�

s(�)

�
Taking a Taylor series expansion of S,

S(X;�;�) = S(X +4X;� +4�;�+4�)�
@S

@X

0

4X �
@S

@�

0

4��
@S

@�

0

4�

Because � sati�es the constraints s(�) = 0 and the pair (X;�) minimizes F (x;�), it follows that

S(X;�;�) = 0. Furthermore, at the computed �̂ = �+4� and �̂ = �+4�, S(X +4X;�+4�;�+

4�) = 0. Hence,

�
@S

@X

0

4X =
@S

@�

0

4� +
@S

@�

0

4�

Writing this equation out in terms of g and s, and using the fact that � = 0, there results�
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@�

@s
@�
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@�
0
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�
�@g0
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4X

From this it follows that

�
4�;4� = A�1B�XB

0A

where
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@s
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@s
@�

0

0

!

and

B = �

�
@g0

@X

0

�

and all functions are evaluated at � and X. For the estimated value �̂
4�4� of �

4�4�, we evaluate all

functions at �̂ and �̂.

As a special but classic case of this consider the constrained regression problem to �nd � minimizing

F (X;�) = (X � J�)0(X � J�)

subject to H0� = 0. In this case,

A =

�
2J 0J H

H0 0

�

and

B = �

�
2J 0

0

�

Then

A�1 =

�
(2J 0J)�1[I �H(H0(2J 0J)�1H)�1H0(2JJ 0)�1] (2J 0J)�1H(H0(2J 0J)�1H)�1

(H0(2J 0J)�1H)�1H0(2J 0J)�1 �(H0(2J 0J)�1H)�1

�

and

A�1B = �

�
(2J 0J)�1[I �H(H0(2J 0J)�1H)�1H0(2JJ 0)�1]2J 0

(H0(2J 0J)�1H)�1H0(2J 0J)�12J 0

�

From this it directly follows that if �X = �2I, then

�� = �2(J 0J)�1[I �H(H0(JJ 0)�1H)�1H0(J 0J)�1]



7 Validation

There are two levels of validation. One level of validation is for the software. This can be tested by a

large set of Monte-Carlo experiments o�-line where we know what the correct answers are.

Another level of validation is on-line reliability. Here all that we have is the computed estimate and

estimated covariance matrix for the estimate.

7.1 Software and Algorithm Validation

Software for performing the optimization required to compute the estimate �̂ is often complicated and it

is easy for there to be errors that are not immediately observable (like optimization software that produces

correct answers on a few known examples but fails in a signi�cant fraction of more di�cult cases). One

approach in testing that the software is producing the right answers is to test the statistical properties

of the answers. That is, we can statistically test whether the statistical properties of its answers are

similar to the statistical properties we expect. These expectations are whether the mean of the computed

estimates is su�ciently close to the population mean and whether the estimated covariance matrix of

the estimates is su�ciently close to the population covariance matrix. Rephrasing this more precisely

the test is whether the computed estimates could have arisen from a population with given mean and

covariance matrix.

Consider what happens in a hypothesis test: a signi�cance level, �, is selected. When the test is run,

a test statistic, say �̂, is computed. The test statistic is typically designed so that in the case that the

hypothesis is true, the test statistic will tend to have its values. distributed around zero, in accordance

with a known distribution. If the test statistic has a value say higher than a given �0, we reject the

hypothesis that the computed estimate is statistically behaved as we expected it to be. If we do not

reject, then in e�ect, we are tentatively accepting the hypothesis. The value of �0 is chosen so that the

probability that we reject the hypothesis, given that is the hypothesis is true is less than the signi�cance

level �.

The key in using this kind of testing is that we can set up an experiment in which we know what the

correct answer for the no noise ideal case would be. Then we can additively perturb the input data by

a normally distributed vector from a population having zero mean and given covariance matrix. Then

using the analytic propagation results derived earlier in the paper, we can derive the covariance matrix

of the estimates produced by software.

If we repeat this experiment many times just changing the perturbed realizations and leaving everything

else the same, the experiment produces estimates �1; : : : ; �N that will come from a normal population

having mean �, the correct answer for the ideal no noise case, and covariance matrix �, computed from

the propagation equations. Now the hypothesis test is whether the observations �1; : : : ; �N come fron a

Normal population with mean � and covariance matrix �. For this hypothesis test, there is a uniformly

most powerful test. Let

B = �N
n=1(�n �

��)(�n � ��)0

De�ne

� = (e=N )pN=2jB��1jN=2

� exp(�
1

2
[tr(B��1) +N (�� � �)0��1(�� � �)])

The test statistic is:

T = �2log�

Under the hypothesis, T is distributed as:

�2p(p+1)=2+p

where p is the dimension of �.



So to perform a test that the program's behavior is as expected we repeatedly generate the T statistic

and compute its empirical distribution function. Then we test the hypothesis that T is distributed as the

�2 variate using a Kolmogorov-Smirnov test.

7.2 On-line Reliability

For the on-line reliablity testing, the estimate is computed by minimizing the scalar objective function.

Then based on the given covariance matrix of the input data, an estimated covariance matrix of the

estimate is computed using the linearization around the estimate itself. Here a test can be done by

testing whether the each of the diagonal entries of the estimated covariance matrix is su�ciently small.

8 Conclusion

Making a successful vision system for any particular application typically requires many steps, the optimal

choice of which is not always apparent. To understand how to do the optimal design, a synthesis problem,

requires that we �rst understand how to solve the analysis problem: given the steps of a particular

algorithm, determine how to propagate the parameters of the perturbation process from the input to the

parameters describing the perturbation process of the computed output. The �rst basic case of this sort

of uncertainty propagation is the propagation of the covariance matrix of the input to the covariance

matrix of the output. This is what this paper has described.

This work does not come near to solving what is required for the general problem, because the general

problem involves perturbations which are not additive. That is, in mid and high-level vision, the appro-

priate kinds of perturbations are perturbations of structures. Now, we are in the process of understanding

some of the issues with these kinds of perturbations and expect to soon have some results in this area.
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