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1 Introduction

Object visualizations have been demanded in many applications [Che95, KSK98, MD97, Vin95]. One

of the common approaches is playing some key views of objects in sequence to convey the audience of

the impression of an entire object. In this case the audience plays a passive role and prior knowledge or

experience about the object are required. An alternative approach is that users are allowed to manipulate

the object interactively according to their preferences. To accomplish the task, the shape and surface

details of an object are requisite to be reconstructed. Many 3-D reconstruction techniques are proposed.

However, they have not been robust enough yet to deal with complex object shape, nor for intricate
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surface details presenting in uncertain illumination conditions. The visibility and surface re
ectance

property analysis are known to be di�cult to measure and approximate accurately. The result of this

approach may not satisfy the audience due to its loss of both shape and color information.

Beside of 3-D shape reconstruction, many researchers have devoted themselves in exploiting the cor-

respondences between multiple reference views. The epipolar constraint, for example, is one of use-

ful invariant properties for �nding the corresponding points between two or many uncalibrated images

[AS98, ZDFL94]. Utilizing the coherence between multiple views to generate a novel view, i.e. a new

viewing direction to the object, is commonly known as view synthesis technique. The result is convinced

if dense correspondence maps are possible to generate.

S.E.Chen proposed an image-based solution to the problem instantly [Che95]. The idea is to tile up all

possible views onto a 2-D movie-map. So users are impressed as manually rotating the object horizontally

and vertically to see the di�erent views. His approach has been implemented in the Apple's QTVR system.

One nice feature of it is that the quality of rendered views is independent to the complexity of object

shape and surface properties. It works nicely as long as the amounts of views are su�cient to describe

a certain motion, such as object rotation. To be more speci�c, here "su�cient" means the transition

between any two views is smooth enough that audience cannot notice the gap in-between. Generally, the

amount of images required for smooth motion transition is contents dependent. For instance, a simple

regular object with uniform surface pattern, e.g. a green glass vase, may not require many images while

a complex sculpture may do. Despite, one major di�culty for this application is the camera setup,

especially for multiple-layers1, where the equipment allows acquiring arbitrary angles of object views is

not widely available. Hence generating the in-between views from the basic images is essential to the

quality improvement for this application.

So far, many applications of object visualizations still stay in conveying single eye's depth cues to the

audience. However, in this report the object visualizations that provide binocular parallax to the audience

are considered. Normally, to produce binocular stereo images, each single view requires two shots with

a proper camera displacement to generate a stereo pair [WHK98]. The total number of images required

is twice as much as for the monocular views. Special rigs, such as a slider, are also required for camera

displacement if a normal single-eye camera is used. Therefore, it is helpful if the stereo views can be

generated from monocular images automatically.

Our task is to achieve such automation. The input data we are dealing with are sets of uncalibrated

object images that basically describe an object from various angles of view toward the rotation center,

which is depicted in Fig. 1. To demonstrate the main idea of our approach, we describe our method

mainly based on a single-layer-input data �rst. Generalization of the method to more images, i.e. between

multiple-layers, is straightforward and will be discussed later.

The task is divided into two possible cases, one for dense input images, such as 36 images around a

single layer; another for a sparse case, e.g. eight images attempting to describe 360 degrees of object

views. For the �rst case, we show how the physical-valid stereo image can be generated directly from the

given images without generation of in-between images. In contrast, the generation of in-between views

1Each layer, camera orbits around the object rotation center with �xed slant angle.
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Multiple Layers

Single Layer

Figure 1: Multiple monocular object views as used in computer vision for aspect graph based object

modelling.

are required in the second case to avoid ghost2 area appears. Note that the angle between each rotation

shown in the Fig. 1 may not need to be uniformly equal.

In the remainder of this report, we �rst, in Section 2, describe how to recover the camera projection

matrix associated with each uncalibrated input image. Section 3 explains that the stereo views can be

generated using image reprojection for both calibrated and uncalibrated images. To deal with the sparse

input images case, in Section 4, we introduce the image morphing technique and show the fundamental

problem that the invalidity of applying 2-D image morphing on 3-D case. A 3-D imagemorphing therefore

is purposed and used for novel view synthesis. Finally future works and possible applications are concluded

in Section 5.

2 Projection Matrices from Uncalibrated Images

The camera projection matrix speci�es a transformation from 3-D to 2-D, and it is used to map a space-

point to an image-point. It describes internal camera parameters, e.g. focal length, image unit length, and

external pose with respect to the world coordinate system, e.g. orientation, translation. In practice, we are

only given a set of reference images that describe the multiple views of an object, but leave each associated

projection matrix unavailable. Our task is to recover relative camera projection matrices3. Each relative

matrix is associated with one image and may be analyzed based on correspondences between reference

images. The relative camera projection matrices are su�cient to compute the object stereo images, which

will be explained in detail in Section 3.

2The object surfaces appear in one stereo image, but not in the other.
3They describe the relative geometrical relationship between multiple cameras' positons and orientations.
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Figure 2: Perspective camera geometry in world coordinate system. The symbols are explained in the

text.

In this section, the invariance of geometric relationships between space-points and two reference images,

called epipolar constraint, is investigated in depth. We start by establishing notations used throughout

this report. Then we give a de�nition of thecamera projection matrix and an introduction to the epipolar

geometry. At last, we show how to use such a constraint to recover two relative camera projection

matrices.

2.1 Notation

Our conventions follow G.Xu and Z.Zhang's book [XZ96]. A matrix is in uppercase bold-faced font. A

vector is in lowercase bold-faced font. A point in 3-D space is in uppercase font. A point in 2-D space

is in lowercase font. A point covered by a tilde "�" denotes a homogenous vector, i.e. padding 1 into

the last element. A scalar or constant number is in italic font. The world coordinate system origin is

denoted as O and the camera optical center is denoted as Ci, where index i stands for ith camera in the

space. An arbitrary point in 3-D space is denoted as M with respect to the world coordinate system.

The projection ray from Ci to M intersects the image plane, Ii, at the point mi with respect to the ith

image coordinate system. We depict these in Fig. 2. All the symbols are de�ned uniquely throughout

the whole report.

2.2 Camera Projection Matrix

There are several camera models commonly used in the computer vision community, such as perspec-

tive, orthographic, weak projective and paraperspective projections. In this report we only present the

perspective case.
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Considering a canonical planar pinhole camera, a perspective projection matrix, denoted as P, is a 3� 4

matrix which projects a 3-D space-point onto the 2-D image plane. For instance, if we de�ne a space-point

M = (X;Y; Z) with respect to the world coordinate system and its projected image point m = (x; y) with

respect to the image coordinate system, then

s em = s

 
m

1

!
=

2
664

f 0 0 0

0 f 0 0

0 0 1 0

3
775
0
BBBB@

X

Y

Z

1

1
CCCCA = P

 
M

1

!
= PfM; (1)

where s is an arbitrary nonzero scalar and f is the e�ective camera focal length. Let E be the 3� 3 matrix

2
664

f 0 0

0 f 0

0 0 1

3
775

from now on. The matrix P described above is a standard form of camera perspective projection matrix

in which the camera coordinate system and the world coordinate system both coincide perfectly. But

it is usually not applicable due to that the desire world coordinate system is di�erent from the actual

camera coordinate system, for instance, the case with multiple camera poses.

For the multiple views of an object, we have several camera poses situated in 3-D space. Each of

them has a projection matrix associated with it to represent the mapping of 3-D space-points onto its

image plane. So in the real application, the matrix P is de�ned by camera extrinsic parameters and

intrinsic parameters. The extrinsic parameters of a camera de�ne the orientation and position of the

camera in 3-D space with respect to the world coordinate system. In the Fig. 2, camera's orientation

can be represented by a 3� 3 rotation matrix R, which is the product of the standard rotation matrices

in respect to each axis of the world coordinate system. The position of a camera optical center C can be

expressed as a vector from O to C denoted as t. Here we call R and t the extrinsic parameters of the

camera. Hence the projection of a point M on the image plane (i.e. a 2-D point m with respect to the

image coordinate system) can be described as

s em = s
h
B j �Bt

ifM = PfM;

where B = ER; is a 3� 3 matrix, and s is an arbitrary nonzero scalar. We use the form [H j V] to

denote the decomposition of a 3� 4 martix, where H is a 3� 3 matrix and V is a 3-vector.

The intrinsic parameters of a camera de�ne a mapping between the actual image plane and the ideal

image coordinate system. It is illustrated in the Fig. 3, where the image-plane basis vectors a and b

are not orthogonal and are separated by angle '; and the pixel unit of the image along a and b are ka

and kb respectively to the unit used in the ideal image coordinate system. Furthermore we have that

the camera optical axis intersects the image plane at point (ca, cb). All those parameters are called the

intrinsic parameters of a camera. The relationship between an ideal image-coordinate-system point mo
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Figure 3: Camera intrinsic parameters. The symbols are explained in the text.

and the actual image-coordinate-system point mp can be easily shown as

emp =

2
664

ka �ka cot' ca

0 kb= sin' cb

0 0 1

3
775 emo = A emo:

Therefore the camera perspective projection matrix P for a canonical planar pinhole camera is de�ned

as

P = A

h
B j �Bt

i
=
h
H j �Ht

i
=
h
H j h

i
; (2)

where H = AB and h = �Ht:

2.3 Epipolar Geometry

In Fig. 4(a), the optical centers C1, C2 of two cameras plus a point M in space de�ne a plane called

epipolar plane denoted by }. The projection of point C1 on the image plane I2 is called epipole denoted

by e2, and vise versa for e1. The lines joining mi and ei are called epipolar lines. We may de�ne in�nite

epipolar planes commonly intersecting the line joining two camera optical centers C1C2 as shown in Fig.

4(b). This implies that all points lying on the same epipolar plane will be projected onto the same

epipolar line on each image plane. Thus, the corresponding points between two reference images are

constrained on the epipolar lines. More importantly, later we show how to use such a geometric property

to estimate the relative projection matrices for two uncalibrated cameras.

With two reference image planes I1 and I2 with respect to the camera optical centers C1 and C2, their

relative perspective projection matrices are denoted as P1 and P2. Let Pi be decomposed as the con-

catenation of a 3� 3 sub-matrix Hi and a 3-vector hi, i.e. P1 =
h
H1 j h1

i
and P2 =

h
H2 j h2

i
.

M is an arbitrary point in 3D space and m1 and m2 are its projection points on the images I1 and I2

respectively.
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Figure 4: (a) Epipolar geometry. (b) Multiple epipolar planes and associated epipolar lines. The symbols

are explained in the text.

From Section 2.2, we have

s1 em1 =
h
H1 j h1

i " M

1

#
and s2 em2 =

h
H2 j h2

i" M

1

#
:

We expand these two equations and get

s1 em1 = H1M+ h1 and s2 em2 = H2M+ h2:

We assume matrices H1 and H2 are both non-singular. Eliminating M from both equations we have

s1H
�1

1
em1 �H

�1

1
h1 = s2H

�1

2
em2 �H

�1

2
h2:

Multiplying H1 to both sides gives

s1H1H
�1

1
em1 �H1H

�1

1
h1 = s2H1H

�1

2
em2 �H1H

�1

2
h2:

This implies

s1 em1 = s2H1H
�1

2
em2 �H1H

�1

2
h2 + h1:

Perform cross product to both sides with vector (h1 �H1H
�1

2
h2) results

s1
�
h1 �H1H

�1

2
h2
�
� em1 = s2

�
h1 �H1H

�1

2
h2
�
�H1H

�1

2
em2:

By applying the left dot product with a row vector emT
1
to both sides so that scalar s1 and s2 can be

eliminated, we have

emT
1
�
�
h1 �H1H

�1

2
h2
�
� em1 = emT

1
�
�
h1 �H1H

�1

2
h2
�
�H1H

�1

2
em2:

This implies

0 = emT
1
�
�
h1 �H1H

�1

2
h2
�
�H1H

�1

2
em2: (3)
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Here we introduce a notation [v]
�
to denote the skew symmetric matrix of vector v, which is

[v]
�
=

2
664

vx

vy

vz

3
775
�

=

2
664

0 �vz vy

vz 0 �vx

�vy vx 0

3
775 :

So the Eq. 3 can be rewritten as

emT
1
F em2 = 0; (4)

where F =
�
h1 �H1H

�1

2
h2
�
�
H1H

�1

2
:

The matrix F is called fundamental matrix, which describes the mapping between a pair of corresponding

points on two images. Thus for any pair of corresponding points m1 and m2 on the image planes I1 and

I2 respectively, they must satisfy the epipolar constraint of Eq. 4. The derivation of the fundamental

matrix above has been described extensively in [XZ96].

As we know, an image line, say l, can be represented by the cross product of two image points, say m

and n, which are incident to it, i.e. l = em � en. Consider a point m2 in the image plane I2, its epipolar

line on the image plane I1 must pass through both the epipole and the m2's corresponding point, say m1.

Thus, two points e1 and m1 can represent the epipolar line of m2 in I1, say lm2
, i.e. lm2

= ee1 � em1. In

order to calculate lm2
we need to compute both e1 and m1 in the world coordinate system �rst.

Image point e1 is the projection of the camera optical center C2 on the image plane I1. Hence,

seee1 = P1
eC2; (5)

where se is an arbitrary nonzero scalar. The position of the camera C2 with respect to the world coordinate

system is de�ned as t2 that is a vector from origin O to C2. So we have

P2 =
h
H2 j �H2t2

i
=
h
H2 j �H2C2

i
=
h
H2 j h2

i
; (6)

it implies that �H2C2 = h2, therefore C2 = �H�1

2
h2: By Eq. 5, we get

seee1 = h1 �H1H
�1

2
h2 =

h
H1 j h1

i H
�1

2
h2

1

!
= P1

eC2:

As de�ned, image points m1 and m2 are the projection of the same 3-D point M onto the image planes

I1 and I2. So the intersection of two rays, one starting from C1 passing through m1 and another from C2

passing through m2, de�nes the 3-D point M in the space. By given m2, point M can be written as

M = C2 + sH�1

2
em2 = �H�1

2
h2 + sH�1

2
em2 = H�1

2

�
s em2 � h2

�
;

where s is a scalar. Project M onto the image I1, we have

s1 em1 = P1
fM;

=
h
H1 j h1

i M

1

!
;

=
h
H1 j h1

i H�1

2
(s em2 � h2)

1

!
;

= H1H
�1

2

�
s em2 � h2

�
+ h1;

= sH1H
�1

2
em2 + h1 �H1H

�1

2
h2;
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where s1 is an arbitrary nonzero scalar.

Therefore, the epipolar line of m2 in the image plane I1 can be derived as follows,

lm2
= ses1ee1 � em1;

=
�
h1 �H1H

�1

2
h2
�
�
�
sH1H

�1

2
em2 + h1 �H1H

�1

2
h2
�
;

=
�
h1 �H1H

�1

2
h2
�
�
�
sH1H

�1

2
em2

�
;

=
�
h1 �H1H

�1

2
h2
�
�
H1H

�1

2
em2;

= F em2:

Since every epipolar line in the image plane I1 must pass through the epipole e1, the dot product of any

epipolar line and epipole equals to zero. It means, e1 � lm2
= eT

1
F em2 = 0; for any image point m2 in I2.

This equality holds only if eT
1
F = 0: Therefore the dimension of row space of the matrix F is at most

two. In general, the rank of F is equal to two; thus it de�nes a one-to-one mapping from a set of image

points to a set of image lines. This sort of mapping is called correlation.

The fundamental matrix, if known, is very useful to assist the corresponding point search between two

reference images. For example, if we have point m1 in the image plane I1 and looking for its corresponding

point m2 in the image plane I2, then the matrix F is used to map m1 to an epipolar line in the image

plane I2 where point m2 lying on. Hence the 2-D search space over the image plane is reduced down to

a 1D search, i.e. along the mapped epipolar line.

2.4 Estimating the Fundamental Matrix

In Section 2.3, the epipolar geometry can be discovered if we have the projection matrices for all the cam-

era positions in the image acquisition setup. In other words, we must know the geometrical relationship

between every pair of images. However, in our situation the complete geometrical relationship between

any selected pair of images is unknown. Thus we cannot use Eq. 4 to compute the fundamental matrix.

Instead, a partial geometrical relationship may be established by involving some human intervention in

which a few matching points are identi�ed. Therefore we may apply a parameter estimation algorithm

to �nd an optimal solution for the matrix F numerically.

Assuming m = (mx;my) and n = (nx; ny) are one pair of matched points in two reference images

respectively. We know that

emT
Fen = 0;

which can be expanded as follows

(mx;my; 1)

2
664

f11 f12 f13

f21 f22 f23

f31 f32 f33

3
775
0
BB@

nx

ny

1

1
CCA = 0;

where fij is an element of F. This equation can be rewritten as a linear and homogenous function Q with

four variables and nine unknown coe�cients that are the elements of F, i.e.

Q(mx;my; nx; ny) (7)
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= f11mxnx + f12mxny + f13mx + f21mynx + f22myny + f23my + f31nx + f32ny + f33

= 0:

Hence, our task becomes that by given a set of k pairs of corresponding points f( mxi
, myi , nxi

, nyi) :

i = 1; : : : ; kg, we want to �nd those nine coe�cients that best �t to the Eq. 7. In a shorter form, let w

= (f11, f12, f13, f21, f22, f23, f31, f32, f33)
T , and di = (mxi

nxi
, mxi

nyi , mxi
, myinxi

, myinyi , myi , nxi
, nyi ,

1)T , so that Q(mxi
, myi , nxi

, nyi) = dTi w:

Because the fundamentalmatrixF is de�ned up to a scalar factor, even though it consists of nine elements,

we may set one of nine elements of F to be 1. Now it is only left eight variables in its place need to

be computed. Furthermore, we have shown that the rank of F is at most 2, thus the number of free

parameter of F can then be further reduced down to seven [XZ96]. Ideally, to determine the fundamental

matrix F, we need at least seven matched points (i.e. seven pairs of corresponding points, k = 7) from

two reference images. In practice, the factors of false matching and discontinuity of discrete data arisen

from the image digitalization, an optimization scheme is requisite to minimize the potential errors it may

occur. One way is to strengthen our solution by giving more matching points, i.e. more than seven, to

constrain the estimation. There are many of numerical approximation methods available to estimate F

with over-speci�ed data. Here we demonstrate a simple approach - linear least-squares.

For more than seven matching points (i.e. k > 7), the problem of �nding an optimal solution is equivalent

to minimize the following function:

U (w) =

nX
i=1

Q2(mxi
;myi ; nxi

; nyi):

Clearly, there exists a trivial solution fij = 0 for all i; j = 1; : : : ; 3, which is not what we want. In order

to avoid it, we should impose some constraints to the coe�cients of Q(mx;my; nx; ny). One way is to

set one of the coe�cients to 1. Without loss of generality, we assume that f33 is not equal to zero, and

hence we can set f33 = -1. Let w' = (f11, f12, f13, f21, f22, f23, f31, f32)
T , and di' = (mxi

nxi
, mxi

nyi ,

mxi
, myinxi

, myinyi , myi , nxi
, nyi)

T . Moreover, D = [d1', d2', : : :, dk']
T , and v = (v, v, : : :, v)T , where

v is a k-vector and its element v is the last element of di. By given k points, our system equation can be

rewritten as

Q(mxi
;myi ; nxi

; nyi) = d
0T
i w

0 � v = 0:

Thus the function to be minimized becomes

U (w) = (Dw0 � v)T (Dw0 � v):

The solution can be obtained by setting its �rst derivative to be zero and yield

@U (w)

@w0
= 2DT (Dw0 � v) = 2DT

Dw0 �DT
v = 0:

Hence, function U (w) is minimum when

w0 =
�
DTD

�
�1

DTv;

w =

 
w0

�1

!
;
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if there exists an unique global minimum. This method will fail if the element we set to 1 is actually zero

or much smaller than the other elements. Since we will not know which element is not zero priori, we

could set each element of F to -1 for nine iterations and choose the one with minimum value of U (w).

2.5 Projection Matrix from Fundamental Matrix

For given two uncalibrated reference images, our goal is to recover the relative perspective projection

matrices associated with those two cameras. Z. Zhang has pointed out a nice property that, if the

epipolar geometry of two uncalibrated images is known, i.e. the fundamental matrix, then the relative

camera projection matrices can be determined [ZX97]. However, it is only up to a linear transformation

depending on the projection model of the camera. For example, with perspective projection cameras

the recovered camera projection matrices are de�ned up to a projective transformation in 3-D space

while with orthographic, weak projective and paraperspective projections cases, their recovered camera

projection matrices are de�ned up to an a�ne transformation. A projective transformation is represented

by a non-singular 4� 4 matrix acting on homogenous vectors. When we said "only up to a projective

transformation", it means if P1 and P2 are two perspective camera projection matrices and their epipolar

geometry, fundamental matrix F, is established, for any arbitrary projective transformation T in 3-D

space P0
1
= P1T and P0

2
= P2T remain constantly consistent with F.

Let us recall the notations from the previous sections, that we will use below for the camera projection

matrix recovery calculation. We have two uncalibrated images, and the associated fundamental matrix

F which has been determined using the method described in the Section 2.4. The relative two camera

perspective projection matrices P1 and P2 with respect to image planes I1 and I2 are our target to be

recovered.

The property described above has suggested that there is an in�nite number of projective bases which all

satisfy the epipolar geometry, hence there is no way to recover the absolute camera projective matrices

associated with those images. Nevertheless, any pair of recovered camera projective matrices satisfying

the epipolar geometry has ful�lled our primary goal in reprojecting those two images, which will be

explained in detail in Section 3.

One way to represent the relative camera projective matrices recovered from the fundamental matrix F

is to use a canonical representation described in [BZM94, LT94, ZX97]. It can be expressed as follows,

P1 = [H1 j h1] and P2 = [I j 0] : (8)

Here P1 and P2 are de�ned with respect to the world coordinate system which is assumed to coincide

with the second camera coordinate system. This representation is equivalent to the strongly calibrated

case in which the camera intrinsic parameters are known. In this case, F is called the essential matrix.

Matrix H1 describes the orientation of the �rst camera with respect to the second camera coordinate

system, i.e. the world coordinate system. Vector h1 is equal to �H1C1, inferable from Eq. 6, where C1

is the position of �rst camera optical center with respect to the second camera coordinate system.

From Eq. 4 the fundamental matrix F can be calculated as follows:

F =
�
h1 �H1H

�1

2
h2
�
�
H1H

�1

2
:

11



Consider Eq. 8 above, we have H2 = I, and h2 = 0. Substitute to Eq. 4, we have

F = [h1]�H1;

where [h1]� is a skew matrix of h1, and H1 is a 3� 3 rotation matrix.

Since epipole e1 in image plane I1 is the projection of the second camera optical center onto the image

plane I1, so we can write

ee1 ' P1
eC2 = [H1 j h1] eC2 = [H1 j �H1C1] eC2 = �H1C1;

where ' means "equal" up to a scale factor and we have C2 = (0; 0; 0) as world coordinate system

origin. And we know h1 is equal to -H1C1, so ee1 = h1: The epipole e1 in the image I1 has the propertyeeT
1
F = 0, it is equivalent to FTee1 = 0. Since F is singular so multiply both sides by F and then we

have FFTee1 = 0: Matrix FFT is symmetric, hence e1 is the eigenvector of matrix FFT associated to the

smallest eigenvalue.

In order to calculate P1 and P2 from matrix F we can �rst factorize F into a product of this form

[ee1]�H1. The factorization is not unique in general, since once we �nd a H1 satisfying it, any matrix in

this form, H1 + ee1vT , will also be a solution for any 3-vector v. It can be veri�ed easily that we always

have [ee1]�ee1vT = 0. In particular, H1 can be obtained by the following equations. Starting from

F = [ee1]�H1;

we may multiply the [ee1]� to both sides of the equation, and then we have

[ee1]�F = [ee1]�2
H1:

Since vvT = [v]
�

2
+ k v k2I3 for any 3-vector v,

[ee1]�F = (ee1eeT1 � k ee1 k2I3)H1:

The right-hand-side of the equation can be expanded, so we have

[ee1]�F = ee1eeT1H1 � k ee1 k2H1:

Since [ee1]�ee1vT = 0 for any 3-vector v,

[ee1]�F = �k ee1 k2H1:

It implies

H1 = (�1=k ee1 k2)[ee1]�F:
Therefore,

P1 =
�
(�1=k ee1 k2)[ee1]�F j ee1� and P2 = [I j 0];

the relative perspective camera projection matrices, are recovered using the fundamatal matrix F derived

from two uncalibrated reference images.
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3 Stereo Image Generation by Image Reprojection

Stereoscopic visualization techniques are known to be very active topics in computer vision, virtual reality

and augmented reality [DM96, HH97, Vin95, WHK98]. To deliver a stereo form of images to human visual

perception, two elements are essential. The �rst is a source that provides visual stimulation to our visual

perception, called stereo images, usually one for each eye, let us call left/right image. The other is a

�lter, normally a 3-D eyeglass or a specialized screen/monitor, that ensures we perceive the correct stereo

image for each eye synchronously with the prede�ned display frame rate. Our task is to produce such a

source so audience can perceive of 3-D binocular depth cues out from a 2-D display media.

In order to give the audience binocular depth cues, normally, each single object view requires two shots

with a proper camera displacement to generate a stereo pair [Vin95, WHK98]. This camera model can

be referred to as standard binocular stereo model, i.e. with horizontal disparity only. Our goal is to

automatically generate such a binocular stereo pair from the object images that basically describe an

object from various angles of view toward the rotation center. In this section, we �rst study the geometry

of image reprojection and derive its mapping formula. The automatic stereo generation processes are

explained separately for the situations of calibrated input images and uncalibrated input images in Section

3.2 and 3.3.

3.1 Image Reprojection Geometry

Image reprojection has been widely used in many applications, such as reprojection on a cylinder for

panoramic visualization [Che95, MB95, WHK98]; on a coarse 3-D architecture model for details recovery

processing [DTM95]; on a sphere as environment map in computer graphic rendering [FvDFH90]; or on

a quarter sphere acting as windscreen for the 
ight simulator [Vin95]. The reprojection model we are

concerned with is di�erent from those described above. We reproject the image of an actual camera, i.e.

one of our reference image, onto another virtual camera image plane, and restrict both cameras sharing

the same optical center. Figure 5 shows the geometry of this reprojection model. This section will study

the geometric relationship between those two images planes sharing the same camera optical center.

Let us sketch this approach �rst. We assume the basic element used to describe the 3-D world is the

object surface point. Consider one camera's projection as a bundle of rays starting from the camera

optical center toward each surface point in the scene. Each ray is associated with some color information

of a particular surface point. The image acquired can be described as the intersections of those rays with

the camera's image plane, and colors associated with those rays will be assigned onto the image. It is

not di�cult to think of that the projection rays associated with one camera will not change, in terms of

its position, orientation and the colors it associates, from the projection rays of another camera as long

as both camera share the same camera optical center and objects in the scene are static.

In the Section 2, we have shown that a di�erent position or orientation of the image plane with respect to

the same camera optical center de�nes a di�erent camera projection matrix. Now assuming image planes

I and I 0 share the common camera optical center at optical center C with respect to the world coordinate

13
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Figure 5: Geometry of perspective planar reprojection model with identical optical centers. The symbols

are explained in the text.

system, and P = [H j �HC] and P0 = [H0 j �H0C] are their perspective projection matrices respectively.

The camera projection matrix allows us to calculate the exact intersection position of each projection

ray on the image plane. Let us consider a particular projection ray projecting from the camera optical

center to a surface point M in the scene, see the Fig. 5, the two intersecting points on image planes I and

I 0, denoted as m and m0, can be calculated using P and P0. Since the image planes I and I 0 may not be

only related by a simple rotation transformation about the common camera optical center. We should

be able to establish the mapping between point m in I and point m0 in I 0 directly from the information

provided by P and P0. The formula maps the points on image I to the points on image I 0 can be derived

as following. We know

em ' PM = [H j �HC]M and em0 ' P0M =
�
H0 j �H0C

�
M;

where ' means "equal" up to a scale factor. So,

em ' PM

= [H j �HC]M

= H [I3�3 j �C]M

= H

h
H0�1H0 j �H0�1H0C

i
M

= HH0�1
�
H
0 j �H0C

�
M

= HH0�1P0M

' HH0�1 em0
:

Therefore the relationship between two corresponding points m in I and m0 in I 0 can be described by

a 3� 3 linear transformation matrix HH0�1. Note that it is in fact a one-to-one mapping between any
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Figure 6: (a) Two reference image planes with respect to the world coordinate system. (b) Two repro-

jected image planes (i.e. coplanar) with respect to their original image planes. The symbols are explained

in the text.

pairs of corresponding points in I and I 0. It is quite useful, especially in the sense of simpli�cation of

the implementation, to use this simple linear transformation formula to map the corresponding points in

di�erent image coordinate systems. We summarize it as follows:

em = HH0�1 em0
; (9)

where m and m0 are any pair of corresponding points in image planes I and I 0 respectively, and HH0�1

is a 3� 3 linear transformation matrix.

While an image plane is transformed with respect to the same camera optical center, it is equivalent to

changing our viewing direction to the scene in which both shape structure and color information of every

surface point remain unchanged. Therefore such image reprojection method guarantees the generated

views are physically correct, i.e. the 3-D structure and surface re
ectance property of the scene are

preserved.

3.2 Reprojection with Fully Calibrated Images

We have shown that the formula in Eq. 9 allows us to modify the camera viewing direction to the scene.

This result is useful to our stereo generation process, because we can apply it to change the camera

viewing directions to the object without loss of validity. There are two possible cases. One is for the

fully calibrated input images in which all the intrinsic and extrinsic parameters of the camera projection

matrices are known. The other is for the uncalibrated input images in which the method discussed in

the Section 2 to recover their relative camera projection matrices is committing prior. In this section we

focus on the �rst case, the second case will be dealt with in the next section.
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To generate a stereo pair from two reference images, �rst we normalize two input images by the inverse

intrinsic matrix (EA)�1 in which all the camera intrinsic parameters are assumed to be well calibrated.

Then we calculate the camera projection matrices that only contain extrinsic parameters for both images

under the assumption that the world coordinate system origin coincides with the I1 image's optical center,

and its Z-axis is perpendicular to the line joining two camera's optical centers, as well as its Y-axis is

parallel to both image planes. Figure 6(a) shows the idea. So we have

P1 = [H1 j 0] and, P2 = [H2 j �H2C2] ;

where C2 is the camera optical center for the image plane I2.

Now we can use the formula in Eq. 9 to reproject images I1 onto I 0
1
and I2 onto I 0

2
. The projection

matrices for the image planes I 0
1
and I 0

2
are P0

1
= [I j 0] and P0

2
= [I j �C2] respectively, so the image

planes I 0
1
and I

0

2
are coplanar as shown in Fig. 6(b). It is clear that the image planes I 0

1
and I

0

2
are the

standard binocular stereo image pair in which all the epipolar lines on both images coincide with image

rows, thus corresponding points always lie on the same row in the image coordinate system.

This procedure can be repeated for every pair of adjacent object views to generate a sequence of stereo

images. For the multiple layers case, each layer can be processed independently. Assuming the camera

parameters are constant for each single layer, i.e. the object is rotated in uniform angle with �xed camera

pose and settings, then calculating the camera projection matrices only needs to be done once for each

layer. If the viewing angle � between two adjacent object views is too wide, i.e. the overlapping area

of the object in both images I 0
1
and I 0

2
is small and does not allow that the stereo view can be fused

[Vin95, WHK98], then a closer in-between view is desired. We will introduce an image-based approach

to generate a novel in-between view without 3-D reconstruction in Section 4.

3.3 Reprojection with Uncalibrated Images

If the input images are uncalibrated, we do not have any information about both intrinsic and extrinsic

parameters of the camera. But in order to apply the image reprojection equation, which was shown in

the previous subsection, the camera projection matrices of both the reference and desired images must be

known. One way to recover the relative camera projection matrices for the uncalibrated input images is

to use the method described in the Section 2. Once we have found the relative camera projection matrices

for any pair of adjacent object views, the image reprojection method is again used to generate the stereo

view. Since the recovered projection matrices for the uncalibrated image case are in di�erent form from

the calibrated case shown in the Section 3.2, in this section we show how to use them to produce its

associated stereo images.

The recovered projection matrices for two reference images I1 and I2 should be in the form P1 = [H1 j h1]

and P2 = [I j 0], where P1 and P2 are de�ned with respect to the world coordinate system which is

assumed to coincide with the camera coordinate system of the image plane I2. In the discussion in the

Section 2, we already mentioned that matrix H1 here is equivalent to a rotation matrix. The situation

is shown in Fig. 7(a). A rotation matrix with respect to Y-axis of the world coordinate system is in this
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Figure 7: (a) Camera coordinate system associated with image plane I2 coincides with the world coor-

dinate system. (b) Two reprojected image planes (i.e. coplanar) with respect to their original image

planes. The symbols are explained in the text.

form

RY (�) =

2
664

cos � 0 � sin �

0 1 0

sin � 0 cos �

3
775 ;

where � is the rotation angle. So we have

H1 =

2
664

h11 0 h13

0 1 0

h31 0 h33

3
775 =

2
664

cos � 0 � sin �

0 1 0

sin � 0 cos �

3
775 = RY (�);

where hij is an element of the matrix H1. We can estimate the rotation angle � by

� =
�
cos�1 h11 + sin�1(�h13) + cos�1 h31 + sin�1 h33

�
=4:

Because we know the rotation angle �, the projection matrices for two image planes I 0
1
and I 0

2
can be

determined as P0
1
= [RY (��=2) j �RY (�=2)C1] and P

0

2
= [RY (�=2) j 0] respectively, where C1 is the

camera optical center position of image plane I 0
1
, as shown in Fig 7(b). Now we can use the formula in

Eq. 9 to reproject the images I1 onto I 0
1
and I2 onto I 0

2
.

Here we demonstrate an example which can be extended to operate on large object image databases

converting them to binocular stereo form automatically. We have input data from an existing QTVR

object movie available over the Internet4, called "Green Horse's Head5", from Asian Art Museum of San

Francisco6. It has a total of 36 views and covers 360 degree of the horse head in the single layer fashion.

4http://sfasian.apple.com/Mongolia/Views/Views.htm
5GREEN HORSE'S HEAD FOR MAITREYA'S CART, Dulamin Damdinsuren (1868-1938), early 20th century, wood,

velvet, metal �ttings, paint, and horsehair. During the Maitreya Festival, Maitreya's horse-headed cart (pictured in no. 42)

was pushed around the ceremonial circle by monks, who stopped at the cardinal points to chant prayers.
6http://www.asianart.org/

17



Figure 8: Multiple stereo green horse head views. The top row shows the successive left images and the

bottom row shows the corresponding right images.

We have no idea about what camera they used and how they setup the image acquisition whatsoever.

It is a totally uncalibtated case for those images. Figure 8 shows the result of selected four stereo pairs

automatically generated from their corresponding input images.

4 View Synthesis

In the Section 3, we have shown how binocular stereo images can be reprojected from the set of multiple

monocular object images. In fact, the given images may not necessarily fully describe the object, such

as the angle between two adjacent viewing axes is too wide with respect to the shape complexity of the

object. Figure 9 illustrates this situation. The ghost problem may occur if the object in two stereo images

has large non-overlapped area. To accommodate this situation, generation of a novel view in between is

necessary.

In this section, we �rst introduce the image morphing technique which guarantees a smooth transition

between two source images. We also show the fundamental problem that the invalidity of applying 2-D

image morphing on 3-D case. A 3-D image morphing therefore is purposed and used for our in-between

view synthesis. To morph two images, the correspondence between two images needs to be established

�rst. We introduce a semi-automatic scheme for the correspondence reconstruction. The result of our

approach is presented at last.
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θ = 45o

Figure 9: A 45 degree separation of two cameras causes a smaller overlapping region of the facial mask

in comparison to a less degree separation. It is di�cult to fuse the generated binocular stereo pairs with

such separation by human eyes.

4.1 Image Morphing

Image morphing has been adopted to generate in-between images for many 2-D applications, such as car-

toons, movies, games, etc. Human animators manually specify the corresponding points and outlines for

two source images. Then the in-between images are generated by software based on position interpolation

and color dissolving, normally warping linearly. The transition between two source images is allowed to

be as smooth as possible with this approach. It works nicely as long as the correspondences between two

source images are identi�ed accurately. However, heavy human labor-work and large time-consuming are

bottleneck to have accurate correspondence map, especially for complex contents in two source images.

When image morphing apply to the 3-D case, the considerations of computation become even more

complicate. Figure 10 shows the problem where the shape of a table is distorted during the morphing

procedures although the full corresponding points and outlines are identi�ed correctly. S.M.Seitz has �rst

pointed out this problem in [MD96] . The problem is because two corresponding points move toward each

other linearly in 2-D image space, without obeying the 3-D geometric constraint, i.e. not moving along

the epipolar line. For instance, Fig 11(a) shows two image planes, a 3-D point M projected onto two image

planes , I1 and I2, and their intersections, m1 and m2, with the epipolar plane. Figure 11(b) depicts those

Figure 10: The top row shows the distortion of a table shape during the 2-D image morphing processes.

The bottom row shows the expected shape of the table (i.e. visual vaild) with respect to the same camera

motion as for the top row.
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Figure 11: The fundamental problem of the invalidity by applying 2-D image morphing on 3-D geometry

case. (a) shows two camera poses, a 3-D point M projected onto two image planes, I1 and I2, and their

intersections, m1 and m2, with the epipolar plane. (b) two images are placed side by side as in 2-D

morphing software with the corresponding points and dashed epipolar lines indicated. (c) shows its 2-D

morphing result with morphing ratio 0.5. A supporting line there indicates the path connecting two

corresponding points in the image space and the 2-D interpolated point m1:5 will be laid on. (d) shows

3-D morphing result with ratio 0.5. It illustrates the physically correct position with respect to its 3-D

geometric information, i.e. the interpolated point m1:5 must lies on the associated epipolar line.

two images placed side by side as in 2-D morphing software with the corresponding points and epipolar

lines (i.e. dashed lines) indicated. Figure 11(c) shows its 2-D morphing result with morphing ratio 0.5

while Fig. 11(d) illustrates the its physically correct position in the 2-D image plane with respect to its

3-D geometric information. In general, the 3-D image morphing can be interpreted geometrically, shown

C1 C1

b

Virtual cameras

(a) (b)

Figure 12: Virtual cameras along the path from one camera position C1 in 3-D space to the other C2

along the line b connecting C1 and C2. The orientation of the virtual camera is turning from orientation

of one camera to the other steadily with respect to the pace of movement. (a) Top view. (b) Front view.
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in Fig 12(a), as moving a virtual camera from one camera position C1 in 3-D space to the other C2 along

the line b connecting C1 and C2. And the orientation of the virtual camera is turning from orientation

of one camera to the other steadily with respect to the pace of movement. Figure 12(b) shows the front

view.

Although in the Section 2 we have pointed out that it is su�cient to search corresponding points only

along with mapped epipolar line based on the associated fundamental matrix. It is much more convenient,

as we can see, to have all the epipolar lines coincide with the image row precisely. Because the searching

operation is then required only on the same row of two reference images as in scan-line fashion. This

is not only simplify the implementation complexity, but also take the advantage of less memory cache

missing. In the Section 3, we have shown that the image after reprojection is equivalent to the standard

binocular stereo image in which the corresponding points lying on the same image row. Therefore, our

preprocessing for synthesizing a novel view is to re-project those two reference images as the standard

binocular stereo image. Then the corresponding searching along the same image row is operated in the

same way as the standard method used in correspondence analysis for binocular stereo.

4.2 Correspondence Reconstruction

Here we present a semi-automated approach for constructing the correspondence between two re-projected

images. Instead of fully depending on human intervention as with 2-D morphing software, our program

automatically computes the corresponding point for the two re-projected images and comes out with

estimated-correspondence highlighted. We also provide a set of parameters in which animators are allowed

to �ne-tune the coarse estimation without having to reallocate each missing point one by one. Eventually

the in-between images can be generated according to the morphing ratio speci�ed.

There are some literature [HS93, KSK98, RK93] discussing about the correspondence analysis for binoc-

ular stereo. We propose a variant of cross-validation correlation algorithm with respect to the object

images, which is listed in Fig. 13. As described above, animators specify the points and outlines manu-

ally to construct the correspondence between two images. The homogeneous regions are left to software

to perform the interpolation. The same scenario can be applied here, only edge parts of object are look-

ing for the correspondence. The threshold can be adjusted manually to ensure the edges detected are

su�cient to describe the structure of object surface, i.e. outlines of object.

In the algorithm, we treat the silhouette points in the di�erent way from the rest of object's outline points.

To search the corresponding silhouette points, the special design of local window for its similarity testing

is supplied. The idea is to exclude the background information while comparing the similarities between

the two windows. Fig. 14 illustrates this idea in comparison with the standard local window. Notice that

the dark gray pixels de�ne the shape of local window associated with current silhouette point, and the

correlation coe�cient is computed only based on intensities of those dark gray pixels. The shape may

vary depending on the shape of object silhouette. Nevertheless once it is de�ned, all its corresponding

local windows along the searching interval in the other reference image is �xed with that de�ned shape,

as F in the Fig. 13.
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{Searching corresponding points of IMAGEA in IMAGEB}
for each edge pixel p in IMAGEA do

if  p is silhouette point of object on IMAGEA then
F(p) = specialized local window shape associated with p in IMAGEA.

else {specialized/standard local window are explained in the text}
F(p) = standard local window shape associated with p in IMAGEA.

end if
S = search interval over IMAGEB;
maxCorr = -1; { highest correlation coefficient so far}
matchedP = 0; { the position of corresponding point for p in IMAGEB}
for each pixel q within S in IMAGEB do

corr = Correlation_Similarity_Measure(F(p), F(q));
if corr > maxCorr then

maxCorr = corr;
matchedP = q;

end if
end for

{ cross-validation for found matchedP}
S’ = search interval over IMAGEA;
maxCorr = -1;
matchedP’ = 0;
for each pixel p’ within S’ in IMAGEA do

corr = Correlation_Similarity_Measure(F(matchedP),F(p’));
if corr > maxCorr then

maxCorr = corr;
matchedP’ = p’;

end if
end for
if matchedP == matchedP’ then

Accept matchedP as the corresponding point of p;
end if

end for
/*******************************************************************************/

( )Correlation_Similarity_Measure , =
( ( )- )( ( )- )

( ( )- ) ( ( )- )

where ( ) and ( ) are the intensities of  ith pixel in two local windows

with respect to the reference point m and m'. The  and  are the average 

intensities for each local window.
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Figure 13: A variant of cross-validation correlation algorithm with respect to the object images.

In practice, corresponding edge points found are rather sparse, which will in
uentially degrade the mor-

phing result. One of the possible improvements is to grow up the found corresponding points along the

edges connected. This approach heavily depends on the correctness of corresponding points found by

similarity testing, the result may not be very stable. So the adopted cross-validation scheme in Fig. 13
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Figure 14: (a) Specialized local window shape for object's left silhouette. (b) Specialized local window

shape for object's right silhouette. (c) A standard local window.

to enhance the possibility of the higher correctness is importane. To grow up the found points along the

connected edges, two criteria are followed. First, the sequence of corresponding points along the image

row are preserved in the same order for both reference images, i.e. correspondence under monotonicity.

Second, a edge in one reference image should appear as edge in another image (i.e. a big assumption

but practical). The results of correspondence between two reference images before and after the edge

grow-up operation are shown in Fig. 15(a) and Fig. 15(b) where the real image data - a smiling Buddha

is used. Without loss of validity, the 3-D morphing can also be bene�ted by operating in the scan-line

fashion after two reference images are reprojected. The novel stereo views generated is illustrated in Fig.

16.

(a) (b)

Figure 15: (a) The corresponding edge points found before applying edge growth operation for a smiling

Buddha front view. (b) The corresponding edge points found after applying edge growth operation.
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Figure 16: The result of synthetic views, I0:4 and I0:6, are generated from two original Buddha views,

I0:0 and I1:0, with rotation angle 20 degrees.

5 Conclusions

There are few advantages with this approach. First, the object need not be 3-D reconstructed to generate

the binocular stereo pair. Second, the generated binocular stereo pair are physically correct with pho-

torealistic quality in comparison with the approch of textured 3-D model reconstruction which heavily

depends on the number of meshes. Third, less number of images are required to produce the stereo

images, save from the images acquisition time. Four, the camera setup need not be well-posed and the

uncalibrated images are allowed, save money from purchasing the special rigs and time from the camera

calibration. The last, the stereo imaging generation can be processing automatically in which the large

object image databases are potentially able to be converted to the stereo form as long as more than

one closely referenced image of the object are available. The future work from this direction can extend

this simple canonical planar camera model to other planar camera models or non-planar sorts, such as

orthographic, weak projective, paraperspective or �sh-eyes, panoramic camera models.
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