
Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www.tcs.auckland.ac.nz)

CITR-TR-27 August 1998

Criteria for Differential Equations
in Computer Vision

Ryszard Kozera 1 and Reinhard Klette2

Abstract

Differential equations (ODEs or PDEs) appear in many computer vision fields. Shape-
from-shading, optical flow, optics, and 3D motion are examples of such fields. This
report discusses theoretical criteria for the corresponding continuous problem,
theoretical criteria for discrete numerical schemes, and experimental measurements
for the implemented numerical schemes. These criteria are illustrated by discussing a
shape-from-shading problem in which the reflectance map is linear.

1 Department of Computer Science, The University of Western Australia, Nedlands 6907 WA,
Australia
2 CITR, Tamaki Campus, University Of Auckland, Auckland, New Zealand



Criteria for Di�erential Equations in Computer Vision

Ryszard Kozera
1
and Reinhard Klette

2

1 Department of Computer Science, The University of Western Australia

Nedlands 6907 WA, Australia

2 CITR, University of Auckland

Tamaki Campus, Building 731, Auckland, New Zealand

Abstract: Di�erential equations (ODEs or PDEs) appear in many computer vision �elds. Shape-from-

shading, optical 
ow, optics, and 3D motion are examples of such �elds. This report discusses theoretical

criteria for the corresponding continuous problem, theoretical criteria for discrete numerical schemes,

and experimental measurements for the implemented numerical schemes. These criteria are illustrated

by discussing a shape-from-shading problem in which the re
ectance map is linear.

Keywords: Di�erential equations, evaluation criteria, linear shape-from-shading, well-posedness, con-

vergence and stability

1 Introduction

Di�erential equations (ODEs or PDEs) appear in many computer vision �elds. Shape-from-shading,

optical 
ow, optics, and 3D motion are examples of such �elds. Solving problems modeled by ODEs and

PDEs can be accomplished by �nding either an analytical solution, what is in general a di�cult task, or

by computing a numerical solution to the corresponding discrete scheme. Numerical solutions are usually

more easily found with the aid of computer. In this report we consider the case of numerical schemes.

The evaluation of numerical solution schemes may be based on

(i) theoretical criteria for the corresponding continuous problem,

(ii) theoretical criteria for the discrete numerical scheme, or

(iii) experimental measurements for the implemented numerical scheme.

Single-scheme analysis as well as a comparative analysis may be performed utilising any of these three

types of criteria. Well-posedness questions for the corresponding continuous problems may be cited

for type (i) evaluations. Upon derivation of a speci�c discrete numerical scheme (either sequential or

parallel) convergence and stability issues need to be established. Most of the existing numerical schemes

in computer vision have been so-far neither supplemented by pertinent convergence and stability analysis

nor compared by using an appropriate evaluation procedure. The speci�cation of domains of in
uence is
a further example of type (ii) evaluations. Experimental analysis may be based on selected performance

measures as di�erent error measures within the domain of in
uence.

In this report we illustrate the study of numerical solution schemes for di�erential equations by discussing

a special application. We report on theoretical and experimental results concerning the shape-from-

shading problem in which the re
ectance map is linear. The signi�cance of this topic and the conclusions

stemming out from this work is itemized in the closing section of this report.

We discuss and compare four di�erent two-layer �nite-di�erence based schemes derived for a linear shape-

from-shading problem. The schemes are based on the combination of forward- and backward- di�erence

derivative approximations and operate over a rectangular �xed grid. The evaluation analysis is based on

both theoretical (convergence, stability, domain of in
uence) and experimental (performance of imple-

mented schemes) criteria.



2 Linear Shape from Shading

Linear shape-from-shading problems arose in the study of the maria of the moon [Horn, 1986, Subsections

10.9 and 11.1.2] and in a local shape-from-shading analysis [Pentland, 1990]. If a small portion of an object

surface, described by the graph of a function u, having re
ectivity properties approximated by a linear

re
ectance map, is illuminated by a distant light source of unit intensity from direction (a1; a2;�1), then
the corresponding image function E(x1; x2) satis�es a linear image irradiance equation of the form�

a1
@u

@x1
(x1; x2) + a2

@u

@x2
(x1; x2) + 1

�
(a21 + a22 + 1)�1=2 = E(x1; x2); (1)

over an image domain 
 = f(x1; x2) 2 IR
2 : E(x1; x2) � 0g. The problem consists in reconstructing

the object surface graph(u) based on given irradiance values E(x1; x2) and based on given or calculated

light source parameters a1 and a2. These parameters and the grid resolution along the x1� and x2�
axes characterise a speci�c discrete linear shape-from-shading problem. More general shape-from-shading

problems are studied in [Horn, 1986, Klette et al., 1998a, Klette et al., 1998, Sethian, 1996].

Letting E(x1; x2) = E(x1; x2)(a21 + a22 + 1)1=2 � 1, one can rewrite (1) into a transformed linear image

irradiance equation

a1
@u

@x1
(x1; x2) + a2

@u

@x2
(x1; x2) = E(x1; x2): (2)

In this report we evaluate four �nite-di�erence based schemes derived from (2). Critical to our ap-

proach is the assumption that u is given along some (not necessarily smooth) initial curve 
 in the

image domain 
 or at the boundary of 
. A prior knowledge of pertinent boundary conditions is es-

sential for other algorithms used in shape from shading and based on methods of charactersitic strips
or equal-height contour propagation [Horn, 1986, Sethian, 1996]. These boundary conditions can be ob-

tained, for example if we combine a single image shape recovery with the photometric stereo technique
[Klette et al., 1998, Kozera, 1991, Kozera, 1992, Onn and Bruckstein, 1990]. The latter is applicable only

over the intersection of multiple images (e.g. over 
 = 
1\
2) and does not require boundary conditions.
As a side e�ect, apart from �nding the function u 2 C2(
), missing Dirichlet boundary conditions are also

recovered along the boundary @
. These Dirichlet conditions constitute, in turn, a start-up curve 
 for

each discussed �nite-di�erence scheme to recover the unknown shape over the remaining non-overlapping

parts of images (i.e. over 
1n
 and 
2n
). Alternatively, in certain cases (when the object is positioned

on the plane parallel to x1x2�plane and has the so-called occluding boundary over @
), one can also

assume that uj@
 � const along @
. All presented here schemes provide the numerical solution of the

following Cauchy problem:

Object surfaces u 2 C(�
) \C2(
) are considered over a rectangular image domain 
 = f(x1; x2) 2 IR
2 :

�a � x1 � a and � b � x2 � bg, with both a and b positive:

L(u(x1; x2)) = E(x1; x2)

u(x1;�b) = f(x1) for � a � x1 � a; sgn(a1a2) � 0; (3)

u(�a; x2) = g(x2) for � b � x2 � b;

where Lu = a1ux1+a2ux2 , and the functions f 2 C([�a; a])\C2((�a; a)) and g 2 C([�b; b])\C2((�b; b))
satisfy f(�a) = g(�b), E 2 C2(
), and a1 and a2 are light source parameters such that (a1; a2) 6= (0; 0).

The case sgn(a1a2) � 0 can be treated analogously. For details of this work, the interested reader is

referred to [Kozera and Klette, 1997a, Kozera and Klette, 1997b].

3 Basic Notions and Theory for Finite-Di�erence Schemes

At �rst we recall some basic notions and results from the theory of �nite-di�erence methods applied

to PDEs [Van der Houwen, 1968, Chapter 1]. Assume that an interval I = [�T; T ] and a domain G =

G1�G2�:::�Gm � IR
m (where each Gi is a subinterval of IR) together with its boundary � and �G = G[�



are given and that (E0( �G); k kE0 ), (E( �G); k k �G), (E(�); k k�), and (E(G); k kG) are linear normed spaces

of scalar or vector-valued functions, de�ned respectively, on the set of points �G, �G� I, �� I, and G� I.
Consider now the following problem:

Ut(x; t) +

mX
i=1

Di(x; t)Uxi(x; t) = H(x; t);

U (�� I) = 	(�); U (x;�T ) = U0(x); (4)

where (x; t) 2 G � I, the scalar functions U0 2 E0( �G), 	 2 E(�), and a vector function F (x; t) =

(H(x; t); D(x; t)) 2 E(G), for D(x; t) = (D1(x; t); D2(x; t); : : : ; Dn(x; t)). A problem of �nding the

inverse of a given mapping L : DL ! �L of an unknown function U 2 DL = (E( �G); k k �G) onto a known

element (U0; F;	) 2 �L = (E0( �G)�E(G)�E(�); k k�), where k(U0; F;	)k� = kU0kE0 +kFkG+k	k�;
is called an initial boundary value problem.

De�nition 1 An initial boundary value problem LU = (U0; F;	) is said to be well-posed with respect to
norms in E( �G) and in E0( �G) � E(G) � E(�) if L has a unique inverse L�1 which is continuous at the
point (U0; F;	).

Now we introduce uniform grid sequence. We replace the continuous interval I = [�T; T ] by a discrete

set of points [t0 = �T; t1; t2; : : : ; tM = T ], where tk+1 � tk = �t, for each k 2 [0; : : : ;M � 1], and

M�t = 2T . Furthermore assume a �nite set of points ��t � � and of points G�t � G such that the

�xed distance �xi, for i 2 [1; : : : ;m], between two consecutive points in the xi�axis direction satis�es

�xi = Ai�t, where Ai is a scaling factor such that, for some integer Ni, we have NiAi�t = �(Gi), where

�(Gi) denotes the measure of Gi.

These three sets ftkgMk=0, G�t, and ��t of points constitute a grid Q�t in �G�I, i.e. Q�t = �G�t�ftkgMk=0;
where �G�t = G�t [ ��t. We assume that a sequence of grids Q�t is de�ned in such a way that fQ�tg
is dense in �G� I. The last requirement is satis�ed when lim�t!0+ NiAi�t = 0 (for each i 2 [1; : : : ;m]).

Furthermore, we introduce the corresponding normed grid spaces

(E0( �G�t); k kE0�t
); (E( �G�t); k k �G�t

); (E(��t); k k��t
); (E(G�t); k kG�t

) (5)

de�ned on the sets �G�t, �G�t � ftkgMk=0, ��t � ftkgMk=0, and G�t � ftkgMk=0, respectively.

The elements of these spaces are called grid functions and are denoted by lower case letters u0, u,  , and

f .

A mapping R�t of an unknown grid function u of (E( �G�t); k k �G�t
) into the known element (u0; f;  ) of

(E0( �G�t)� E(G�t)� E(��t); k k�t� ), where k(u0; f;  )k�t� = ku0kE0�t
+ kfkG�t

+ k k��t
is de�ned

for each grid Q�t, is called a �nite-di�erence scheme.

Di�erence schemes can be described by the equation R�tu = (u0; f;  ), with the domain and range of

R�t denoted by DR�t (called as a discrete domain of in
uence) and �R�t, respectively. It is assumed

that both DR�t and �R�t are linear spaces and R�t has a unique inverse R�1�t , which is continuous in

DR�t for every �t 6= 0.

De�nition 2 For a given initial boundary value problem, a grid sequence and an associated �nite-
di�erence scheme we de�ne that a set DI � 
 is called domain of in
uence, where DI = cl (

S
DR�t).

Let us now introduce the discretisation operator [ ]d(�t) which transforms a function U 2 E( �G) to its

discrete analogue [U ]d(�t) de�ned as U reduced to the domain of the grid Q�t. In the same manner we

de�ne discretised elements [U0]d(�t) 2 E0( �G�t), [F ]d(�t) 2 E(G�t), and [	]d(�t) 2 E(��t). In this report
we use the convention: [U ]d(�t) = u; [U0]d(�t) = u0; [F ]d(�t) = f , and [	]d(�t) =  ; where f = (h; d).

Moreover, it is also assumed that the norms on the grid sequence fQ�tg match the corresponding norms

from the related continuous spaces i.e.

kuk �G�t
! kUk �G; ku0kE0�t

! kU0kE0 ; kfkG�t
! kFkG; k k��t

! k	k� (6)

as �t! 0:



Now we introduce the evaluation criteria for numerical solution schemes. Assume that eU is a solution

to the initial boundary value problem LeU = (U0; F;	); and that u is a solution to the corresponding

discrete problem

R�tu = (u0; f;  ): (7)

If R�t is to be a "good approximation\ of L we expect that the function eu = [eU ]d(�t); for some element

(eu0; ef; e ), satis�es a �nite-di�erence equation R�teu = (eu0; ef; e ) which closely relates to (7).

De�nition 3 The value k[LeU ]d(�t) � R�teuk�t� is called the error of the approximation, whereas the
value ku� euk �G�t

is, in turn, called the discretisation error.

De�nition 4 We say that a di�erence scheme is consistent with an initial boundary value problem if the
error of approximation converges to zero as �t! 0.

De�nition 5 We say that a di�erence scheme is convergent to the solution u (if it exists) if the discreti-
sation error converges to zero as �t! 0.

De�nition 6 We say that a linear �nite-di�erence scheme is R-F stable (this de�nition follows Rjabenki
and Filippov) if operators fR�1�tg are uniformly bounded as �t! 0.

Combining the De�nitions 5:3 and 6:2 with the Theorem 5.1 in [Van der Houwen, 1968, Chapter 1] we

have the following:

Theorem 1 A consistent and R-F stable �nite-di�erence scheme is convergent to the solution of LeU =

(U0; F;	), if such a solution exists.

Of course, for a Cauchy problem (3) (with a2 6= 0), we have m = 1, I = [�b; b], x2 = t, x1 = x,

G = (�a; a), � = f�a; ag U0(x1) = f(x1), 	(� n fag) = g(x2), H(x1; x2) = (1=a2)E(x1; x2), and

D1(x1; x2) = (a1=a2). If in turn, a2 = 0 then the parameter t is assigned to x1�variable and further

analysis is analogous to the preceding case. The continuous and discrete normed spaces de�ned above,

are assumed to be equipped here with standard maximum norms k k1 clearly satisfying the compatibility
conditions (6) [Kozera and Klette, 1997a].

4 Evaluation of Di�erent Finite-Di�erence Based Schemes

In this section we consider the problem (3) over a rectangular domain 
 with a2 6= 0. We assume a

uniform grid Q�x2 with N1 =M , �x2 = (2b=M ) and �x1 = (2a=M ) = A1�x2, where M 2 [0; 1; : : : ;1]

and A1 = a=b. It follows that ((a1�x2) =(a2A1)�x2)) = const. In addition, we assume that a function

u is a C2 solution to (2), and lastly that problem (3) is well-posed [Kozera and Klette, 1997a]. Note that

a1 and a2 are the model parameters (light source parameters) of the linear problem.

4.1 Forward-Forward Finite-Di�erence Scheme

Applying forward-di�erence derivative approximations together with Taylor's formula yields

@u

@x1

����
n

j

=
unj+1 � unj

�x1
+ O(�x1) and

@u

@x2

����
n

j

=
un+1j � unj

�x2
+ O(�x2); (8)

for any j; n 2 f1; : : : ;M�1g. Here unj , @u
@x1

��n
j
, and @u

@x2

��n
j
denote the values of u, @u

@x1
, and @u

@x2
, respectively,

at the point (x1j; x2n) in the grid. �x1 and �x2 denote the distances between grid points in the respective

directions. M denotes the grid resolution. By substituting (8) into (2) at each grid point (x1j; x2n), we

get

a1
unj+1 � unj

�x1
+ a2

un+1j � unj
�x2

+ O(�x1;�x2) = En
j : (9)



Denoting by v an approximate of u, we obtain from (9) the following sequential two-level �nite-di�erence

explicit scheme

vn+1j =

�
1 +

a1�x2

a2�x1

�
vnj �

a1�x2

a2�x1
vnj+1 +

�x2

a2
En
j ; (10)

with j; n 2 f1; : : : ;M � 1g. The following result holds [Kozera and Klette, 1997a]:

Theorem 2 Let � = (a1�x2)(a2�x1)
�1 be a �xed constant. Then, numerical scheme (10) is R-F stable,

if and only if �1 � � � 0.

Consequently (by Theorem 1), for �1 � � � 0, the sequence of functions fu�x2g (where each u�x2 is

a solution of (10) with �x2 temporarily �xed) is convergent to the solution of the Cauchy problem (3),

while �x2! 0.

As mentioned before, given an initial boundary value problem (3), the scheme (10) recovers the unknown

shape over a domain of in
uence DI which, for a1 6= 0 and N1 =M , coincides with

� = f(x1; x2) 2 IR
2 : �a � x1 � a; and � b � x2 � (�b=a)x1g; (11)

and for a1 = 0 with the entire �
. The scheme (10) has been tested for a = b =
p
2, with grid resolution

N1 =M = 64, �x1=�x2 = 1:0, a1 = �0:5, and a2 = 1:0, and therefore with � = �0:5.

A volcano-like surface represented by the graph of the function uv(x; y)= (1=(4(1+ (1�x2� y2)2))) (see
Fig. 1a) and a mountain-like surface represented by the graph of the function um(x; y) = (1=(2(1 + x2 +

y2))) (see Fig. 1b) were taken as test surfaces.
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Figure 1: (a) The graph of the function uv(x; y) = (1=(4(1+(1�x2�y2)2))) being a volcano-like surface.
(b) The graph of the function um(x; y) = (1=(2(1 + x2 + y2))) being a mountain-like surface.

The absolute errors between heights of the ideal and computed surfaces are presented in Fig. 2. For

a value � =2 [�1; 0] an implementation of the numerical scheme (10) results in instability of (10), see

[Kozera and Klette, 1997a].

4.2 Backward-Forward Finite-Di�erence Scheme

Applying now a backward-di�erence derivative approximation to ux1

@u

@x1

����
n

j

=
unj � unj�1

�x1
+ O(�x1);

and a forward-di�erence derivative approximation to ux2 leads to the corresponding two-level explicit

�nite-di�erence scheme

vn+1j =

�
1� a1�x2

a2�x1

�
vnj +

a1�x2

a2�x1
vnj�1 +

�x2

a2
En
j ; (12)
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Figure 2: (a) The absolute error between volcano-like and computed surface for the forward-forward

scheme. (b) The absolute error between mountain-like and computed surface for the forward-forward

scheme.

with j; n 2 f1; : : : ;M � 1g. The following stability and convergence result for the above �nite-di�erence

scheme holds [Kozera and Klette, 1997a]:

Theorem 3 Let � = (a1�x2)(a2�x1)
�1 be a �xed constant. Then, numerical scheme (12) is R-F stable,

if and only if 0 � � � 1.

Consequently (by Theorem 1), for 0 � � � 1, the sequence of functions fu�x2g (where each u�x2 is a

solution of (12) with �x2 temporarily �xed) is convergent to the solution of the Cauchy problem (3),

while �x2! 0.

As easily veri�ed, the domain of in
uence DI of scheme (12) coincides with �
, for arbitrary �. Thus,

assuming the goal of global shape reconstruction, it is clear that (12) provides a better reconstruction

opposed to (10).

The scheme (12) has been tested for the same shapes as in the previous case. With a = b =
p
2, grid

resolution N1 =M = 64, �x1=�x2 = 1:0, a1 = 0:5, a2 = 1:0, and thus with � = 0:5, the absolute errors

between heights of the ideal and computed surfaces are presented in Fig. 3.
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Figure 3: (a) The absolute error between volcano-like and computed surface for the backward-forward

scheme. (b) The absolute error between mountain-like and computed surface for the backward-forward

scheme.



4.3 Forward-Backward Finite-Di�erence Scheme

Applying now a forward-di�erence derivative approximation to ux1 and a backward-di�erence derivative

approximation to ux2 leads to the following two-level explicit and horizontal �nite-di�erence scheme:

vnj+1 =

�
1� a2�x1

a1�x2

�
vnj +

a2�x1

a1�x2
vn�1j +

�x1

a1
En
j ; (13)

(for a1 6= 0), or otherwise to the following vertical two-level explicit scheme:

vnj = vn�1j +
�x2

a2
En
j ; (14)

with j; n 2 f1; : : : ;M � 1g. Observe that for the scheme (13) the role of increment step �t is played by

�x1, if an implicit scheme is not considered. Clearly, the shape reconstruction proceeds now sequentially

along the x1�axis direction (opposite to the previous cases). In a natural way, the boundary condition

is represented by the function f(x1) and the corresponding initial condition by the function g(x2). We

present now the next convergence result for the schemes (13) and (14) [Kozera and Klette, 1997a]:

Theorem 4 Let e� = (a2�x1)(a1�x2)
�1 be a �xed constant. Then, numerical scheme (13) is R-F stable,

if and only if 0 � e� � 1. Moreover, the numerical scheme (14) is unconditionally R-F stable.

Consequently (by Theorem 1), for 0 � e� � 1, the sequence of functions fu�x1g, where each u�x1 is a

solution of (13) with �x1 temporarily �xed, is convergent to the solution of the Cauchy problem (3),

while �x1 ! 0. Moreover, the sequence of computed solutions fu�x2g to (14) converges to the solution

of the corresponding Cauchy problem (3), while �x2 ! 0.

For both schemes the respective domains of in
uence DI coincide with �
. We discuss here only the

performance of the scheme (13). It has been tested for the same sample surfaces as in the previous cases.

With a = b =
p
2, grid resolution N1 = M = 64, �x1=�x2 = 1:0, a1 = 1:0, a2 = 0:5, and thus withe� = 0:5, the absolute errors between heights of the ideal and computed surfaces are presented in Fig. 4.
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Figure 4: (a) The absolute error between volcano-like and computed surface for the forward-backward

scheme. (b) The absolute error between mountain-like and computed surface for the forward-backward

scheme.

4.4 Backward-Backward Finite-Di�erence Scheme

Applying now backward-di�erence derivative approximations for both derivatives ux1 and ux2 we arrive

at the following two-level implicit scheme:

vnj =
1

1 + �
vn�1j +

�

1 + �
vnj�1 +

�x2

a2(1 + �)
En
j (15)



(for � 6= �1), or otherwise at the following two-level explicit scheme:

vnj�1 = un�1j +
�x2

a2
En
j ; (16)

with j; n 2 f1; : : : ;M � 1g and � = (a1�x2=a2�x1).

It is clear that, as opposed to the last subsection, (15) cannot be reduced to the explicit iterative

form by a mere change of the recovery direction. However, this can be achieved by using implicit

approach [Kozera and Klette, 1997a, Subsections 3.4]. The following result for schemes (15) and (16)

holds [Kozera and Klette, 1997a]:

Theorem 5 Let � = (a1�x2)(a2�x1)
�1 be a �xed constant. Then, numerical scheme (15) is R-F stable,

if and only if � � 0. Moreover, the numerical scheme (16) is unconditionally R-F stable.

Consequently (by Theorem 1), for � � 0, the sequence of functions fu�x2g, where each u�x2 is a solution
of (15) with �x2 temporarily �xed, is convergent to the solution of the Cauchy problem (3), while

�x2 ! 0. Moreover, the sequence of computed solutions fu�x2g to (16) converges to the solution of the

corresponding Cauchy problem (3), while �x2 ! 0.

The corresponding domain of in
uence DI for the scheme (15) covers the entire �
, whereas for the scheme

(16) coincides with (11). The scheme (15) has been tested for sample shapes as in the previous cases.

With a = b =
p
2, grid resolution N1 = M = 64, �x1=�x2 = 1:0, a1 = 0:5, a2 = 1:0, and thus with

� = 0:5, the absolute errors between heights of the ideal and computed surfaces are presented in Fig. 5.
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Figure 5: (a) The absolute error between volcano-like and computed surface for the backward-backward

scheme. (b) The absolute error between mountain-like and computed surface for the backward-backward

scheme.

5 Conclusions

Four two-layer �nite-di�erence based schemes are discussed in this report and the experimental results

for two sample surfaces, a volcano-like and a mountain-like surface, are presented. Convergence, stability,
domain of in
uence, and maximum relative errors are considered here as algorithmic features used as

evaluating criteria. The table below collates both theoretical and experimental results. The corresponding

relative errors listed in the last two columns (for the volcano-like and the mountain-like surfaces) represent

the maximumof the ratio of the di�erence of heights between computed and ideal surfaces devided by the

height of the ideal surface (volcano and mountain-like, respectively), for grid points within the domain

of in
uence.



Scheme Stab./Conv. In
uence Domain Error-V Error-M

f-f �1 � � � 0 DI = � � 10% � 3%
b-f 0 � � � 1 DI = 
 � 6% � 2%
f-b 0 � ��1 � 1 DI = 
 � 8% � 3%

b-b 0 � � DI = 
 � 14% � 5%

Finally, we itemize a few aspects of the presented results:

� In choosing a proper scheme theoretical criteria such as stability, convergence and domain of in-

uence, or experimental criteria such as relative error can be used as evaluation criteria. For

experimental errors for optical 
ow calculations (another case of applying numerical schemes for

solving di�erential equations) see also [Klette et al., 1998].

� Stability and convergence are intrinsic properties of a given scheme.

� The domain of in
uence depends on the choice of a given scheme, the geometry of 
 and available

Dirichlet boundary conditions.

� A complete convergence and stability analysis of all considered schemes is reported in this report (as

opposed to approach [Horn, 1986] or 
awed results [Pentland, 1990]). Stability analysis provides

also means to discuss noisy camera-captured input images [Kozera and Klette, 1997a].

� Well-posedness of the corresponding continuous Cauchy problem (3) is also established. For a

complete proof see [Kozera and Klette, 1997a].

� As opposed to the classical base characteristic strips method [John, 1971] applied in computer vision

by [Horn, 1986], all two-layer schemes introduced here operate on �xed rectangular grid. Three-layer
schemes can also be investigated in future research.

� A linear model of re
ectance maps can be applied to the satellite image interpretation or to local

shading analysis [Horn, 1986, Pentland, 1990].

� The linear case helps to understand a non-linear case. Finite-di�erence schemes can also be applied

to the non-linear PDEs [Rosinger, 1982] and therefore to non-linear re
ectance maps.

� The single image �nite-di�erence technique can be combined with the multiple image photometric

stereo technique, if Dirichlet conditions are not a priori available (see Section 2).

A real image 
 may possess invisible surface area i.e. 
black � 
, where E � 0. This work deals

exclusively with the simulated images de�ned globally over 
. In particular, negative values of image

function E over 
black, were considered to be admissible according to the formula (1). If however, the

simulated image function E is pre-de�ned as vanishing, whenever a1ux1+a2ux2+1 < 0, the corresponding

domain of in
unece DI is clearly diminished. It depends no longer exclusively on a given �nite-di�erence

scheme, the geometry of 
 and the corresponding Dirichlet boundary conditions, but also on the choice

of the speci�c illumination direction as well as the surface graph(u). Stability and convergence results

remain unchanged.
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