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ABSTRACT

We propose a Wiener filter design method for collecting target
sources on a noisy sports field. Because the noise on a sports field,
e.g., cheering from the audience, arrives from the same direction
as that of the targeted source, it is difficult to accurately design
a Wiener filter by simply using spatial cues. This study focused
on a combination of spatial cues and acoustic feature modeling.
The Wiener filter using our method was designed using a Gaussian-
mixture-model-based mapping function with automatically selected
informative acoustic features from pre-enhanced observation using
spatial cues. Through experiments using two-directional micro-
phones on a mock sports field, it was confirmed that the proposed
method outperformed previous methods that used either spatial cues
or acoustic feature modeling only.

Index Terms— Microphone array, Wiener filter, acoustic fea-
ture estimation, Gaussian mixture model

1. INTRODUCTION

Technologies providing users with immersive audio and images,
such as free viewpoint TV, have been actively studied for webcast-
ing/broadcasting [1, 2]. A targeted application of such technologies
is recording sports games on a large field. Various studies have
been conducted on image/video processing [1, 2], although there
have been very few reports on recording immersive audio signals
of sports games [3, 4]. The goal of this study was to collect tar-
get sources, e.g., ball sounds and/or voices of players in a noisy
football game, in real time. We propose a method for collecting
target sources to collect sounds that typically used to be buried in
the ambient noise so that users can hear sounds that they have never
experienced before.

The use of microphone arrays is a common approach for sound
source enhancement in noisy environments [5]. Conventional stud-
ies on microphone array techniques have mainly focused on spatial
cues, i.e., phase/amplitude differences between microphones. Sharp
directivity for clearly extracting a target source can be formed using
a microphone array with a huge number of microphones [6, 7, 8, 9].
With a small number of microphones, Wiener filtering has been
used as a post-filter of beamforming to boost noise reduction per-
formance [11, 12, 13, 14]. With the Wiener filter calculated from
the power spectral density (PSD) estimated in beamspace [13], it
has been reported that the sound sources located within about 60
degrees from the targeted angle can be segregated from other sur-
rounding noise. However, since the noise on a sports field, e.g.,
cheering from the audience, often arrives from the same direction
as that of the targeted sound source, as shown in Fig. 1, it is diffi-
cult to accurately design a Wiener filter by simply using the spatial
cues.

Figure 1: Sound collection on noisy sports stadium based on spatial
cues.

Some recent studies have attempted to use pre-trained acous-
tic feature models of the target source along with microphone array
signal processing [15, 16, 17, 18]. With this approach, Mel-filter
cepstrum coefficients (MFCCs) or Mel-filter bank outputs (MF-
BOs) are used for acoustic feature modeling, and the Wiener fil-
ter is designed by calculating the similarity between the pre-trained
acoustic features and the observation. However, it has been reported
that MFCCs and MFBOs are not informative acoustic features for
detecting/emphasizing the target source amid surrounding ambient
noise [19, 20]. Hence, an alternative method is required that can
effectively determine the acoustic features on a noisy sports field.

In this study, we developed a Wiener filter design method with
informative acoustic features selection. This method uses a pre-
enhanced signal by applying a technique based on spatial cues to
select acoustic features that contain information that determines the
target source from a large number of potential acoustic features.
It uses some MFCCs and MFBOs or other acoustic features (e.g.,
∆MFBOs) and is therefore expected to be more effective for de-
tecting the target source than simply using full-band MFCCs and
MFBOs of a pre-enhanced signal. Since the pre-enhanced signal
should mainly contain the target source components, a more infor-
mative set of acoustic features for describing the target source can
be selected by using this method. Once a set of informative acous-
tic features is selected, the model for calculating the Wiener filter
is structured using, e.g., a Gaussian-mixture-model-(GMM)-based
mapping function [21].

This paper is organized as follows. In section 2, sound source
enhancement using spatial cues, known as the PSD estimation in
beamspace method, is briefly explained. In Section 3, the details
of the proposed method are described. The experimental results
are explained in Section 4, and the paper is concluded with some
remarks in Section 5.
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2. WIENER FILTER DESIGN BASED ON PSD
ESTIMATION IN BEAMSPACE

2.1. Wiener filtering

We assume a problem of determining a target source surrounded
by ambient noise on a sports field, as shown in Fig. 1. All the
sounds are observed with a microphone array with M directive
microphones such as shotgun microphones often used for web-
casts/broadcasts. The signal observed with the m-th microphone
is expressed as

Xm,ω,τ = Dm,θ1,ωAm,θ1,ωSω,τ+

∫
Θ

Dm,θ,ωAm,θ,ωNθ,ω,τdθ,

(1)
where ω and τ denote the frequency and time indices, respec-
tively. The term Dm,θn,ω is the directivity gain of the m-th di-
rective microphone to the angleθn, Am,θ is the transfer function
from a source located at angle θ to the m-th directive microphone,
Sω,τ is the target source, and Nθ,ω,τ is the noise source propagat-
ing from θ. The target source and all surrounding noise are as-
sumed to be mutually uncorrelated; namely, E

[
Sω,τN

∗
θ,ω,τ

]
= 0

and E
[
Nθi,ω,τN

∗
θj ,ω,τ

]
= 0, where E[·] is the expectation opera-

tor and * denotes the complex conjugate.
The PSD of the target source can be defined as

ϕS,ω,τ = E
[
|Sω,τ |2

]
, and the PSD of all noise is

ϕN,ω,τ =
∫
Θ
E
[
|Nθ,ω,τ |2

]
dθ. Thus, the ideal Wiener filter

is designed using

Gω,τ =
ϕS,ω,τ

ϕS,ω,τ + ϕN,ω,τ
. (2)

Output signal Yω,τ is obtained by applying the Wiener filter to one
of the observed signals

Yω,τ = Gω,τXm,ω,τ . (3)

From (2) and (3), the goal of this work was achieved by estimating
ϕS,ω,τ and ϕN,ω,τ from the observations.

2.2. PSD estimation in beamspace

We use the PSD estimation in beamspace method [13, 14] to esti-
mate the PSD of the target sound and noise. We define an angular
width Θ1 as the target beamspace, and Θl, (l = 2, ..., L) as a set of
unique L− 1 angular widths outside Θ1.

Assume ϕΘl is the PSD of sound sources located on Θl(l =
1, ..., L) (spatial PSD). Then the transfer functions from the sources
in each beamspace to the m-th directive microphone are the same,
and the following relationships hold

ϕXm,ω,τ =

L∑
l=1

|Hm,θl,ω|
2ϕΘl,ω,τ , (4)

ϕΘ1,ω,τ = ϕS,ω,τ +

∫
Θ1

E
[
|Nθ,ω,τ |2

]
dθ, (5)

ϕΘl,ω,τ =

∫
Θl

E
[
|Nθ,ω,τ |2

]
dθ. (6)

Here, ϕXm,ω,τ = E
[
|Xm,ω,τ |2

]
is the PSD of the m-th directive

microphone observation, and Hm,θ,ω = Dm,θ,ωAm,θ,ω . These

equations are rewritten by the matrix form ϕX1,ω,τ

...
ϕXM ,ω,τ


︸ ︷︷ ︸

ΦX,ω,τ

=

 |H1,θ1,ω|2 · · · |H1,θL,ω|2
...

. . .
...

|HM,θ1,ω|2 · · · |HM,θL,ω|2


︸ ︷︷ ︸

Dω

ϕΘ1,ω,τ

...
ϕΘL,ω,τ

 .

︸ ︷︷ ︸
ΦS,ω,τ

(7)
Thus, ΦS,ω,τ is calculated by solving the simultaneous equation

ΦS,ω,τ = D+
ωΦX,ω,τ , (8)

where + denotes the pseudo inverse. The Weiner filter, which en-
hances the sources located in Θ1, is calculated by

G̃ω,τ =
ϕΘ1,ω,τ∑L
l=1 ϕΘl,ω,τ

≈
ϕS,ω,τ +

∫
Θ1

E
[
|Nθ,ω,τ |2

]
dθ

ϕS,ω,τ + ϕN,ω,τ
. (9)

As we can see from the numerator in (9), we cannot obtain the ideal
Wiener filter by only applying the PSD estimation in beamspace.
Thus, the target source cannot be determined.

3. PROPOSED METHOD

3.1. Overview of procedures

The Wiener filter can also be calculated from the prior signal-to-
noise ratio (SNR) given by ξω,τ = ϕS,ω,τ/ϕN,ω,τ [10, 23, 24].
With this approach, one does not need to estimate both ϕS,ω,τ , and
ϕN,ω,τ directly; thus, the Wiener filter is rewritten as

Gω,τ =
ξω,τ

1 + ξω,τ
. (10)

To estimate the prior SNR, the minimum mean square error
(MMSE) estimator is used as

ξ̂τ = E [p (ξτ |qτ )] , (11)

where ξτ is a prior SNR vector, ξ̂τ is an estimated prior SNR vector,
and qτ is an informative acoustic feature for detecting the target
source in noisy environments. The informative acoustic feature is
calculated from a pre-enhanced signal using the spatial cue Ỹω,τ =

G̃ω,τXω,τ . To avoid the curse of dimensionality, the prior SNR is
compressed using MFBOs,

ξτ = (ξmel
1,τ , ..., ξ

mel
F,τ )

T , (12)

where ξmel
f,τ is the prior SNR of the f -th MFBO. The condi-

tional probability distribution function (PDF) for MMSE estimator
p (ξτ |qτ ) can be deformed using the joint PDF p (ξτ , qτ ) [22].

To efficiently model p (ξτ , qτ ) from finite size training data,
the relationships between ξτ and qτ should be represented simply.
To this end, (11) can be reformed depending on whether the target
source is active (zτ = 1) or not (zτ = 0). Since the ideal prior SNR
ξmel
f,τ is equal to 0 when the target source is non-active (zτ = 0),

(11) is reformed by

ξ̂τ = E

[
1∑

i=0

p(zτ = i|qτ )p (ξτ |qτ , zτ = i))

]
,

= p(zτ = 1|qτ )E [p (ξτ |qτ , zτ = 1))] . (13)
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Figure 2: Overview of proposed procedures.

Fig. 2 shows an overview of the procedures of the proposed
method. To estimate ξτ using (13), the following two prob-
lems need to be solved: i) selection of informative acoustic fea-
tures to detect the target source accurately from noisy environ-
ments (explained in Section 3.2), and ii) modeling of the joint PDF
p (ξτ , qτ |zτ = 1), which appeared in (13) (explained in Section
3.3).

3.2. Grouped LASSO logistic regression for acoustic feature se-
lection

With the feature-selection procedure, it is assumed that a large num-
ber of potential acoustic features (e.g., MFBOs, ∆ MFBOs) are
listed in advance. Some of the potential acoustic features would
be more informative for segregating the target source from other
noise. However, it would be better to use grouped acoustic features
(e.g., several MFBOs, several ∆ MFBOs). Thus, the acoustic fea-
tures are manually categorized into G groups oτ = (oτ,1, ...,oτ,G).
We used grouped least absolute shrinkage and selection operator
(LASSO) logistic regression [27] to select informative acoustic fea-
ture groups.

Logistic regression is commonly used for classifying a posteri-
ori probability models. Based on the logistic regression, the condi-
tional probability p(zτ = 1|oτ ) can be expressed by

p(zτ = 1|oτ ) =
1

1 + exp
(
−
∑G

g=1 o
T
τ,gβo,g

) , (14)

where βo,g denotes the regression coefficient vector, which is cal-
culated as

βo = arg min
βo

{
−L(βo) + λ

G∑
g=1

√
|g|βT

o,gβo,g

}
. (15)

Here, L(βo), λ, and |g| denote the log-likelihood function of (14),
penalty parameter, and dimension of the g-th acoustic feature group,
respectively. From (15), informative acoustic feature groups will be
selected since the regression coefficients of uninformative features
are shrunk to zero. When the selected acoustic features and corre-
sponding regression coefficients are respectively denoted as qτ and
β, the conditional probability p(zτ = 1|qτ ) is expressed by

p(zτ = 1|qτ ) =
1

1 + exp (−qT
τ β)

. (16)

3.3. GMM-based prior SNR estimation

To calculate the conditional expectation defined in (13), the joint
PDF p (ξτ , qτ |zτ = 1) is modeled using a GMM. The joint vector
ντ = (ξτ , qτ ) and its PDF trained with the GMM are expressed by

ντ ∼
K∑

k=1

wkN
(
ντ |µ(ν)

k ,Σ
(ν)
k

)
, (17)

where the mean vector µ(ν)
k and covariance matrix Σ

(ν)
k are respec-

tively written as

µ
(ν)
k =

[
µ

(ξ)
k

µ
(q)
k

]
, Σ

(ν)
k =

[
Σ

(ξξ)
k Σ

(ξq)
k

Σ
(qξ)
k Σ

(qq)
k

]
. (18)

Here µ(ξ)
k and µ

(q)
k are the mean vectors of variables ξτ and qτ that

follow the k-th Gaussian. Likewise, Σ(ξξ)
k and Σ

(qq)
k respectively

denote the covariance matrix of ξτ and qτ .
The conditional expectation of ξτ from the trained GMM is

calculated as

E [p (ξτ |qτ , zτ = 1))] =

K∑
k=1

p(k|qτ ,µ
(q)
k ,Σ

(qq)
k )Υk,τ , (19)

where

p(k|qτ ,µ
(q)
k ,Σ

(qq)
k ) =

wkN
(
qτ |µ(qq)

k ,Σ
(qq)
k

)
∑K

j=1 wjN
(
qτ |µ(qq)

j ,Σ
(qq)
j

) , (20)

Υk,τ = µ
(ξ)
k +Σ

(ξq)
k

(
Σ

(qq)
k

)−1 (
qτ − µ

(q)
k

)
. (21)

Since ξ̂τ is composed of the estimated prior SNR for each
MFBO, it is transformed into the prior SNR for (linear) frequency
bins by the spline interpolation.

4. EXPERIMENTS

4.1. Experimental conditions

Experiments were conducted on a mock sports field to evaluate the
proposed method’s performance in collecting target sources. The
target sources and microphone array were surrounded by cheering
noise emitted from seven loudspeakers, as shown in Fig. 3. The tar-
get sources consisted of the sound of a tee ball being batted (base-
ball), the sound of a ball being kicked (football), and the shout of a
goalkeeper (shout). Each target source was evaluated with ten sam-
ples that were different from the training data. The microphone ar-
ray consisted of two different microphones: a shotgun microphone
for creating the target beamspace and a cardioid microphone for cre-
ating the noise beamspace. The two microphones were positioned
so their directivity beams were pointing at opposite angles to each
other and were as close as possible. The noise level was adjusted to
100 dB sound pressure level (SPL) at the center of the microphone
array.

The proposed method was compared with two conventional
methods: Source enhancement based on PSD estimation in
beamspace [13] (#1(SP)) and acoustic-model-based source en-
hancement by extracting acoustic features (#2(GMM+LASSO)).
The log spectral distortion (LSD) and noise level (NL) [10] were
used as the evaluation measures. The LSD was used to evaluate
the distortion of the target source, and the NL was used to evaluate
noise reduction performance.

LSD = Medianτ∈H

{√
1

|Ω|
∑
ω

Ψ2
ω,τ

}
, (22)

NL = Medianτ∈H̄

{∑
ω

20 log10 |Yω,τ |

}
− C, (23)
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Figure 3: Arrangement of microphone array and loudspeakers for
reproducing cheering noise. The athlete plays sports at the x–mark.

Table 1: Experimental conditions.
Sampling rate 48.0 kHz
FFT length 512 pts
FFT shift length 256 pts
Total dimensions of potential acoustic feature 149
Number of Groups G 31
Number of Mel-filterbanks F 30
Number of Gaussian mixtures K 8

Table 2: List of potential acoustic features.
Acoustic feature Groups
MFBO (target beamspace) 7
MFBO (noise beamspace) 7
∆MFBO (target beamspace) 7
∆MFBO (noise beamspace) 7
MFCC (target beamspace) (14 dimensions) 1
MFCC (noise beamspace) (14 dimensions) 1
Spectral entropy[28] (target beamspace) 1

where H denotes the interval that contains the target source, H̄ de-
notes the noise interval, C denotes the observed noise level, and
Ψω,τ = 20 log10 |Sω,τ | − 20 log10 |Yω,τ |. A low LSD score indi-
cates high performance of target source reproducibility and a low
NL score indicates high noise reduction performance.

A training dataset for the proposed method and
#2(GMM+LASSO) was generated by adding a clean target
source and a noise source that had been recorded individually.
The priori SNR data were also generated from these training data.
Probability models were trained with 100 samples of the target
source data. Penalty parameter λ was determined with cross
validation. Other conditions are summarized in Table 1.

4.2. Experimental results

Fig. 4 shows the LSD and NL scores, and Figs. 5 (a)–(e) show
the waveforms of the target source, observation signal, and output
signals. With the proposed method, the LSD and NL scores were
lower than those of the conventional methods for all targets. The
NL score with #2 (GMM+LASSO) was significantly lower than #1
(SP). Modeling of the target source with PDF is thought to be effec-
tive in detecting the target source. Because acoustic features were
extracted from the pre-enhanced signal, both target source detection
and Wiener filter design were accurate. Thus, the results indicate
that pre-enhancement based on the target source is effective for col-
lecting target sources. The selected acoustic features for each target
can be considered reasonable. For example, in the football results,
a delta MFBO (target beamspace) from 4 to 16 kHz was mainly se-
lected. From these results, we confirmed that the proposed method

Figure 4: Experimental results.

Figure 5: Waveform of (a) original target source, (b) observed sig-
nal at shotgun microphone, (c) output signal with #1 (SP), (d) output
signal with #2 (GMM+LASSO), and output signal with proposed
method.

is effective in collecting target sources even in noisy environments.

5. CONCLUSIONS

We proposed a method for collecting target sounds on a noisy
sports field with selecting acoustic features of a target source us-
ing grouped LASSO logistic regression. A Wiener filter is then
structured using a GMM-based mapping function from the se-
lected acoustic features. The experimental results on a mock sports
field revealed that the proposed method outperformed conventional
methods that used either spatial cues or acoustic features only.

Further experiments on various actual outdoor sports field are
necessary to validate the practical performance of the proposed
method. In addition, to evaluate quality of collected target sounds,
not only quantitative evaluation but subjective evaluation should be
conducted. It should also be noted that developing an automated
design method of more informative acoustic features, which will
prevent having to pre-define the acoustic feature candidates, is nec-
essary.
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