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1 Introduction

At the end of the 19th century C. Jordan and G. Peano introduced regular grids in order to de�ne

measurable sets in Rn. A topological unit of a regular grid in R2 represents a square, and in R3 a cube.

The vertices of these squares or cubes have integer valued coordinates.

In digital image processing such units specify geometric locations of pixels or voxels, respectively. In the

image processing context, regular grids in Rn were investigated in the past by several authors [3, 6, 7, 16].

Regular grids were also investigated in other disciplines as in computational physics [30].

The de�nition and study of curves or surfaces is one of the main subjects in mathematical analysis

[9, 10, 11, 13, 25, 26, 27]. For example, fractal curves or surfaces illustrate the topological and geometrical

complexity of curves or surfaces. It is one of the main problems in regular grid based computations to

introduce and study curves or surfaces especially for the case of discrete (i.e. measurments are only given

at grid point positions) and regular (i.e. regular grid in two-dimensional or higher-dimensional space)

data.

Digital geometry aims \to study how geometrical properties can be determined from the pixel subsets

themselves" [18]. Digital curves, digital straight lines and their properties were introduced in [15]. Digital

surfaces were described in [12, 14, 17] and in [2]. These papers present di�erent approaches to de�nitions

and the study of digital curves or digital surfaces. They belong to the �eld of digital geometry.

Di�erent local approximation techniques are also developed for calculating curves or surfaces in regular grid

based computations. For example, in the digital image processing literature surfaces of three-dimensional

volumes are also de�ned based on local decision criterions. A marching cube algorithm [8] takes eight

voxels (\a cube of voxels") as a local input data con�guration to specify triangles which are supposed

to approximate the unknown surface. A marching cube algorithm determines the surface by analysing

how the surface intersects a local con�guration of eight voxels. Surfaces are assumed to intersect each

grid edge (between two neighboring voxels) at most once. It follows that they can intersect such a

local con�guration in 28 di�erent ways, and these can be represented as fourteen cases with respect to

rotational symmetry. Alternatively contour chains can also be calculated in layers of the given volume

data set immediately without using a look-up table [29].

The approach described in this paper is basically di�erent from the concepts of a digital curve or of a

digital surface in digital geometry, and from the concepts of local de�nitions of approximating surface



patches as in marching cubes algorithms. One-dimensional and two-dimensional continua belong to the

basic notions of set-theoretical topology and represent a sub�eld of the theory of dimensions developed by

P. Urysohn and K. Menger [10, 11, 13, 26, 27]. They are also called curves and surfaces. In this paper the

notion of simple one-dimensional grid continua in R2 and R3 and the notion of a simple two-dimensional

grid continua in R3 are introduced and their length and surface area, respectively, are de�ned. The length

of simple one-dimensional grid continua in R2 is based on the notion of a shortest polygonal Jordan curve

in a polygonally bounded compact set and on the notion of a geodesic diameter of a polygon. The length

of simple one-dimensional grid continua in R3 is based on the notion of a shortest polygonal Jordan

curve in a polyhedraly bounded compact set and on the notion of a geodesic diameter of a polyhedron.

The surface area of a simple closed two-dimensional grid continuum in R3 is based on the notion of a

minimal polyhedral Jordan surface in a polyhedrally bounded compact set. The main advantages of the

new approach are

(i) that the design of algorithms for approximating curves or surfaces can be based on results in topology

which provide concepts for specifying fundamental features as length or surface area (and which

also allow the study of convergence of feature calculations with respect to re�ned grid resolutions)

[22, 24, 4], and

(ii) that experimental and algorithmic studies also have shown that the new approach allows time-

e�cient and space-e�cient solutions (see [24] for the case of one-dimensional grid continua).

This paper is directed on introducing the notions of one-dimensional or two-dimensional grid continua as

topological entities. See, e.g., [24] for a broader discussion of one-dimensional grid continua (also covering

convergence aspects and proposals of algorithms).

Algorithms for measuring features as the length of a curve, the surface area, or the volume of a set in three-

dimensional space should be consistent for di�erent data sets of the same object taken at di�erent spatial

resolutions (e.g. di�erent scan resolutions in confocal microscopy). This problem of feature convergence

is of fundamental importance in image analysis [4, 5]. Since the length of a staircase function remains

constant and does not converge towards the length of a diagonal straight line segment, similar statements

can be formulated for using counts of all two-dimensional faces on the surface of three-dimensional cellular

complexes (using an algorithm as, e.g., published in [1]) with respect to estimates of the surface area of an

unknown simply-connected compact set in R3 assuming that this set is represented (e.g. by means of cube

inclusion digitisation [3]) by this cellular complex. However, the volumes of the cellular complexes (i.e.

digitisations at di�erent grid resolutions of an unknown simply-connected compact set in R3) converge

always towards the true value [19].

Topological ambiguities of local approximation techniques as of the marching cube look-up tables are dis-

cussed in the image analysis literature [28]. See Fig. 1 for local situations of marching cubes con�gurations

where at least two di�erent geometric interpretations are possible.

Furthermore, the fourteen basic con�gurations originally suggested in [8] are incomplete. Occasionally

they generate \surfaces with holes". These local techniques also generate very large numbers of triangles

what makes them practically unusable for high resolution data as given, e.g., in medical applications.

This paper is organised as follows: Section 2 introduces one-dimensional grid continua in the plane.

Section 3 starts with a discussion of one-dimensional grid continua in the three-dimensional space, and

also introduces the concept of two-dimensional grid-continua. The introduced notions are discussed with

respect to topological properties. A few conclusions are given in Section 4.

2 Grid Continua in R2

Let us consider an orthogonal grid in R2. For p = 0; 1; : : : ; and for each tuple (w1; w2) of integers let

N
p

(w1;w2)
:= fx 2 R2 j wi 2

�p � xi � (wi + 1) 2�p; i = 1; 2g: (1)



Figure 1: Local eight voxel con�gurations are insu�cient for unique tolological speci�cations

N
p

(w1;w2)
represents the topological unit of an orthogonal grid in R2. Let A � Z2 and

Mp :=
[

(w1;w2)2A

N
p

(w1;w2)
(2)

be a compact set, where N
p

(w1;w2)
is de�ned by (1). A set Mp � R2 which consists of at least two N

p

(w1;w2)

elements is called edge connected if each element of Mp � R2 possesses an edge connected neighbour. An

edge connected set Mp � R2 will be called a planar grid continuum. Important planar grid continua are

simple one-dimensional planar grid continua [20, 24]:

De�nition 1 A planar grid continuum Mp is called a simple closed planar one-dimensional grid contin-

uum if each element of Mp has exactly two edge connected neighbours (see Fig. 2).

Figure 2: A simple closed planar one-dimensional grid continuum

De�nition 2 A planar grid continuum Mp is called a simple open planar one-dimensional grid continuum

if there exist two elements of Mp which have exactly one edge connected neighbour and remaining elements

of Mp, if any, have exactly two edge connected neighbours (see Fig. 3).

A simple closed planar one-dimensional grid continuumMp represents a polygonally bounded compact set

with boundary @Mp = L1 [L2, where L1, L2 are simple closed polygonal Jordan curves, L1 � I(L2), for

which dist(L1; L2) = 2�p, where 2�p is the edge size of the N
p

(w1;w2)
element. I(:) speci�es the topological



Figure 3: A simple open planar one-dimensional grid continuum

interior. A simple open planar one-dimensional grid continuum Mp represents a polygon with boundary

@Mp = L, where L is a simple closed polygonal Jordan curve.

The geodesic distance between two points in a polygon is the length of the shortest path between these

points. A polygon and the geodesic distance de�ne a metric space. A geodesic diameter of a polygon is

a shortest path internal to the polygon between two vertices of the polygon of maximal length. A length

is associated to simple closed/open planar one-dimensional grid continua as follows [20, 24]:

De�nition 3 The length of a simple closed planar one-dimensional grid continuum Mp with boundary

@Mp = L1 [ L2; where L1, L2 are simple closed polygonal Jordan curves, L1 � I(L2), is de�ned as the

length of the corresponding shortest polygonal Jordan curve in Mp encircling L1 (see Fig. 4).

Figure 4: The length of a simple closed planar one-dimensional grid continuum

De�nition 4 The length of a simple open planar one-dimensional grid continuum Mp with boundary

@Mp = L; where L is a simple closed polygonal Jordan curve, is de�ned as the length of the corresponding

geodesic diameter of Mp (see Fig. 5).

Figure 5: The length of a simple open planar one-dimensional grid continuum



De�nition 5 A simple open planar one-dimensional grid continuum Mp whose geodesic diameter is a

line segment, is called a straight line grid continuum (see Fig. 6).

The shortest polygonal Jordan curve in a simple closed planar one-dimensional grid continuum Mp,

@Mp = L1 [ L2, L1 � I(L2), encircling L1 is de�ned uniquely [24]. A geodesic diameter of a non-

convex simple open planar one-dimensional grid continuum is also de�ned uniquely [20]. Algorithms for

the shortest path problem solution in a polygon are summarised in [24]. The generalised Jordan curve

theorem [25] holds for simple closed one-dimensional grid continua Mp:

Theorem 1 Let C1; C2 � R2 be two continua which do not cut R2 such that C1 \ C2 consists of two

connected components. Then C1 [C2 cuts R2 into two connected regions A;B.

See Fig. 7 for an illustration of Theorem 1. In this example, C1 \ C2 consists of two topological units

(shaded squares) de�ning two connected components. A continuum is a connected compact set and a

continuum C � R2 cuts R2 if there exist two points x; y 2 R2 nC, which can not be connected by a path

in R2 nC.

The following theorem [24] speci�es a lower and an upper bound for the length estimation of convex

Jordan curves in R2:

Theorem 2 Let Mp be a simple closed planar one-dimensional grid continuum with @Mp = L1 [ L2;

where L1 � I(L2), and L1, L2 are both simple closed polygonal Jordan curves. Assume that Mp contains

a convex Jordan curve 
 : [0; d(
)]! R2 encircling L1 of length d(
) parametrised by arclength. Then

d(CH(L1)) � d(
) < d(CH(L1)) + 8 � 2�p; for p = 0; 1; : : : ;

where d(CH(L1)) is the length of the boundary of the convex hull of L1 and 2�p is the edge size of the

topological unit N
p

(w1;w2)
:

In this case d(CH(L1)) is identical to the length of the shortest polygonal simple closed Jordan curve in

Mp encircling L1. The theorem shows that the error of the length estimation of a planar convex Jordan

curve for p!1 tends to zero.

The following section introduces grid continua in R3 starting with one-dimensional grid continua.

3 Grid Continua in R3

Let us consider an orthogonal grid in R3. For p = 0; 1; : : :; and for each triple (w1; w2; w3) of integers let

N
p

(w1;w2;w3)
:= fx 2 R3 j wi 2

�p � xi � (wi + 1) 2�p; i = 1; 2; 3g: (3)

N
p

(w1;w2;w3)
represents the topological unit of an orthogonal grid in R3. Let A � Z3 and

Mp :=
[

(w1;w2;w3)2A

N
p

(w1;w2;w3)
(4)

Figure 6: A straight line grid continuum in R2



Figure 7: Illustration to the generalised Jordan curve theorem

be a compact set, where N
p

(w1;w2;w3)
is de�ned by (3). A set Mp � R3 which consists of at least two

N
p

(w1;w2;w3)
units is called face connected if each element ofMp � R3 possesses a face connected neighbour.

A face connected setMp � R3 will be called a grid continuum in R3. Simple one-dimensional grid continua

in R3 are de�ned as follows [21]:

De�nition 6 A grid continuum Mp � R3 is called a simple closed one-dimensional grid continuum if

each element of Mp has exactly two face connected neighbours (see Fig. 8).

Figure 8: A simple closed one-dimensional grid continuum in R3

De�nition 7 A grid continuum Mp � R3 is called a simple open one-dimensional grid continuum if

there exist two elements of Mp which have exactly one face connected neighbour and remaining elements

of Mp, if any, have exactly two face connected neighbours (see Fig. 9).

A simple closed one-dimensional grid continuumMp � R3 represents a polyhedrally bounded compact set

which is homeomorphic with a torus. A simple open one-dimensional grid continuumMp � R3 represents

a polyhedron with a polyhedral surface @Mp = S homeomorphic with the unit sphere, i.e., S is a simple

closed polyhedral Jordan surface.

The geodesic distance between two points in a polyhedron is the length of the shortest internal path

between these points. A polyhedron whose boundary is homeomorphic with the unit sphere, and the

geodesic distance de�ne a metric space. A geodesic diameter of a polyhedron is a shortest path internal

to the polyhedron between two vertices of the polyhedron of maximal length. A length is associated as

follows [21] to simple closed/open one-dimensional grid continua in R3:



Figure 9: A simple open one-dimensional grid continuum in R3

De�nition 8 The length of a simple closed one-dimensional grid continuum Mp � R3 is de�ned as the

length of the corresponding non-contractible shortest polygonal simple closed Jordan curve in Mp (see

Fig. 10).

Figure 10: The length of a simple closed one-dimensional grid continuum in R3

A non-contractible shortest polygonal simple closed Jordan curve inMp means a shortest polygonal simple

closed Jordan curve whose intersection with all elements of Mp is non-empty.

De�nition 9 The length of a simple open one-dimensional grid continuum Mp � R3 is de�ned as the

length of the corresponding geodesic diameter of Mp (see Fig. 11).

De�nition 10 A simple open one-dimensional grid continuum Mp � R3, whose geodesic diameter is a

line segment, is called a straight line grid continuum (see Fig. 12).

De�nition 11 A simple closed/open one-dimensional grid continuum Mp � R3 is called a simple

closed/open 
at one-dimensional grid continuum in R3 if all N
p

(w1;w2;w3)
units of Mp lie on the same

plane in R3.

A shortest non-contractible polygonal simple closed Jordan curve in a non-
at simple closed one-dimensi-

onal grid continuum in R3 is de�ned uniquely [21]. A geodesic diameter of a non-
at simple open planar

one-dimensional grid continuum Mp � R3 is also de�ned uniquely [21].

A simple closed two-dimensional grid continuum in R3 characterises a further class of two-dimensional

grid contina Mp � R3.



Figure 11: The length of a simple open one-dimensional grid continuum in R3

Figure 12: A straight line grid continuum in R3

De�nition 12 A grid continuum Mp � R3 with @Mp = S1 [ S2; where S1; S2 are both non-empty,

simple closed polyhedral Jordan surfaces with S1 � I(S2), is called a simple closed two-dimensional grid

continuum if

dist(S1; S2) = 2�p;

where 2�p is the edge size of the corresponding N
p

(w1;w2;w3)
unit (see Fig. 13).

Figure 13: A simple closed two-dimensional grid continuum in R3

The distance function dist is de�ned as the Hausdor�-Chebyshev distance between the sets S1 and S2.

A surface area is associated as follows to a simple closed two-dimensional grid continuum Mp � R3:

De�nition 13 The surface area of a simple closed two-dimensional grid continuum Mp � R3 with

@Mp = S1[S2; where S1; S2 are both simple closed polyhedral Jordan surfaces with S1 � I(S2), is de�ned

to be the surface area of the minimal polyhedral simple closed Jordan surface in Mp containing S1 (see

Fig. 14).

The minimal polyhedral simple closed Jordan surface Smin means a simple closed polyhedral Jordan

surface with the minimal surface area and has been introduced in [22] and [23]. See [4] for a brief

discussion of this notion. The minimal polyhedral simple closed Jordan surface Smin in a two-dimensional

simple closed grid continuum Mp � R3 is de�ned uniquely [22] and it holds the following [23]:



Figure 14: A simple closed two-dimensional grid continuum in R3 and the corresponding minimal poly-

hedral simple closed Jordan surface

Theorem 3 Let Mp � R3 be a simple closed two-dimensional grid continuum with @Mp = S1[S2; where
S1; S2 are both simple closed polyhedral Jordan surfaces. Then all the vertices of CH(S1) belong to the

vertices of the minimal polyhedral simple closed Jordan surface Smin and

PSmin � conv(S1)

where PSmin is a polyhedron with @PSmin = Smin and conv(S1) is the convex hull of S1 with @conv(S1) =

CH(S1).

See Fig. 15 for an illustration of an example. The minimal polyhedral simple closed Jordan surface Smin is

either CH(S1) or its suitable topological deformation. The calculation of the minimal polyhedral simple

closed Jordan surface speci�es an interesting problem in computational geometry.

Figure 15: CH(S1) and the minimal polyhedral simple closed Jordan surface

4 Conclusions

Simple one-dimensional grid continua in R2 or R3, and simple closed two-dimensional grid continua in

R3 have been speci�ed in this paper. The length of one-dimensional grid continua and the surface area

of two-dimensional grid continua have been introduced. The length of an open or closed one-dimensional

grid continuum in R2 is based on the notion of the shortest polygonal simple closed Jordan curve in a

polygonally bounded compact set, or on the notion of a geodesic diameter of a polygon, respectively.

The length of an open or closed one-dimensional grid continuum in R3 is based on the notion of the

shortest polygonal simple closed Jordan curve in a polyhedrally bounded compact set, or on the notion

of a geodesic diameter of a polyhedron, respectively. The surface area of a simple closed two-dimensional



grid continuum in R3 is based on the notion of the minimal polyhedral simple closed Jordan surface in

a polyhedrally bounded compact set.

These notions allow to approximate, visualise and e�ciently represent measurable simple closed/open

one-dimensional continua in R2 and R3, and measurable simple closed two-dimensional continua in R3

which are covered by elements of corresponding simple closed/open one-dimensional grid continua in R2

and R3 and by elements of a simple closed two-dimensional grid continuum in R3, respectively. They

represent the smoothest feasible approximation of corresponding measurable continua. The higher the

grid point resolution the more accurate are length and surface area estimates.

The experiments with simple closed or open one-dimensional planar grid continua have shown that the

shortest polygonal simple closed Jordan curves, or the geodesic diameters, respectively, were represented

by O(
p
n) vertices, where n is the number of vertices of the corresponding grid continua [24]. A similar re-

duction factor is expected in the case of representation of surfaces related to simple closed two-dimensional

grid continua in R3 by the minimal polyhedral simple closed Jordan surfaces. This will enhance the appli-

cability of algorithms for surface calculations compared to the "large numbers" of two-dimensional faces

on surfaces of cellular complexes (as discussed in digital geometry), or compared to the "extremly large

numbers" of triangles in local surface approximations resulting from a marching cube algorithm.
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