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1 Introduction

This paper reports on multigrid convergence as a general approach for model-based evaluations of com-
puter vision algorithms. This criterion is in common use in numerical mathematics. In general, algorithms
may be judged according to criteria, such as methodological complexity of underlying theory, expected
time for implementation, or run-time behaviour and storage requirements of the implemented algorithm.
Accuracy is an important criterion as well, and this can be modeled as convergence towards the true
value for grid based calculations.

Multigrid convergence is discussed in this paper for two di�erent tasks. Both tasks are related to 3D
surface approximation or 3D surface recovery. The existence of convergent algorithms is discussed for

(i) the problems of volume and surface area measurement for Jordan sets or 3D objects based on regular,
orthogonal grids: convergent volume measurement is known since the end of the 19th century, see,
e.g. [Scherer, 1922], a provable convergent surface area measurement is a recent result in the theory
of geometric approximations [Sloboda, 1997], and

(ii) the problem of (incremental) 3D reconstructions of Jordan faces based on irregular grids: many
techniques in computer vision are directed on reconstructing 3D surfaces; assuming that these
techniques have successfully reconstructed a surface, then the next step is to represent this surface
under special (e.g. incremental transmission) conditions [Zhou and Klette, 1997].

Jordan faces, surfaces and sets are proper models for discussing surface approximations. In this paper, a
3D object in three-dimensional Euclidean space is a simply-connected compact set bounded by a (mea-
surable) Jordan surface [Mangoldt and Knopp, 1965, Klette, 1998]. A Jordan surface is a �nite union of
Jordan faces.

3D objects are studied based on given digitizations in computer vision, image analysis, or object visualisa-
tion. Regular grids are of commonuse in computer vision or image analysis. Let Zr = fm � 2�r : m 2 Zg ;
where Z is the set of integers and r = 0; 1; 2; ::: speci�es the grid constant 2�r: The set Znr is the set of all
r-grid points in n-dimensional Euclidean space. Each r-grid point (x1; :::; xn) de�nes a topological unit
(a grid cube)

Cr(x1; :::; xn) = f(y1; :::; yn) : (xi � :5)2�r � yi � (xi + :5)2�r; i = 1; :::; ng:

Irregular grids, as Voronoi or Delaunay diagrams, are favoured for object visualisations. However, the
vertices of these irregular grids are often restricted to be points in Znr .



In evaluations we have to compare truth against obtained results. A true entity is normally well-de�ned
within mathematical studies, however in general not in image analysis applications. In this paper we
propose and study a mathematical problem: A multigrid digitization model for 3D objects, either regular
[Klette, 1985] or irregular [Zhou and Klette, 1997], assumes an ideal mapping of a given set (the \true
3D object" having the \true surface area", the \true samples of a terrain map", etc.) into a �nite digital
data set. The problem consists in analyzing the behavior of a given technique or algorithm assuming
�ner and �ner grid resolution. For regular grids we reduce the grid constant 2�r (= side length of grid
cubes). It converges towards zero for r = 0; 1; 2; ::: For irregular grids we increase the number of vertices
until we reach a given maximum of sample points. Assume that a Jordan face is given by values at
these n vertices, and a speci�cation of their neighbourhoods. The task consists in �nding a series of
approximation surfaces with m vertices (m 2 (i; i + 1; : : : ; n); i > 0) with approximation error "m and
"1 � "2 � : : : � "m � 0; for m � n: Convergence studies are directed on cases n!1:

The convergence issue addressed in this paper corresponds not only to the continued progress in imaging
technology. It is of special value also for understanding the soundness of a chosen approach. The
convergence problem may be studied based on experimental evaluations of approaches, algorithms or
implementations, using, e.g., synthetic 3D objects and a selected digitization model. We provide a
few examples for this evaluation strategy in the following two sections. These examples may highlight
the importance of convergence studies. Produced data sheets as the provided ones may be of value for
practical situations. However a theoretical analysis leads (hopefully) to the complete answers as illustrated
in the next section. Irregular approximations may be based on the suggested minimum Jordan surface
constructions as well if the correct surface area of the reconstructed surface is desirable.

2 Regular Grids: Volume and Surface Area

Algorithms for measuring surface area and volume should be consistent for di�erent data sets of the
same object taken at di�erent spatial resolutions. In our image analysis applications we do expect that
measured surface areas and volume values converge towards proper values assuming an increase in spatial
resolution. For example, volume or surface area measurement should not be in
uenced by the rotation
angle of the given 3D object. Feature convergence is of fundamental importance in 3D object analysis.

Figure 1: Grid cube inclusion (top row) and grid cube intersection (bottom row) digitization of a sphere
assuming three di�erent grid constants



2.1 Digitization

Grid cube inclusion (with respect to the topological interior of the given 3D object) and grid cube inter-

section digitizations are assumed for 3D objects having interior points (see Fig. 1). Grid cube inclusion
digitization de�nes the inner interior I�r (�) of a given 3D object �; and grid cube intersection digi-
tization de�nes the outer interior I+

r
(�): The resulting digital objects can be described as being grid

continua, see, e.g., [Sloboda et al., 1998].

We consider synthetic objects. Assume, e.g., a cube � as a given three-dimensional set and a digitization
of this cube with respect to a chosen grid constant. The resulting isothetic polyhedron I�

r
(�) contains all

grid cubes Cr which are completely inside of the given cube. An isothetic polyhedral Jordan surface is a
polyhedral Jordan surface whose faces are coplanar either with the XY-, XZ-, or YZ-plane. An isothetic

polyhedron is a polyhedron whose boundary is an isothetic polyhedral Jordan surface.

Figure 2: Two digitizations of a cube which is rotated about 45� with respect to X; Y; and Z axes

Figure 2 illustrates two di�erent digitizations of the same cube which was rotated about 45� with respect
to the x; y; and z axes. The same cube is now studied with respect to di�erent rotations. Volume and
surface area of 3D objects are invariant with respect to rotations.

2.2 Volume and Surface Area of Cellular Complexes

Classical results can be cited for grid based volume area measurement, see, e.g. [Scherer, 1922]. The
convergence of these measurements towards the true value is illustrated in Fig. 3. For di�erent rotational
positions we digitize the cube for r ! 1: For each grid constant 2�r we calculate the volume of the
resulting cellular complex as number of 3D cells contained in the cellular complex times the volume 2�3r

of a single 3D cell.

Now we consider the total surface area of all the two-dimensional surface cells of the resulting cellular
complexes I�r (�) (Fig. 4) using the algorithm published in [Artzy et al., 1981] for visiting all 2D surface
cells exactly once. The �gure shows that there is \obvious convergence" in all cases. However, the
measured surface area values depend upon the given rotation of the cube, and the deviation d can be
equal to 0 if the cube was in isothetic position, and about 0:90 (i.e. 90% error!) if it was rotated about
45� with respect to X; Y; and Z axes. These values are inappropriate for estimating a surface area of a
cube if the rotation angle is unknown. A surface area measurement based on counts of 2D surface cells of
3D cellular complexes is not related to the true surface area value. Since the length of a staircase function
remains constant and does not converge towards the length of a diagonal straight line segment, similar
statements can be said for using counts of two-dimensional faces on the surface of three-dimensional
cellular complexes with respect of estimates of the surface area of the three-dimensional set represented
by this cellular complex.



no  rotation
15  rotation Z axis
30  rotation Z axis
45  rotation Z axis
45  rotation XYZ axes

deviation from true value

grid resolution4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

Figure 3: Measured convergence of volume values (1 + d)s of cellular complexes towards the true value
s; the volume of the given cube, where d is the deviation

2.3 Use of Local Approximations

The inclusion of diagonal elements into a simple local approximation approach as "8-neighborhood con-
tours" in 2D, or local triangulations in 3D does not resolve this inconsistency. The use of a marching
cubes algorithm [Lorensen and Cline, 1987] is one of the options of local approximations. Each elemen-
tary grid cube, de�ned by eight grid points, is treated according to a look-up table for de�ning triangular
or planar surface patches within this elementary grid cube. A marching cubes algorithm determines the
surface by deciding how the surface intersects a local con�guration of eight voxels. A surface is assumed
to intersect such a local con�guration in 28 di�erent ways (i.e. no multiple intersections of grid edges),
and these can be represented as fourteen major cases with respect to rotational symmetry. Alterna-
tively a method developed by [Wyvill et al., 1986] calculates the contour chains immediately without
using a look-up table of all 28 di�erent cases. The fourteen basic con�gurations originally suggested by
[Lorensen and Cline, 1987] are incomplete. Occasionally they generate surfaces with holes.

Ambiguities of the marching cube look-up tables are discussed in [Wilhelms and Gelder, 1994]. See
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Figure 4: Each curve points out that there is \obvious convergence" of the measured surface area of
all the two-dimensional surface faces of the cellular complex for a given rotational position of the cube
towards a value (1 + d)s



Figure 5: These curves show \obvious convergence" of the measured surface area towards values (1+ d)s
where a marching cubes algorithm was applied to two cubes in di�erent rotational positions, a sphere
and a cylinder

[Sloboda et al., 1998] for local situations of marching cubes con�gurations where at least two di�erent
topological interpretations are possible. More important, the calculated values do not converge towards
the true value as illustrated in Fig. 5. The surface area and the volume is calculated based on values for
the di�erent look-up table situations.

A marching tetrahedra algorithm was suggested in [Roberts, 1993]. It generates more triangles than the
marching cubes algorithm in general. Trilinear interpolation functions were used in [Cheng, 1997] for
the di�erent basic cases of the marching cubes algorithm. In comparison to the linear marching cube
algorithm [Heiden et al., 1991] the accuracy of the calculated surface area was slightly improved by using
this trilinear marching cubes algorithm, which was con�rmed for a few synthetic Jordan faces.

These local approximation techniques, such as marching cubes algorithms, also generate very large num-
bers of triangles what restricts their practical use for high resolution data, such as, e.g., in computer
assisted radiology.

2.4 Minimum Jordan Surfaces

The surface area measurement approach introduced in [Sloboda, 1997], is basically di�erent from the
concepts in digital geometry, or from local surface approximation approaches. It is a special approach
towards global surface approximations. Assume that both the inner interior I�r (�) and the outer interior
I+r (�) of a given 3D object � are simply connected sets with respect to the given grid constant 2�r:
Assume I�r (�) 6= ;: Let S�r (�) be the surface of the isothetic polyhedron I�r (�); and let S+r (�) be the
surface of the isothetic polyhedron I+

r
(�): Then it holds that

; � I�r (�) � I(I+r (�)) and S�r (�) \ S
+
r (�) = ;;

and I+r (�) n I(I
�

r (�)) is an isothetic polyhedron homomorphic with the torus.

Furthermore, let d1 be the Hausdor� metric [Hausdorf, 1927, page 100]. It follows that

d1(S
�

r (�); S
+
r (�)) � 2�r:

Under the given assumptions the constraint d1(S
�

r (�); Sr(�)) = 2�r leads to a uniquely de�ned isothetic
polyhedron Ir(�); with I�r (�) � Ir(�) � I+r (�): Let Sr(�) be the surface of Ir(�): The di�erence set



(r-boundary of �)
Br(�) = Ir(�) n I(I

�

r
(�))

is a simple closed two-dimensional grid continuum as de�ned in [Sloboda et al., 1998]. We denote it by
Br(�) = [S1; S2], where @Br(�) = S1 [ S2 with S1 = S�

r
(�) as inner simple closed polyhedral surface,

and S2 = Sr(�) as outer closed polyhedral surface. Note the proper inclusion ; � I�
r
(�).

The surface area of a simple closed two-dimensional grid continuum [S1; S2] in R3 is de�ned to be the
surface area of a minimum area polyhedral simple closed Jordan surface in [S1; S2] containing S1: The
following two theorems were proved in [Sloboda, 1997]:

Theorem 1 Assume a simple closed two-dimensional grid continuum [S1; S2]. Then there exists a

uniquely de�ned polyhedral simple closed Jordan surface in [S1; S2] containing S1 with minimum sur-

face area.

We call this the minimum Jordan surface of Br(�) = [S1; S2]. Thus a Jordan set � and a grid resolution
r � r0 (such that both the inner interior I�

r
(�) and the outer interior I+

r
(�) are simply connected sets)

uniquely de�ne a minimum Jordan surface MJSr(�) having a surface area of Jarea(MJSr(�)):

Theorem 2 For any smooth Jordan set � � R3 it holds that

Jarea(@�) = lim
r!1

Jarea (MJSr (�))

where MJSr (�) is the minimum Jordan surface for resolution r � r0:

The theorem is also valid for Jordan surfaces which possess a �nite number of edges. A polyhedron has
its surface area well de�ned. Altogether this speci�es a sound (i.e. convergence and convergence towards
the proper value) procedure for calculating the surface area of a digitized Jordan set.

3 Reconstruction of Multiresolution Terrain Surfaces

Multiresolution terrain surfaces are especially useful for fast rendering, real-time display, and progressive
transmission. The general problem of reconstructing surfaces of 3D objects is restricted to a situation
where only Jordan faces (terrain surfaces or height maps) have to be reconstructed. However, accuracy
may be modeled by convergence considerations as well. We herein propose and discuss a greedy re�nement
approach for the reconstruction of multiresolution terrain surfaces or the progressive reconstruction of
terrain surfaces.

3.1 Brief Review of Techniques

The problem of triangulating a set of points to produce a surface is a well researched topic in computer
graphics and computational geometry. We mainly explore ways of triangulating a set of points to rep-
resent, visualize and transmit terrain surfaces in multiresolutions. A terrain surface can be modelled
in much simpler ways comparing with a generic 3D surface. It can be represented by a single-valued
bivariate function over the domain of the model. The reconstruction of terrain surface is referred to as a
21
2
D modelling problem. A terrain is mathematically described by a height function: � : D � R2 ! R.

In practical applications, the function � is sampled at a �nite set of points P = fp1; :::; png �D. In this
case the function � can be de�ned piecewise over a subdivision � of D with vertices in P . The main
goal is to reconstruct terrain surfaces at high speed, from an initial coarse resolution to full resolution.
In the context of this paper we are interested in evaluating the quality increase during this process of
approaching full resolution, and in convergence properties assuming that the number n of sample points
goes to in�nity.

There are various algorithms for terrain simpli�cation or polygonal simpli�cation. They can be catego-
rized as:



(i) simple uniform grid methods as cellular complexes or marching cubes (see section above): They are
simple for representation but impossible for real-time display or fast rendering. Downsampling can be
used to represent simpli�ed models, but the quality is not desirable.

(ii) hierarchical subdivision methods: They include quad-tree, k-d tree, and hierarchical triangulation
data structures. However, it seems di�cult for them to maintain the continuity of the surface where
patches of surfaces with di�erent resolutions meet.

(iii) feature methods: Using local features for simpli�cation like curvatures does not produce results with
globally desirable quality. See also the integration problem as stated in [Klette, 1998].

(iv) decimation methods [Ciampalini et al., 1997]: Those algorithms simply remove the point whose
absence adds the smallest error to the appoximation. The main advantage for decimation methods is
that they can remove several points in one step. However, their retriangulation seems complicated and
not e�cient enough.

(v) re�nement techniques [Garland and Heckbert, 1995, Cignoni et al., 1997]: They start with a minimal
approximation, then progressively re�ne it by adding the point which will introduce the minimal sum of
approximation errors to the approximation, and executing Delaunay retriangulation. Delaunay retrian-
gulations are necessary because they are essential for the future numerical interpolation or retrieval of
elevation values and for minimizing the aliazing problems in terrain surfaces' visualization or display.

Re�nement techniques are especially suitable for the reconstruction of surfaces with continuous resolu-
tions.

3.2 Greedy Re�nement

We designed a re�nement algorithm following the general greedy re�nement approach with Delaunay
retriangulation. Let P be a �nite set of points in R2. The main idea of the greedy re�nement algorithm
can be described as follows. An initial triangulation T is constructed �rst, whose vertex set is composed of
all extreme points of the convex hull of P . The triangulation or mesh is then re�ned through the iterative
insertion of new vertices, one at a time (at each iteration, select the point p which will introduce the
minimal sum of all approximation errors). The triangulation or mesh is updated accordingly by Delaunay
retriangulation. This re�nement process continues until the speci�ed goal (e.g. error threshold) is met.
A pseudo code for such a greedy re�nement algorithm is as follows:

GreedyRefinement(var SetOfVertices P, var Triangulation T,

var ErrorMeasureHeap H)

begin

construct initial triangulation T;

calculate approximation errors;

construct heap H of error measure values;

while (GoalNotMet)

SELECTION: pop out the minimum value from H;

from P remove the corresponding vertex p,

which introduced the minimum error measure;

INSERTION: insert vertex p into triangulation T;

RETRIANGULATION: add newborn cells on triangulation T

and delete dead cells from T;

retriangulate T;

RECALCULATION: calculate error values of newborn cells;

update error values of other living cells;

push error values of newborn cells in H;

end

For measuring the approximation error we take the absolute value of the di�erence between the in-
terpolated elevation value S(x; y) and the actual elevation value �(x; y) at vertex p = (x; y) as the



approximation error "(x; y) = j�(x; y)� S(x; y)j. Based on our data structure, for every cell � contain-
ing a certain set of points, say fp0; :::; pkg, we try to select a point pi, with 0 � i � k; whose selection
as a new triangulation point will introduce the minimal sum � of approximation errors of the remaining
vertices inside of cell �. Then the new error measure value of cell � is equal to

�(�) = "0 + :::+ "i�1 + "i+1 + :::+ "k:

Greedy re�nement methods use data structures such as quadedge [Guibas and Stol�, 1985] and facet-edge

[Cignoni et al., 1997]. Our greedy re�nement algorithm is based on a very straightforward data structure:

Class Mesh

{

Heap ErrorMeasures;

Array Cells;

...

}

Class Cell

{

Vertex v0,v1,v2;

Neighbors n0,n1,n2;

Array points;

ErrorMeasure e;

ErrorMeasureOfOtherCell other;

...

}

Every cell has three vertices, three possible neighbors, points which are included inside, its error measure
value, and the sum of error measure values of all the other cells. The mesh is composed of cells. The
mesh's array stores all pointers of cells (dead and living). The heap includes pairs of (ErrorMeasure e,
long p), where p points to to a cell's position in the Array of Cells. The heap data structure makes the
greedy re�nement more e�cient.

3.3 Approximation Example

Figure 6 shows an original terrain model which is created by the bivariate function �(x; y) = 1

2
(sin(3x)4+

cos(2y)4 + sin(x + 4y)3 � cos(xy)5) + 1:0; where x 2 [0; 1]; and y 2 [0; 1]:

Figure 7 indicates the re�nement result re�ned with 15% percent of the vertices of the original model. It
is evident that Figure 7 keeps the important features like peaks and valleys in Figure 6.

Figure 6: Original terrain surface with 32x32 = 1024 vertices



Figure 7: Approximation using 15% percent of the original model's vertices

Figure 8 indicates the re�nement result re�ned with 30% percent of vertices of the original model. Figure 8
has all features in Figure 6. They are very similar in shape. It is enough to represent the original one for
fast rendering and real-time display with this simpli�ed model.

Figure 8: Approximation using 30% percent of the original model's vertices

From the Figure 9, it is clear that the approximation errors are initially reduced drastically when the
vertex number increases, but slowly after 30% percent of vertices has been added. However, this behavior
depends on the chosen global approximation error measure.

A more general study would require to analyse such algorithms for classes of surface functions �, and for
increases in the number n of sampling points with n!1:

4 Conclusion

Surface measurement for 3D objects � can be based on calculating minimum Jordan surfaces as shown
in [Sloboda, 1997]. Marching cubes algorithms do not lead to convergent approximations of minimum
Jordan surfaces, and surfaces of isothetic polyhedrons I�

r
(�) or I+

r
(�) are unrelated to the true surface

area value.

Surface reconstructions of Jordan faces (e.g. terrain models), given by just a �nite number n of surface
points, can be obtained by incremental reconstructions based on irregular grids where the selection
procedure of points, and the surface approximation strategy decides about the error vs percentage of
vertices ratio. We proposed a revised greedy re�nement approach to progressively reconstruct terrain
surfaces. We employed a very straightforward data structure. Based on greedy re�nement and our data
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Figure 9: Approximation errors vs percentage of original model's vertices

structure, we can reconstruct a family of terrain surfaces with continuous resolutions, which are necessary
for fast-rendering and real-time display. This will support more detailed studies of convergence behaviour
(i.e. convergence with respect to an increase in the number of given sample points) in the future.

Assuming that the original n sample points form a regular N�N grid and that the given surface (terrain)
is non-convex, a local triangulation is not convergent towards the true surface area value if N ! 1:

This follows by similar experiments as illustrated for the marching cubes algorithm. The calculation
of minimum Jordan surfaces may be suggested instead. Accurate surface area calculations are, e.g., of
crucial importance in GIS (geographic information systems).
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