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Abstract

This TR is a review of shading based shape recovery (shape from shad-

ing, photometric stereo methods). It reports about advances in applied
work and about results in theoretical fundamentals.

1 Introduction

Re
ectance based shape recovery of non-planar surfaces from one or several irra-

diance images is a classic task in computer vision [Horn 1986, Woodham 1978].

The goal is to reconstruct the three-dimensional shape of an object from its

irradiances by using its re
ection properties. The problem is called Shape from
Shading (SFS) if just one irradiance image is used as input for the reconstruction

process [Horn & Brooks 1989]. The term photometric stereo method (PSM) or

just photometric stereo refers to the extension of Shape from Shading to a class

of methods that use two (2S PSM) or more (3S PSM etc.) images for shading

based 3D shape recovery.

A broad spectrum of techniques is available to approach re
ectance based

shape recovery in appropriate �elds of application, see, e.g., [Klette et. al 1998].

For example, 3S PSM may be used for generating height maps of a human

face, a human hand, etc., see Fig. 1. Using colored illumination [Drew 1994,

Woodham 1994] this 3D reconstruction may be even achieved for dynamic scenes

several times per second. The use of inexpensive equipment (three light sources

and a video camera), not dangerous radiation (as in case of laser light) and a

reasonable performance are three advantages of PSM. Furthermore, the image

values of (one of) the acquired images may be used for texture mapping without

any additional need to register height and texture data, because the generated

height values are located at the same pixel position as the acquired image values.
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Figure 1: Reconstructed face using photometric stereo.

This �eld of re
ectance based shape recovery also contains serious mathe-

matical problems (see e.g. proofs of existence or uniqueness of object surfaces

[Kozera 1991], analysis of shadows or interrefections [Rumpel & Schl�uns 1995,

Schl�uns 1997]). This TR reports about advances in applied and in theoretical

work.

1.1 SFS and PSM

There are a number of factors that in
uence the measured irradiances of an

image. Firstly, the image which is acquired by the sensor depends on the ge-

ometrical and spectral distribution of the light source which illuminates the

observed scene. The individual objects of the scene are characterized by their

geometry and by their re
ection properties. The geometry and the re
ection

properties a�ect the light falling on the imaging sensor. The imaging system

converts the light to measured image irradiances.

SFS methods try to infer the geometry of an object from a single image. For

this inversion, the mentioned factors and their in
uences have to be considered

for the conceptual design of a SFS method. The only a-prioi constraint is that

only the geometry has to be extracted from the image. An additional goal could

be to extract the re
ection properties from the given image, as well, to obtain

a more complete description of the visible surface.

It is impossible to infer unambiguous geometrical properties of objects from

image irradiances without restricting the general problem. The design of SFS

methods, that allow a mathematical proof of existence, uniqueness or conver-
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gence of a solution, is a �eld of ongoing active research.

Common assumptions to ensure an unambiguous surface reconstruction from

a single or several images are as follows:

(i) The irradianceE0 and the direction s of the illumination are known. There
are no intra-object or inter-object interre
ections, i.e. scene objects do not

act as secondary light sources. In general a light source is assumed which

emits parallel light of a constant irradiance E0 from a constant and known

illumination direction s = (s1; s2; s3) : If the illumination direction s coin-

cides with the viewer direction v, i.e. s = (0; 0;�1), then SFS simpli�es

signi�cantly. Some SFS methods exist that assume a close point light

source, hence the light rays cannot be modeled as parallel. Approaches

that assume di�use illumination (e.g. sky illumination) form another spe-

cial case. Furthermore, the e�ects of the inverse square law (see, e.g.,

[Klette et. al 1998]) are usually disregarded.

(ii) The re
ection properties of the object surfaces are known. For additional
simpli�cation, linearly re
ecting surfaces or Lambertian surfaces are often

assumed where the albedo � is constant and known for the entire object.

(iii) The modeling by re
ectance maps assumes that a unique scene radiance

value is assigned to each surface orientation n = (n1; n2; n3) : Often the

re
ectance map is assumed to be known. For example it is assumed that

the re
ectance map can be approximated as being locally or globally linear.

(iv) For the object surface geometry it is assumed that faces can be approxi-

mated by continuous or continuously di�erentiable functions u in classes

as C1 or C2: Some methods exist which are especially designed to recon-

struct polyhedral objects. In general it has to be assumed that height

values respectively orientations are known at a few (singular) points in

advance. Of special interest are boundary points showing zero-irradiances

(occluding boundaries) and points of maximal irradiance. Sometimes it

is assumed that the surface can be locally approximated as a plane (facet

model) or as a sphere.

(v) The sensor is linear.

(vi) Shading based shape recovery methods usually assume an orthographic

projection of scene objects into the xy�image plane. This allows to con-

sider surface functions u(x; y) with �rst-order derivatives ux; uy; and nor-

mals n = (ux; uy;�1): There exist also methods that assume perspective

projection.

These assumptions can be reduced by extracting some parameters from the

scene which were expected to be known. For example, usually only the product

of the irradiance E0 of the light source and the albedo � has to be determined

and not their individual values. Under the assumptions of parallel illumination,

a Lambertian re
ection, and an orientation n0 in the scene which coincides with
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the illumination direction s it follows that the product E0� can be read from the

maximal irradiance value. Also, in practice many of the constraints (except two

of them) prove to be rather uncritical restrictions. The critical assumptions are
that the albedo � is restricted to be constant over the whole object (or even over

the whole image) which corresponds to a uniform coloring, and the limitation to

Lambertian surfaces since beside the di�use component many materials exhibit

a considerable amount of specular re
ection. A genuine Lambertian surface
allows a representation by a graph of a function u:

Example 1 Assume parallel and constant illumination from lighting direction

s = (s1; s2; s3) ; a genuine Lambertian surface, constant albedo �; and a known

product E0�: According to Lamberts cosine law and the image irradiance equa-
tion it holds that

E = E0� � cos(�) (1)

with � = 6 (n; s) ; for the measured irradiance E and a surface normal n =

(ux; uy;�1) : The term cos(�) and hence the angle � can be calculated from the

known quantities. All vectors which subtend the angle � with the illumination

direction are solutions to the above equation.

The Gaussian sphere is useful to represent these solutions. Without loss of

generality we can restrict the surface orientations to unit surface normals n�:
Then the solution vectors n� form the lateral area of a right circular cone. The

vertex of the cone lies at the center of the Gaussian sphere. The orientation of

the cone (vector of the cone axis) is determined by the illumination direction

s: The boundary of the circular base of the cone is incident with the surface

of the Gaussian sphere. All these points on the Gaussian sphere are surface

orientations satisfying the equation for the image irradiance function E:

For Lambertian surfaces often we consider image irradiance equations

Ei(x; y) = �(x; y) � ux(x; y) � pi + uy(x; y) � qi � rip
ux(x; y)2 + uy(x; y)2 + 1 �

p
p2i + q2i + r2i

(2)

de�ned over domains 
i = f(x; y) 2 <2 : 0 � Ei(x; y) � 1g; for light sources
i = 1; 2; 3; ::: with irradiances E0;i = 1 and orientations (pi; qi; ri); and image

coordinates (x; y):

SFS methods are extended to PSM if several irradiances are known for ev-

ery image point and the corresponding surface point. Because of the larger

amount of data an improvement of the reconstruction results and furthermore

a reduction of the necessary assumptions can be expected. Photometric stereo

methods �rstly recover surface orientations and can be combined with an inte-

gration method to calculate a height or depth map. Even without a subsequent

integration step the surface orientations can be used, for example to determine

curvature parameters of object surfaces or to recognize objects.

To acquire images for photometric stereo the object is consecutively illumi-

nated by several light sources. Each imageEi is taken with only one light source
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being switched on. A movement inside the system consisting of the object, the

light sources, and the sensor is not allowed. Therefore, more than one irradi-

ance value can be assigned to a projected surface point without encountering a

correspondence problem. Each acquired image corresponds to one light source.

We distinguish between albedo dependent photometric stereo methods and

albedo independent methods. The property of albedo dependent methods is that
the albedo � of the surface material or the product E0� has to be known for

every image point (x; y:) This is especially true for all SFS methods. Albedo
independent methods have the property that the albedo has theoretically no

in
uence on the reconstruction of orientations or height values as long as � > 0:

1.2 Linear Sensor

Modern cameras suitable for image processing are usually based on semiconduc-

tor sensors the so-called CCD (charge coupled device) chips. Several properties
of these cameras are of interest for the measuring process of irradiances, see,

e.g., [Hashimoto et. al 1995].

A linear behavior of the imaging sensor is assumed in shading based tech-

niques such as SFS, 2S PSM or 3S PSM. For these techniques it is assumed that

the gray values (or the color values) in the image have a direct linear relation
to the measured image irradiances (the radiation entering the camera lens). At

�rst we brie
y mention that signal attenuation caused by a pre-knee-circuit,

clipping, and blooming already lead to a nonlinear camera response. Further

reasons for nonlinear camera behavior are explained in the following and a sketch

of a linearization technique is given.

110 % 500 %

575 mV

550 mV

in

out

Figure 2: Example of pre-kneeing to preserve the dynamic range.

Attenuation of the signal occurs if more photons fall on the CCD chip than

the image acquisition system is able to process. This can be caused by di�erent

factors when the image signal is processed in analog form (voltages) in the

camera or when the signal is digitized in the frame grabber. One reason of

attenuation is the limited dynamic range of the components in the imaging
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system. The analog component of the camera system causes an attenuation if

the electric signal is processed by a so-called pre-knee-circuit. Figure 2 shows

the characteristics of the pre-knee-circuit of the Sony three chip camera DXC-

930P. The voltage of the signal is linearly attenuated starting at a certain level

of the input signal. As a result, the signal is not longer globally linear.

Furthermore, clipping of the input signal occurs whenever the analog signal
exceeds the highest processable voltage, e.g. when the analog signal is converted

to a digital signal (a gray value for each color channel) in the frame grabber.

Usually, the clipping level (white level) of the analog/digital converter can be

controlled by programming the frame grabber.

If the intensity of the incoming light at a CCD cell exceeds a certain level

which is several times higher than the clipping level, it happens that the CCD

cell is not able to accumulate more charge per time unit any longer. The ad-

ditional charge is spread into the neighboring CCD cells. This e�ect is called

blooming and appears as a white streak or blob around the a�ected pixels in

the image. Blooming is particularly noticeable in scene analysis when specular

highlights occur on the surface of the object that has to be reconstructed. For

interline transfer sensors blooming starts at about 600 according to [Lenz 1989].

In principle CCD chips possess the property of having a high linearity be-

cause photons are transformed directly into charge in a CCD cell. But CCD

cameras usually delinearize the signal for display requirements. It has to be

guaranteed that the light received by the camera is transformed into a propor-

tional amount of light emitted by a monitor screen. The input voltage U of a

cathode ray tube in a monitor and the emitted radiant intensity I are in expo-

nential relationship I � U
 where 
 is the gamma value. Therefore, a circuit

is integrated in the camera for the gamma correction. The circuit adjusts the

linear CCD camera signal Uin to the nonlinear monitor characteristic

Uout = U (1�1=
)
max � U1=


in (3)

where Umax is the maximum voltage. The gamma value 
 depends on the

monitor and the video standard of the television system.

Therefore, the gamma correction has to be inverted to linearize the camera

characteristic. This gamma re-correction can be done through substituting 


by 1=
 if the gamma value of the camera is known. This leads to the equation

Eout = G(1�
)
max �E


in (4)

which transforms the measured image irradiance values (gray values) from Ein

to Eout: For manyCCD cameras it is possible to switch the gammavalue through

the camera control unit to 1. This avoids a gamma re-correction procedure.

If neither the gamma value is known nor the gamma correction can be

switched o� then the gamma value has to be calculated by using a calibra-

tion image. A calibration image for this purpose usually contains a num-

ber of gray and/or matte color patches of known re
ection properties, see
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[McCamy et. al 1976, Meyer 1988] for one example of a calibration chart. The

spectral re
ectance factors of gray patches of such a calibration chart are con-

stant over the visible wavelength interval of the light. The constant re
ectance

factors (albedos) can be represented as percentages which describe how much

light the gray patches re
ect. The percentages are properties of the patches and

are independent from the illumination and the camera. The relationship be-

tween these percentages and the measured image irradiances describes directly

the camera behavior with respect to linearity. Since a model of the nonlinear

characteristic of the camera is known (see formula above) the gamma value can

be estimated.

Besides the gamma correction which causes a nonlinear camera behavior the

black level has to be considered. A CCD cell generates electrons even if no

light (photons) are falling on the light sensitive area which arise from thermal

energy within the CCD chip. The current generated by these electrons is called

dark current. The analog/digital converter transforms the associated voltage

into an image gray value (measured image irradiance). The gray value which

is a result of the dark current is called black level. It can be modeled as being

an additive o�set to the camera signal and must be subtracted from the gray

values. Actually the black level does not lead to a nonlinear characteristic but

the goal is to produce a camera curve that is directly linear that means a totally

black gray patch having 0% re
ection should generate the gray value 0: Often

the black level can be adjusted by a knob at the camera control unit called

master black control.

A further factor playing an important role with respect to color reproduction

is the overall scaling of the three color channels. A gray object taken under white

illumination produces a gray image, hence the color channels have identical gray

values v: Therefore, the gray value triple C = (v; v; v) is assigned to each pixel

when we assume idealized image acquisition. Although called "white", the color

of white light sources, such as daylight, 
uorescent lamps, and usual light bulbs

produce di�erent white tones, expressed in color temperature values. To get

"white" for these di�erent light sources a so-called white balance has to be

performed. A manual white balance is done by exposing a white object to the

color camera and pushing the white balance button at the camera control unit.

1.3 Illumination Parameters

The 3S PSM approach (as discussed later on) can also be employed for the

calculation of an illumination direction, see [Horn 1986]. Assume that we have

acquired the irradiance images of a curved calibration object having a Lam-

bertian surface of known geometry (e.g. a sphere) and having uniform albedo

�:

The 3S PSM assumes that three positive irradiance values E = (E1; E2; E3)

can be measured for every image point (x; y) with respect to three illumination

directions p; q; and r: 3S PSM is then directed on calculating a (unit) surface

normal n� from such an irradiance triplet by using the known illumination

parameters.
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Now we consider one point light source. For the calculation of one illumi-

nation direction s the calibration object has to ensure (at least) three depicted

and illuminated surface points with known and non-coplanar surface (unit) nor-

mals n1
�; n2

�; and n3
�: These three known surface normals are combined into

a matrix

N =

0@ n�1x n�1y n�1z
n�2x n�2y n�2z
n�3x n�3y n�3z

1A :

Assume furthermore a diagonal matrix D which contains in its diagonal posi-

tions the irradiance values of the light source at the considered image points. In

practice we can assume that these light source irradiances are constant over the

object, i.e. D contains the same positive value in all three diagonal positions.

This leads to the following system of image irradiance equations

E
T = � �D �N � s�: (5)

The unit vector of the illumination direction which is scaled by the albedo �

can be determined with

s� =N�1 � 1
�
D�1 �ET : (6)

This shows that in practice the matrix D can simply be the identity matrix.

Because the meaning of being given or unknown data is exchanged for the

surface normals and the illumination directions in comparison to 3S PSM this

method is also referred to as inverse 3S PSM. The robustness can be improved

by including more than three surface normals.

1.4 Theoretical Fundamentals

Approaches in shading based shape recovery transform measured irradiance

values into data about surface functions u: These transformations are based

on models about light sources, sensors, surface geometry or surface re
ectance.

Within a given context the theoretical fundamentals are speci�ed by problems

as

(i) existence of solutions u within a class of surface functions (as C1 or C2,

or convex surfaces) and with respect to used models,

(ii) uniqueness of solutions u,

(iii) analytic or geometric relationships between several solutions (as possible

decompositions into "similar" components),

(iv) methods for calculating such solutions u,
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(v) algorithms for implementing such methods, and

(vi) features of these algorithms as stability, domain of in
uence, or conver-

gence of iterative solutions towards the proper solution u.

The following sections of this TR contain results related to topics (i) ... (v).

As an illustration to results to topic (vi) we discuss brie
y the convergence of

algorithms for linear SFS, see [Kozera & Klette 1997].

We assume discrete irradiance values E (x; y) at exactly all grid point posi-

tions within a rectangular domain 
: The grid resolution is speci�ed by a grid

constant 2�r; for r = 0; 1; 2; ::: and the resulting grid points are called r-grid
points. We assume Nr �Nr r-grid points in 
; say with Nr = 2r � (N0 + 1)� 1:

These measured image irradiances are assumed to correspond to re
ectance

properties of a projected object surface satisfying a linear image irradiance
equation

a
@u

@x
(x; y) + b

@u

@y
(x; y) = E (x; y) : (7)

We assume an integrable function u on 
 and (a; b) 6= (0; 0): The task is to cal-

culate a function u over 
 based on the available input set of discrete irradiance

values E(x; y) at r-grid points, and based on a speci�ed boundary condition,

where u satis�es equation(7).

More precisely, we are interested in a numerical solution of the following

Cauchy problem: If sgn(ab) � 0 then

u(x; 0) = f(x); for 0 � x � N0 + 1

is given as boundary condition, and if sgn(ab) < 0 then

u(x;N0 + 1) = f(x); for 0 � x � N0 + 1

is given. Furthermore also

� (0; y) = g (y) ; for 0 � y � N0 + 1

is assumed to be known. The functions f; g are integrable on [0; N0 + 1] and

satisfy f (0) = g (0) if sgn (ab) � 0; or f (0) = g (N0 + 1) if sgn (ab) < 0:

This Cauchy problem is given in "digital form", i.e. only values at r-grid

point positions are given for functions p = ux; q = uy; E; f; and g:

A linear partial di�erential equations may be solved with the aid of the

�nite di�erence method. Assuming normed function spaces on 
 the sequence

of r-grids allows us to de�ne corresponding normed r-grid spaces, for details

see [Kozera & Klette 1997]. A �nite di�erence scheme (FDS) is de�ned for all

r-grids, for r = 0; 1; 2; :::; and basically it characterizes an operator Rr mapping

an unknown function de�ned on 
; as u in our case, into a function ur;

Rr(u) = ur; with ur(i; j) � u(i � 2�r; j � 2�r)
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de�ned on r-grid points which is considered to be an approximation of the

unknown function.

For example, applying a (simple) forward di�erence approach together with

Taylor's expansion yields

@u

@x

����(i;j)
r

=
ur (i + 1; j)� u (i; j)

2�r
+ O

�
2�r
�

in the x-direction, and

@u

@y

����(i;j)
r

=
ur (i; j + 1)� u (i; j)

2�r
+ O

�
2�r
�

in the y-direction. A (simple) backward di�erence approach in x-direction is

given by

@u

@x

����(i;j)
r

=
u (i; j)� u (i� 1; j)

2�r
+O

�
2�r
�
;

just to mention a further example. The di�erences are normalized by the dis-

tance 2�r between neighboring r-grid points, in x- or in y-direction. Larger

neighborhoods could be used for de�ning more complex forward or backward

approaches, and further approaches may also be based on symmetric, or un-

balanced neighborhoods of r-grid points. Finally, a �nite di�erence scheme is

characterized by selecting one approach for the x�; and an other one for the

y-direction.

The forward-forward FDS transforms the given di�erential equation into

a � ur (i + 1; j)� ur (i; j)

2�r
+b � ur (i; j + 1)� ur (i; j)

2�r
+O

�
2�r
�
= E

�
i2�r; j2�r

�
;

and this equation may be simpli�ed as

~ur (i; j + 1) =
�
1 + a

b

�
� ~ur (i; j)� a

b
� ~ur (i+ 1; j) + 2�r

b
�E
�
i2�r; j2�r

�
;

where ~ur (i; j) is used as an approximation for function ur (i; j) : The backward-
forward FDS leads to

~ur (i; j + 1) =
�
1� a

b

�
� ~ur (i; j) + a

b
� ~ur (i� 1; j) + 2�r

b
�E
�
i2�r; j2�r

�
;

the forward-backward FDS leads to

~ur (i + 1; j) =
�
1� b

a

�
� ~ur (i; j) + b

a
� ~ur (i; j � 1) + 2�r

a
�E
�
i2�r; j2�r

�
;

and the backward-backward FDS leads to

~ur (i; j) =
1

1+c
� ~ur (i; j � 1) + c

1+c
� ~ur (i� 1; j) + 2�r

b(1+c)
�E
�
i2�r; j2�r

�
;

where c = a
b
6= �1; and to

~ur (i� 1; j) = ~ur (i; j � 1) + 2�r

b
�E
�
i2�r ; j2�r

�
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otherwise for c = �1: These schemes were studied in [Kozera & Klette 1997].

A �nite di�erence scheme is consistent with an initial boundary value prob-

lem if the error of approximation in representing the original problem converges

to zero as 2�r ! 0: The listed four schemes are consistent.

A �nite di�erence scheme is convergent to the solution ur (if it exists) if the
digitization error converges to zero as 2�r ! 0: A further notion of stability

for linear di�erence schemes was de�ned by Rjabenki and Filippov. A linear

di�erence scheme is RF stable if the operators�
R�1r

	
r=0;1;2;:::

are uniformly bounded as 2�r ! 0: A consistent and RF stable �nite di�erence

scheme is convergent to the solution of the given Cauchy problem if such a

solution exists.

For the convergence analysis of the given schemes let c = a
b
assuming that

b 6= 0; and d = b
a
assuming that a 6= 0:

Theorem 1 [Kozera & Klette 1997] The forward-forward FDS is RF stable
i� �1 � c � 0: The backward-forward FDS is RF stable i� 0 � c � 1: The
forward-backward FDS is RF stable i� 0 � d � 1: The backward-backward FDS
is RF stable i� c � 0 or c = �1:

Consequently, in these positive cases the sequences of functions

f~urgr=0;1;2;:::
are convergent to the solution of the speci�ed Cauchy problem.

2 Re
ection and Gradients

The amount of light encoded into the gray value of a particular pixel of a digital

image can be seen as the result of interactions between surface materials and

light sources. Vision based shape recovery methods are in
uenced by the light-

ing and by the re
ection characteristics of the observed objects. Therefore it is

necessary to model the properties of both the illumination and the object mate-

rials. A discussion of radiometric and photometric quantities which are relevant

to computer vision is o�ered by [Haralick & Shapiro 1993, Klette et. al 1998].

Vision based shape recovery normally leads to reconstructions of gradient maps.

These gradient maps have to be integrated for generating depth or height maps.

This section deals with re
ection models [Schlick 1994] and gradient integration.

Both topics are interesting subproblems in shading based shape recovery.

2.1 Re
ectance-Distribution Functions and

Re
ectance Maps

The bidirectional re
ectance-distribution function (BRDF) describes re
ection

characteristics. The BRDF was de�ned in 1977 [Nicodemus et. al 1977] by the
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National Bureau of Standards, USA, for the standardization of re
ection rep-

resentations. The BRDF describes how "bright" a di�erential surface dA of a

material appears when it is observed from a general direction and illuminated

from a particular direction, see Fig. 3. The BRDF

fr (�2; �2; �1; �1) =
dL1 (�2; �2; �1; �1;E2)

dE2 (�2; �2)
(8)

is de�ned as the ratio between the re
ected di�erential radiance dL1 in viewer

direction and the di�erential irradiance dE2 coming from an illumination direc-

tion. The BRDF is expressed in sr�1 (1/steradian). The term "direction" in

this de�nition should be interpreted as a di�erential solid angle in a direction

given by spherical coordinates. The letter � denotes the slant angle and the

letter � stands for the tilt angle. The spherical coordinates of the BRDF refer

to a right-handed coordinate system where the origin coincides with the surface

point and whose z-axis coincides with the surface orientation. The tilt angle is

taken counterclockwise by looking onto the surface patch.

x

y

z

Figure 3: Geometry of the bidirectional re
ectance-distribution function

(BRDF).

If the di�erential irradiance dE2 is described in the foreshortened portion

of the illumination over the di�erential solid angle d
2 by using the radiance

which is received by the surface the BRDF can be formulated as

fr (�2; �2; �1; �1) =
dL1 (�2; �2; �1; �1;E2)

L2 (�2; �2) � cos(�2) d
2

: (9)

If we integrate over the entire observed solid angle 
2 of the incoming radiation

the re
ected radiance L1
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L1 =

Z

2

fr (�2; �2; �1; �1) �L2 (�2; �2) � cos(�2) d
2: (10)

The irradiance dE2 depends on a direction since it holds

dE2 (�2; �2) = L2 (�2; �2) � cos(�2) d
2: (11)

A perfectly di�use re
ecting surface appears equally bright when observed from

any arbitrary direction. Furthermore, this feature is also independent from the

type of illumination. If a surface emits the entire incoming energy through

re
ection then it is called a Lambertian re
ector and neither absorption nor

transmission of radiation takes place. It follows that the entire radiance L1
which is re
ected over the visible hemisphere is equal to the incoming irradiance

E2: A Lambertian re
ector has three important properties:

(i) The re
ected radiance L1 does not depend on the direction (isotropic) and

is constant, i.e. L1 (�1; �1) = L1 = const:

(ii) The BRDF is constant, i.e. fr (�2; �2; �1; �1) = fr = const:

(iii) The radiant emittance M is equal to the irradiance E2:

The radiant emittance M can now be expressed as the integral of the re
ected

radiance L1 over the visible hemisphere:

M =

Z

1

L1 d
1 = L1 � = E2: (12)

From this it follows that

fr =
L1

E2
=

1

�
(13)

holds for the Lambertian re
ector. If the Lambertian re
ector is illuminated by

a light source which has the radiance L2(�2; �2) we get

L1 =
1

�

Z

2

L2(�2; �2) � cos(�2) d
2 (14)

as re
ected radiance. This equation contains Lamberts cosine law

L1 =
E0

�
� cos(�2) (15)
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for the re
ected radiance L1 of a Lambertian re
ector illuminated by a parallel

radiating light source of irradiance E0: The index 0 usually denotes a quantity

related to the light source. It is assumed that illumination directions outside of

the interval

0 � �2 <
�

2
(16)

do not cause re
ections.

According to its de�nition the Lambertian re
ector does not absorb any

radiation for any wavelength. The albedo � is used to describe surfaces which

possess all properties of a Lambertian re
ector apart from a partial absorption of

the incoming radiation (Lambertian surfaces). It describes the relative portion
of the radiation which is re
ected by the surface. The albedo can be seen as

a scaling factor which lies usually in the interval [0; 1]: The de�nition of the

albedo can be extended to non-Lambertian surfaces.

α
β

γ

Figure 4: De�nition of three photometric angles �; �; and 
: Each arrow marks

the direction of one light ray.

The three photometric angles �; �; and 
 are de�ned with respect to the

surface normaln (see Fig. 4) where � is the angle between the surface normal and

the illumination direction (incident angle), � is the angle between the surface

normal and the re
ection direction (emittance angle), and 
 is the angle between
the illumination direction and the re
ection direction (phase angle). Without

loss of generality the re
ection direction can be aligned to the viewer direction

(optical axis of sensor).

The viewer direction is described by a vector v which points to the viewer

(camera). Generally, an orthographic projection is assumed so that the viewer

direction reduces to v = (0; 0;�1): This is the standard viewer direction. The

illumination direction is also simply described by a vector s which points to the

light source.
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The radiance equation for a Lambertian re
ector can be extended for a

general Lambertian surface not being necessarily a Lambertian re
ector. Let

us assume that the surface has albedo � and is illuminated by a parallel ra-

diating light source with irradiance E0 under the incident angle �: Then the

corresponding radiance equation is

L1 =
E0

�
� � � cos(�) = E0

�
� � � cos 6 (n; s) : (17)

Considering surface re
ection properties and assuming non-varying illumination

directions s and viewer directions v variations in the re
ected radiation are

solely caused by changes of the surface orientation. [Horn 1977] introduced the

re
ectance map to model this relationship. Re
ectance maps can be de�ned

as continuous or discrete functions. Usually the gradient space representing

the surface gradients (p; q) = (ux; uy) is chosen for re
ectance maps because

of its simplicity. In this case the re
ectance map function is R(p; q): Another

useful representation are stereographic coordinates (f; g) and re
ectance maps

Rs(f; g): Furthermore, a general re
ectance mapRn(n
�) can be de�ned by using

the unit surface normal n�: As an example,

R(p; q) = E0 � � �
s1 � p+ s2 � q � s3

k(s1; s2; s3)k
(18)

is a linear re
ectance map, for illumination direction s = (s1; s2; s3) and us-

ing gradient space representation. The shading of a sphere that has linear

re
ectance is shown in Fig. 5.

Figure 5: Irradiance image of a linearly shaded sphere using the illumination

orientation s = (�0:5; 0;�1); and three overlaid isoirradiance curves (left) and

a grid representation of the irradiances (right).
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Constant scaling factors are usually eliminated from the representation of re-


ectance maps, as the factor 1=� for the Lambertian re
ectance maps. Conse-

quently, the re
ectance map

R (p; q) = E0 � � � cos 6 ((p; q; �1) ; s) (19)

Rs(f; g) = E0 � � �
�
4f; 4g; f2 + g2 � 4

�
� s�

4 + f2 + g2
; (20)

or

Rn (n
�) = E0 � � � n�T � s� (21)

corresponds to a Lambertian surface (see Fig. 6). A rotationally symmetric
Lambertian re
ectance map is given by

R (p; q) = E0 � � �
1

k(p; q; �1)k ; where s = s� = v = v� = (0; 0; �1)T :

(22)
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Figure 6: Re
ectance map of a Lambertian surface in gradient space with il-

lumination direction s = (0:5; 1; � 1): Left: isoradiance contour plot. Right:

three-dimensional plot.

Lambertian re
ectance maps with s 6= v are not rotationally symmetric. The

left hand side of Fig. 6 shows the re
ectance map as isoradiance plot thus every

curve shows orientations of equal scene radiance values (isoradiance curves).
The second order isoradiance curves in these maps describe a point, a circle,

an ellipse, a parabola, a hyperbola, or a straight line. Every isoradiance curve
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de�nes the location of equal irradiances in a captured image. Consequently,

these curves are also called isoirradiance curves.
The point in the isoradiance plot represents that gradient which is identical

to the gradient (ps; qs) of the illumination direction and hence takes the maximal

radiance value. The gradients lying on the straight line represent those surface

normals which are orthogonal to the illumination direction. The function value

zero is assigned to them since surface patches oriented in this way cannot receive

light from the light source. This straight line is called self-shadow line.
It holds an algebraic duality that the distance between the illumination

gradient (ps; qs) and the origin is reciprocal to the distance between the self-

shadow line and the origin. The illumination gradient and the self-shadow line

are located on di�erent sides of the origin. It follows that the self-shadow line

is uniquely de�ned by the illumination gradient. The self-shadow line is called

the dual line to this gradient.
For isotropically re
ecting surface materials with unknown re
ection char-

acteristics the mapping of an orientation to a radiance value can be determined

using a calibration object, see [Klette et. al 1998]. The following assumptions

are made: the calibration object has the same surface material as the surface

which has to be reconstructed later on by using SFS or PSM. Note that only

one surface material can be characterized by a single re
ectance map.

2.2 Re
ection and Image Irradiance Equation

The simple re
ection representation in the form of re
ectance maps allows the

description of the large class of isotropic re
ecting materials.

However for more general cases it is of bene�t to use analytical re
ection mod-

els in a more general way than already done for the Lambertian re
ection

[Nayar & Oren 1995]. An analytical re
ection model should satisfy the require-

ments of simplicity and should be physically plausible as much as possible. In

general, hybridly re
ecting surfaces have to be considered where re
ection is an

additive composition of di�use or body re
ection Lb and of specular or interface
re
ection Ls:

The di�use re
ection component is usually modeled by Lamberts cosine law

though there exists no complete physical explanation of Lamberts cosine law.

In contrast many models exist for the description of the specular re
ection com-

ponent. In principle there are two di�erent ways to describe specular re
ection,

approaches that use physical optics (wave optics) and approaches which apply

models from geometrical optics [Hecht 1997]. Approaches of physical optics use

the electromagnetic theory for the analysis of the re
ection where the Maxwell

equations constitute the mathematical basis. The application of geometrical

optics is a lot simpler, but it can be used only if the wavelength of the incom-

ing light is small compared to the roughness of the material. Consequently,

re
ection models which are derived from geometrical optics can always be ap-

proximations of the wave-optical re
ection models. Two general representatives

of these approaches are the Beckmann-Spizzichino model (physical optics) and

the Torrance-Sparrow model (geometrical optics), see [Nayar et. al 1991]. Sim-
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pli�cations of both re
ection models are used in computer vision and computer

graphics to describe the specular component.

The Beckmann-Spizzichino model describes the specular re
ection by two

additively overlapping components usually called specular spike and specular

lobe. The specular spike-component models a portion of the re
ection which

only occurs in a very narrow range of angles around the direction of perfect

specular (mirror-like) re
ection. The di�use portion of the specular re
ection

is modeled by the lobe component. It describes the scattering re
ection caused

by the surface roughness.

The Torrance-Sparrow model describes the specular re
ection for surfaces

whose roughness is large compared to the wavelength of the light. It models the

surface by planar, perfectly specular re
ecting microfacets whose orientations

are normally distributed around the macroscopic surface orientation which is

visually inferable. The mathematical formula mainly comprises a Fresnel term,

the geometrical attenuation factor, and a Gaussian normal distribution. The

Fresnel term describes the re
ection behavior depending on the illumination

direction s; on the viewer direction v; and on the refraction index of the surface

material. Note that the refraction index depends on the wavelength. Besides a

simpli�ed Torrance-Sparrow model the Phong model is used in computer vision

and in computer graphics [Foley et. al 1990].

A model that describes hybrid re
ection properties without specifying the

di�use and the specular re
ection component explicitly is the Dichromatic Re-

ection Model (DRM). This model, see [Klinker et. al 1990], can be used for

inhomogeneous dielectric materials whose surface structure can be modeled as

being composed of an interface and an optically neutral medium containing color

pigments. Figure 7 illustrates the principal structure of such an inhomogeneous

dielectric.

Figure 7: Simple model of an inhomogeneous dielectric material.

The interface separates the surface from the environment which is usually air.

If the distribution of the color pigments is uniform and the pigments display the

same optical behavior then it can assumed that the penetrating light does not
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have a speci�c direction when it leaves the surface (body or di�use re
ection).

Part of the radiation falling on the object surface does not penetrate the medium

and is re
ected by the interface (interface or specular re
ection). The DRM

models the specular re
ection component with microfacets. Mathematically,

the DRM can be formulated in the following way:

L(�;n; s;v) = Ls(�;n; s;v)+ Lb(�;n; s;v)

= ms(n; s;v) � cs(�) +mb(n; s;v) � cb(�) (23)

where the modeled scene radiance L is a quantity that depends on the wave-

length �:

The essential assumption of the DRM is that both re
ection components can

be factorized into a geometrical component and a spectral component as given

in the above formula. The geometrical components are ms andmb: The spectral

components are cs and cb: The factor cs is called interface re
ection color and
cb is the body re
ection color. The factorization of the interface re
ection only

holds under speci�c assumptions [Klette et. al 1998]. The factorization of the

body re
ection is feasible without any further signi�cant restrictions.

With the additional assumption of a neutral re
ecting interface, cs describes

the spectral distribution (color) of the light source. This special case of the

DRM is called Neutral Interface Re
ection Model (NIRM). The geometrical

component ms can be made explicit by the formulas of a simpli�ed Torrance-

Sparrow model, the Phong model or other models. But the particular advantage

of the DRM is that the geometric component of the specular re
ection does not

have to be modeled explicitly to apply the DRM for various tasks. The scaling

factor mb can be usually modeled by Lamberts cosine law.

If the description of the scene radiance L is restricted to three narrow wave-

length bands in the red, green, and blue spectral range of the visible light then

the scene radiance can be represented as a three-dimensional color vector

L = ms(n; s;v) � cs +mb(n; s;v) � cb: (24)

Since, from the mathematical point of view, ms and mb represent arbitrary

scaling factors the vectors cs and cb form a two-dimensional sub-space (a plane)

in the RGB color space (dichromatic plane, color-signal plane).

It can be observed that the colors in the dichromatic plane form T- and

L-shaped clusters if the object has su�ciently many and di�erent surface ori-

entations. Figure 8 shows on the left the outline of a typical L-shaped cluster

and on the right the cluster for the real orange watering can (see Fig. 9, left). If

the object shows several hybridly re
ecting materials one cluster arises for every

material. The representations shown in Fig. 8 are called color histograms. Con-
trary to gray value histograms color histograms only have binary values. Color

histograms only code whether a certain color exists in the image or not. Both the

DRM and the NIRM are of great importance in physics-based computer vision.
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Figure 8: Left: Dichromatic plane of a curved, hybridly re
ecting object showing

one color. Right: An L-shaped color cluster of a real watering can (see Fig. 9,

left).

For example, it is possible to separate the re
ection components and hence to

remove the specular re
ection component (highlights) from images by analyzing

color histograms [Klinker et. al 1988, Klinker et. al 1990, Schl�uns 1997].

Figure 9 displays an example of such a highlight removal. The left pic-

ture shows the original image of a watering can. The right picture shows the

watering can after the elimination of the specular re
ection component using

the DRM. These re
ection models can also be used to remove interre
ections

[Rumpel & Schl�uns 1995], for color image segmentation, color classi�cation, and

color object recognition.

Now we discuss the relation between the radiance re
ected from the object

surfaces (scene radiance) to its counterpart, the measured image irradiance of

the imaging sensor. It can be shown [Horn & Sjoberg 1979] that (under a few

assumptions, see also [Klette et. al 1998]) the relation between the re
ected

radiance L and the image irradiance E can be approximated by

E = L � �
4
� d

2

f2
� cos4( ) (25)

where d is the diameter of the lens, f is its focal length and  is the angle between

the optical axis and the light ray going through the center of the observed small

solid angle.

This relationship in conjunction with a re
ectance mapR leads to the image
irradiance equation

E (x; y) = c �R (p; q) ; (26)
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Figure 9: Left: image of a real watering can showing a large highlight. Right:

picture of the watering can after removal of the specular re
ection. The six gray

patches in the bottom line were used to linearize the camera (compare Section

1.2).

where c is a scaling factor. Since the surface gradient (p; q) depends on world

coordinates but the image irradiance E is given in terms of image coordinates,

this equation implicitly contains the assumption of an orthographic projection

as it was already assumed for de�ning the re
ectance map.

If, additionally, the image irradiance is proportional to the values measured by

the imaging sensor and the digitization system then the relationship between the

scene radiance and the measured image irradiance (gray value) of the image is

linear, too. Normal video cameras have a built-in gamma recorrection (compare

Section 1.2) which is a non-linear mapping between the image irradiances and

the gray values. Therefore a photometric calibration must be carried out to

linearize the camera before the image irradiance equation can be applied. For

simpli�cation purposes the image irradiance equation is often represented in the

literature by

E (x; y) = R (p; q) : (27)

Therefore the function E(x; y) in this equation can be regarded as image irradi-

ance function and as measured image irradiance function. The image irradiance

equation is the most important tool to describe the relationship between irra-

diances, scene radiances, and surface gradients.

2.3 Depth Maps from Gradient Maps

Besides the models of surface re
ection models of surface geometry are also used

in shading base shape recovery. Classes of Cn functions are suitable to describe

21



curved surfaces. These classes model continuity respectively di�erentiability as-

sumptions. Generally Cn (
) denotes the class of all functions that are de�ned

on a domain 
; for n � 0: These functions are continuous, and their derivatives

exist up to and including the nth order and are continuous as well. In this TR

either the real plane <2 or a bounded subset of this plane is assumed to be the

de�nition domain 
: Accordingly often we refrain from stating the de�nition

domain. Furthermore only the sets C1; or C2 are relevant in this TR. Func-

tions of theses sets are called C1-continuous respectively C2-continuous surface

functions.

A surface function u = u(x; y) is also characterized by the validity or inva-

lidity of the integrability condition

@2u (x; y)

@x@y
=

@2u (x; y)

@y@x
(28)

for all (x; y) 2 
: As a special corollary from Frobenius' theorem in math-

ematical analysis it follows that the validity of this condition uxy = uyx is

"approximately equivalent" to C2-continuity (see [Klette et. al 1998]).

Function u = u(x; y) is an antiderivative of a vector �eld

w (x; y) = (p (x; y) ; q (x; y))

over a domain 
 if

p (x; y) =
@u

@x
(x; y) = ux (x; y) and q (x; y) =

@u

@y
(x; y) = uy (x; y) ; (29)

hold, for all (x; y) 2 
: Mathematical analysis o�ers (in principle) ways to

calculate such an antiderivative. For example, the integration of vector �elds
can be based on arbitrarily speci�ed integration paths, i.e. on piecewise C1-

curves


 : [a; b] ! <2; 
 (t) = (
1 (t) ; 
2 (t)) = (x (t) ; y (t)) (30)

that lies inside the region 
; with a < b; 
(a) = (x0; y0); and 
(b) = (x̂; ŷ): For

such a curve it holds that

u (x̂; ŷ) = u (x0; y0) +

Z



p (x; y) dx+ q (x; y) dy: (31)

where the result at position (x̂; ŷ) is independent from the integration path.

The depth map respectively the height map, and the gradient map are func-

tions over the image grid f(x; y) : 1 � x �M ^ 1 � y � Ng : In the ideal case

at each point (x; y) a depth map for surface function u states the depth u(x; y)
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of those surface point that is projected into this image point. A height map

is de�ned relatively to an assumed background plane (of height zero), which is

parallel to the image plane. In the ideal case at each point (x; y) the height

value is equal to the (scaled) height of those surface point that is projected into

this image point. Height is measured with respect to the chosen background

plane. A given depth or height map allows us to reconstruct object faces in

3D space within a subsequent computation step of a general back projection

approach. In this TR we consider depth or height maps as the ultimative goal

of single-view shape recovery.

Shading based shape recovery techniques normally provide gradient values

for a discrete set of visible points on object surfaces. This requires a subsequent

integration step to achieve (within possible limits) the speci�ed ultimative goal

of (relative) depth or height maps.

The general remarks about integration paths support local integration tech-
niques: Assume a scan algorithm which passes through all image points of the

image grid (e.g. known under names as meander scan, Hilbert scan, or Peano

scan etc.). Starting with initial depth values this algorithm can be used to

propagate depth values according to a local approximation rule (e.g. based on

the 4-neighborhood) using the given gradient data. Such a calculation of rela-

tive depth values can be done within repeated scans (i.e. using di�erent scan

algorithms). Finally resulting depth values can be determined by averaging

operations. Initial depth values have to be provided or assumed for the start

positions of the di�erent runs.

Several proposals follow this general scheme of local propagations (for a re-

view see [Klette & Schl�uns 1996]). A global integration method, based on results

of the paper [Frankot & Chellappa 1988] and presented in [Klette et. al 1998],

leads practically to considerably better results for the task of calculating depth

from gradients. The solution calculated by this Frankot-Chellappa algorithm is

optimal in the sense of the quadratic error function between ideal and given

gradient values. It only provides a relative height function up to an additive

constant. See Fig. 10 for an example of a reconstructed surface.

3 Three Light Sources

This section discusses 3S PSM where it is assumed that no motion occurs inside

the system consisting of the object, the light sources, and the sensor. Therefore,

three irradiances (an irradiance triplet) can be assigned to every object point

that is projected into the image plane. It is assumed that all irradiances are pos-

itive which means that shadows are excluded from the analysis. The smaller the

angle between the illumination directions, the more object portions are covered

simultaneously by all light sources. On the other hand, with smaller angles the

sensitivity with respect to noise in the measurements of the irradiances during

the image acquisition increases. The same holds for the sensitivity with respect

to the inaccurate estimation of other �xed parameters, for example the illumi-

nation directions. Thus, no optimal choice of illumination directions exists for
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Figure 10: Top left: object. Top right: reconstructed gradient map using 3S

PSM. Below: reconstruction results using the Frankot-Chellappa algorithm.

Left: contour plot. Right: shaded surface with Lambertian texture for the

lighting direction s = (0; 0;�1):

3S methods.

3.1 Albedo Dependent Analysis

We begin our discussion of shape recovery with the assumption of a Lambertian

surface. The shape of a smooth genuine Lambertian surface with uniform albedo

can be uniquely determined by 3S PSM, see [Horn 1986] or [Kozera 1991].

Three irradiance values are measured for any visible surface point where each

value corresponds to the case that exactly one of the light sources was switched

on. We assume a Gaussian sphere representation of the re
ectance maps, i.e.

each measured irradiance corresponds to a circle on the sphere representing all

possible unity normals at the given surface point. This requires the assumption

that for all three light sources the products E0 � � of the light source irradiances
and the albedo are known. On the Gaussian sphere the true orientation at

the given surface point is represented by the intersection point of all these three

circles on the Gaussian sphere (assuming non-coplanar light source orientations).

If the three illumination directions are not coplanar and the three image
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irradiances are consistent with each other, then 3S PSM leads to a unique so-

lution. The orientation of a point on a Lambertian surface can be recovered

uniquely with three image irradiances independent of the neighborhood of the

considered image point. We do not have to introduce smoothness assumptions

or integrability constraints. The reconstruction of the surface orientations is

carried out point-locally by analyzing irradiance triplets. But note that so far

this is the ideal case in theory.

p

qE1

E2

p

q

(p,q)

E1

E2

E3

Figure 11: Isoirradiance curves of 2S (left) and 3S (right) PSM.

The pair of gradients of an irradiance pair is given by the intersection of two

conic sections in the gradient space for a Lambertian surface. The left picture

in Fig. 11 illustrates the intersection of two conic sections. When an additional

light source is introduced which generates the image irradiance E3 then the three

conic sections intersect at a unique point. The intersection (p; q) in gradient

space represents the desired orientation.

However, when the irradiances are measured for a real surface point, then

basically there never exists a unique intersection due to noise and other er-

rors. But even in this case two gradients would exist for each consistent pair

of irradiances. If three consistent irradiance pairs are used to calculate the so-

lution pairs, then six intersections occur. Three of the six intersections should

represent orientations which point approximately into the same direction like

the sought-after surface normal n = (p; q;�1): Finally not the gradients them-

selves but the orientations should be compared to determine an approximate

orientation.

Furthermore, the recovery of the solution can also be achieved without ex-

plicitly calculating the solution candidates, simply by generating the intersec-

tion curves non-analytically. For this approach the re
ectance maps are repre-

sented as image matrices. For this purpose at �rst a generation of the discrete

re
ectance maps (for all three light sources) can be performed. Using a cali-

bration object has the advantage that neither the illumination directions nor

the products E0i� have to be known. Then the selection of the orientations

can be carried out through simple threshold segmentations of the re
ectance

maps. The three irradiances measured in the image are taken to specify the
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thresholds. The segmentation result consists of three regions which represent

the orientations that are consistent with the image irradiances. Finally, the bi-

narized re
ectance maps are intersected (binary AND operation). The centroid

of the resulting region can be used to represent approximately the orientation

at the considered image point. Note that the stereographic projection is a more

convenient two-dimensional representation of the orientations since it causes less

distortions. The width W of the segmentation interval [Ei �W=2; Ei +W=2] ;

with i = 1; 2; 3; can be adapted to the noise level in the image acquisition system

and to expected variations in the albedo.

This described threshold segmentation for 3S PSM has the advantage that it

is easily applicable to surfaces which have no Lambertian re
ection properties

since we do not have to solve a system of nonlinear equations. For re
ectance

maps that are synthetically generated and parameterized by a set of real param-

eters ambiguous solutions can easily be detected for a certain accuracy without

a uniqueness proof. If the re
ectance maps are generated by using a calibra-

tion object, then we do not have to determine the re
ection parameters, i.e.

the surface roughness and the ratio of the di�use and the specular re
ection

component.

For a look-up table solution to 3S PSM note that an irradiance triplet that

is measured in the images can be regarded as a point in a Cartesian coordinate

system E1E2E3 where each of the three axes (irradiance axis) represents the

image irradiances of one light source. A surface orientation is uniquely assigned

to every possible irradiance triplet, thus the generation of a three-dimensional

look-up table is possible. The generation of the look-up table can be carried out

in two di�erent ways. If the illumination directions and irradiances of the light

sources are known, then the look-up table can be built by applying explicit

equations. Besides, a calibration object can be employed for the generation.

Again it is of advantage that the directions and irradiances of the light sources

as well as the re
ection parameters do not have to be known explicitly. A

surface orientation is determined by looking up the entry which corresponds

to the measured irradiance triplet. The look-up table entry contains either a

two-dimensional representation of the surface orientation or it is empty. If the

image irradiances are digitized with 8-bit accuracy and the surface orientations

are encoded with 2�4 Bytes, then the look-up table needs 128MB (!) of memory.

Figure 12 illustrates two di�erent views of a look-up table for a real sphere show-

ing Lambertian re
ection characteristics. The estimated illumination directions

for the sphere are

s1 = (�0:312;�0:231;�1); s2 = (0:049; 0:304;�1); ands3 = (0:411;�0:236;�1):

The estimated ratios of the light source irradiances are 1.0 : 1.022 : 0.772. A

total number of 41717 triplets with positive 8-bit irradiances were measured

on the sphere having a radius of 123 pixels. For the sake of clarity the illus-

trations only display 1303 irradiance triplets. Figure 12 on the right shows an

orthographic projection of the look-up table.
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Figure 12: Left: the three-dimensional oblique view of a real look-up table in a

coordinate system which is spanned by three irradiances originating from three

di�erent light sources. Right: orthogonal projection along the irradiance axis

E3:

It can easily be seen that the irradiances describe an ellipsoidal surface. In

this example, the density of the look-up table is only approximately 3% with

respect to the number of its entries. It can be shown that in the ideal case this

point distribution describes in fact the surface of an ellipsoid [Woodham 1994].

The center of this ellipsoid is located at the origin of the E1E2E3 coordinate

system. The ellipsoid is restricted to the �rst octant of the coordinate system

because only positive irradiances make sense. Each irradiance restricts the other

two irradiance values to an ellipse in the E1E2E3 space. Hence a unique solution

is found by intersecting the three orthogonal ellipses.

The lengths of the three semiaxes of the ellipsoid are proportional to the

albedo of the surface material. Moreover, the orientation of the ellipsoid is

albedo independent and determined by the three illumination directions. Every

ray in the E1E2E3 space passing through the origin represents a unique orien-

tation. From the mentioned properties it follows that the look-up table can be

made albedo independent by propagating each entry along a ray. Thus, a valid

surface orientation is assigned to every look-up table entry.

3.2 Albedo Independent Analysis

In the following it will be assumed that the albedo � stays unknown. At

�rst we note that a pair of irradiances constrains the gradients of a Lam-

bertian surface with unknown albedo to a straight line in gradient space, see

[Lee & Rosenfeld 1984]. Under parallel illumination the two image irradiance

equations of a Lambertian surface can be represented as
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E1 = E01�
nTs1

knk � ks1k
and E2 = E02�

nT s2

knk � ks2k
(32)

resulting in the equation

� � nT (E01 �E2 ks2k s1 � E02 �E1 ks1k s2) = 0; (33)

which can be interpreted as a scaled scalar product. If � 6= 0; then the albedo

can be eliminated from the equation which leads to albedo independence. By

collecting the known quantities in E0a;b = E0a � Eb ksbk the equation can be

represented as the simpli�ed scalar product

nT (E01;2 � s1 �E02;1 � s2) = 0 (34)

The representation

nT (s1;2 � s2;1) = 0; with sa;b = E0a;b � sa = E0a �Eb ksbk sa (35)

is even more compact. The vector di�erence s1;2� s2;1 consists of known quan-

tities and lies in the symmetry plane de�ned by the illumination directions s1
and s2: For a given illumination geometry the variables of the vector di�erence

s1;2 � s2;1 are just the two image irradiances E1 and E2: The vector s1 � s2 is

perpendicular to the set of vectors de�ned by s1;2 � s2;1: The solutions of the

above equation are vectors n; for which the scalar product becomes zero. From

this it follows that all those vectors n satisfy the equation which are oriented or-

thogonal to the vector di�erence s1;2� s2;1: The gradients of the possible vector
di�erences s1;2� s2;1 lie in the gradient space on a determinable straight line h

which is constant for a given illumination geometry. The straight line h is the

line which is dual to the gradient (ps; qs) = (p(s1 � s2); q(s1 � s2)): A unique

point on h is assigned to each irradiance pair (E1; E2): From the relationship

n
T (s1;2 � s2;1) = 0 (36)

it follows that each gradient on the straight line h has a dual straight line k

which represents the possible solutions n of equation (36).

The straight line h can be described explicitly by the equation

qh = h(ph) = �ps
qs
� ph �

1

qs
: (37)

The set of straight lines generated by the straight line h can be represented

explicitly by
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qk = k(pk) =
qs

1 + ps � ph
� (1 + ph � pk): (38)

The variable ph itself depends on the measured image irradiance pair (E1; E2)

and can be calculated by

ph = p(w) ; with w = E01 �E2 ks2k s1 �E02 �E1 ks1k s2: (39)

Thus, all gradients which are consistent with any arbitrary irradiance pair can

be calculated by using equation (36). It can be shown that the gradient (ps; qs)

lies on the straight line k: The albedo � can be found for every gradient by

substituting a solution into any of the two image irradiance equations.

Similar equations to equation (36) can be formulated for the irradiance pairs

(E1; E3) and (E2; E3): For the pair (E1; E3) the equation

nT (E01 �E3 ks3k s1 � E03 �E1 ks1k s3) = 0 (40)

arises, which can be combined with the equation for the image irradiance pair

(E1; E2): The terms in parentheses are vectors which are orthogonal to the

desired surface orientation n: After calculating the vector product

w = (E01 �E2 ks2k s1 � E02 �E1 ks1k s2)� (E01 �E3 ks3k s1 �E03 �E1 ks1k s3)
(41)

a vector results which is collinear to the surface normal n: Therefore, n = s �w:
The scaling factor s must have such a sign that the surface normal n obtains

a negative z-component. Besides the surface normal the albedo can be point-

locally recovered by substituting the normalized vector n� into one of the three

image irradiance equations. When the equation is divided by one of the three

irradiances of the light sources, for example by E03; then the direction of the

calculated vector

w� = (
E01

E03
�E2 ks2k s1 �

E02

E03
�E1 ks1k s2) � (

E01

E03
�E3 ks3k s1 �E1 ks1k s3)

(42)

does not change with respect to w: This property is helpful for the realization

of an albedo independent photometric stereo method since it means that only

the ratios of the irradiances of the light sources have to be known. This leads

to a di�erent scaling of the albedo value.

Figure 13 shows three input images of a synthetic Mozart statue for the de-

scribed 3S photometric stereo method. The images were generated by using

Lambertian re
ectance maps. A light source set-up having the slant angles
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Figure 13: Image triplet of a synthetic Mozart statue for 3S photometric stereo.

In the text the indices 1, 2, and 3 are assigned to the images from left to right.

�(s1) = �(s2) = �(s3) = 20�

and the tilt angles

�(s1) = 90�; �(s2) = �150�; �(s3) = �30�

were chosen for rendering. Relatively small slant angles for the illumination di-

rections guarantee that no strong self-shadows arise. The ratios of the irradiance

values E0i of the light sources are equal to one.

Figure 14: Surface reconstruction results. Left: grid representation. Right:

texture mapping.

Figure 14 illustrates the shape recovery results for the Mozart statue. The

integration of the height map was carried out using the Frankot-Chellappa al-

gorithm, see Section 2.3. The left picture of Fig. 14 shows a grid representation

of the reconstruction. Since detail information gets lost in this representation

the right hand picture presents the same surface by using texture mapping.

The texture image was calculated from the recovered surface normals by using

a Lambertian re
ectance map with the illumination direction s = (1; 1;�1):
The image triplet of a real hand shown in Fig. 15 is an example of an object

with a non-constant albedo (di�erent blood circulation). The ratios of the light
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source irradiances were estimated as 1:0 : 0:638 : 0:640: Estimations for the

illumination directions of the three hand images are

s1 = (�0:370;�0:028;�1); s2 = (0:044; 0:472;�1); and s3 = (0:420; 0:043;�1):

The 3D plots presented in Fig. 16 show that a good surface reconstruction is

possible by using 3S photometric stereo. Artifacts can occur when the hand

is not entirely still and when the specular re
ection component (caused by the

transpiration) is not taken into account by the re
ection model. In the right

picture of Fig. 16 the �rst input image is mapped onto the 3D reconstruction.

Figure 15: An image triplet of a real hand used as input for a 3S photometric

stereo method. The images 2 and 3 were brightened for visualization purposes

where the indices 1, 2, and 3 are assigned to the images from left to right.

Figure 16: Surface reconstruction results. Left: grid representation. Right: �rst

input image was chosen for texture mapping.

4 Two Light Sources

Amore complex task is given if only two light sources shall be used to accomplish

the task of unique surface recovery. The illumination directions p and q of
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the two light sources are assumed to be not collinear. In order to prevent an

interference of the irradiances of the two light sources, the two pictures have to

be taken consecutively. The object and the camera have a �xed position and

orientation. Thus, an irradiance pair (E1; E2) is assigned to each image point

and the corresponding surface point for 2S PSM.

4.1 Albedo Dependent Analysis

This section focuses on fundamentals of situations when the shape of a smooth

Lambertian surface is uniquely determined by a pair of images. More applied

results for 2S PSM can be found in [Klette et. al 1998]. At �rst we discuss

gradient computation and then we analyze the corresponding uniqueness and

existence problems. For more detailed texts an interested reader is referred to

[Kozera 1991, Kozera 1992] or [Onn & Bruckstein 1990]. The second stage of

the shape recovery process involves gradient integration as already discussed in

Section 2.

Suppose that a genuine Lambertian surface represented by the graph of a func-

tion u of class C1 de�ned over a domain 
 = 
1 \
2, is illuminated from two

linearly independent directions, p = (p1; p2; p3) and q = (q1; q2; q3): The cap-

tured images are E1 and E2; respectively. We assume that the albedo �(x; y)

is constant over the entire domain 
 with �(x; y) � c and 0 < c � 1: Note

that hpjqi is the dot product of both vectors. We then have the following (see

[Kozera 1991] and [Onn & Bruckstein 1990]):

Theorem 2 The �rst derivatives ux and uy of function u can be expressed
in terms of E1, E2, p, and q, where kpk = kqk = 1, in the following form
ux = e1=e3 and uy = e2=e3; where

e1 = (q1hpjqi � p1)E1 + (p1hpjqi � q1)E2 + (p3q2 � p2q3)"
p
�;

e2 = (q2hpjqi � p2)E1 + (p2hpjqi � q2)E2 + (p1q3 � p3q1)"
p
�; (43)

e3 = (p3 � q3hpjqi)E1 + (q3 � p3hpjqi)E2 + (p1q2 � p2q1)"
p
�;

and where

� = �(x; y) =
�
1� E2

1(x; y)� E2
2(x; y)

�
� hpjqi

�
hpjqi � 2E1(x; y)E2(x; y)

�
;

and " = "(x; y) is a function taking values �1 so that f(x; y) = "(x; y)
p
�(x; y)

is a continuous function.

The Case when � > 0: When � is positive over 
; the function " appearing

in (43) must take one of the values 1 or �1 since the gradient (ux; uy) has to be
a continuous function. As an immediate consequence, Theorem 2 implies that

there exist at most two C2=C1 solutions to the system (2).

The next theorem formulates necessary and su�cient conditions for the ex-

istence of exactly two solutions of class C2 (and so of class C1) to the system

(2) (see also [Kozera 1991] and [Onn & Bruckstein 1990]).
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Theorem 3 Let E1 and E2 be functions of class C1 over a simply connected
region 
 of <2 with values in (0; 1] and let e1; e2; and e3 be de�ned by (43). Sup-
pose that � > 0 on 
 and that, for each choice of sign, �� = (p3�q3hpjqi)E1+

(q3 � p3hpjqi)E2 � (p1q2 � p2q1)
p
� does not vanish over 
: Then

(e1=e3)y = (e2=e3)x (44)

is a necessary and su�cient condition for the existence of exactly two solutions
of class C2 to (2), for each choice of sign.

Consequently, if both vector �elds (u+x ; u
+
y ) where "(x; y) � 1; and (u�x ; u

�
y )

where "(x; y) � �1 are integrable (see condition (44)) then there exist exactly

two C2 class solutions to problem (2) over 
:

Now we analyse the meaning of condition (44) for images E1 and E2 gen-

erated by a C2 Lambertian surface, that is, when (2) is satis�ed for a cer-

tain function u of class C2: We have the following (see also [Kozera 1992] and

[Onn & Bruckstein 1990]):

Theorem 4 Let p = (0; 0;�1) and q = (q1; q2; q3) be such that q21 + q22 > 0

and kqk = 1; and let u be a function of class C2 on a simply connected open
subset 
 of <2: Suppose that functions E1 and E2 are given by (2). Suppose,
moreover, that � > 0 over 
: In order that there exist a solution of class C2 to
(2) di�erent from u; it is necessary and su�cient that u satis�es

q1q2(uyy � uxx) + (q21 � q22)uxy = 0: (45)

As the equation (45) is generically not satis�ed by function u; a C2 class unique-

ness, in the case when � > 0 over 
; is therefore in most cases assured. In other

words, the integrability condition (45) disambiguates surface reconstruction for

two image patterns and essentially ascertains a generic uniqueness for 2S PSM.

In connection with the above theorem a natural question arises about pos-

sible analytic and geometric relationship between these two solutions (if both

exist). Clearly, each of them has to satisfy additional constraint imposed by

(45). A standard method of characteristics, see the classical theory of the

second-order partial di�erential equations [John 1971], applied to (45) yields

(see [Kozera 1991]):

Theorem 5 Suppose that q21 + q22 > 0: Any solution u of class C2 to (45) over
an open convex region 
 is given by

u(x; y) =

�
�(q1x+ q2y) +  (q1x� q2y) if q1q2 6= 0;

�(x) +  (y) if q1q2 = 0;
(46)

for some functions � and  of class C2: Conversely, for any functions � and  
of class C2; the above formula de�nes a solution of class C2 to (45). In addition,
if a C2 class function u satisfying (45) is determined, then the corresponding
functions � and  can be found by using the following formulae:

�(x) =

�
u(q1x=(q

2
1 + q22); q2x=(q

2
1 + q22))� c if q1q2 6= 0;

u(x; 0)� c if q1q2 = 0;
(47)
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 (x) =

�
u(�q2x=(q21 + q22); q1x=(q

2
1 + q22)) + c if q1q2 6= 0;

u(0; x) + c if q1q2 = 0;
(48)

where c is an arbitrary constant.

The last theorem implies that, if there exist two C2 class solutions to (45) (which

is a rare case) then each of them can be decomposed as a sum of two single-

variable C2 class functions. A natural question arises about the relationship

between pairs (�u;  u) and (�v;  v): This is answered by the following (see

[Kozera 1992]):

Theorem 6 Let p = (0; 0;�1) and q = (q1; q2; q3) be such that q21+ q
2
2 > 0 and

kqk = 1: Let u be a function of class C2 de�ned over and open convex region

; satisfying (2) and

u(x; y) =

�
�(q1x+ q2y) +  (q1x� q2y) if q1q2 6= 0;

�(x) +  (y) if q1q2 = 0;

for some functions � and  of class C2: Then the second solution v to (2) of
class C2 can be expressed in the form:

v(x; y) =

8<:
�(q1x+ q2y) �  (q1x� q2y) if q1q2 6= 0;

��(x) +  (y) if q1 = 0;

�(x)�  (y) if q2 = 0:

The last two theorems determine analytic representations of two C2 class solu-

tions as well as establish the corresponding relationship between these represen-

tations. Furthermore, one can derive now two alternative schemes for �nding
those two solutions (if both exist). First, as indicated in Theorem 2 and 3 one

can recover both functions u and v by calculating the corresponding contour

integrals. However, only one contour integration is in fact necessary. Having

found the �rst solution u; we can apply Theorem 5 and decompose u in terms

of a pair of C2 class functions (�;  ): Finally, Theorem 6 renders the second

solution v; represented uniquely in terms of a pair of functions (�;  ):

In addition, a geometric relationship between the graphs of two solutions

u and v can also be now established. Namely, as easily veri�ed, the Gaussian

curvature Ku(x; y) of the graph of function u calculated at point (x; y; u(x; y));

and the Gaussian curvature Kv(x; y) of the graph of function v calculated at

point (x; y; v(x; y)) satisfy Ku(x; y) = �Kv(x; y):

The immediate consequence of this fact is that, there is no �u+c ambiguity

in 2S PSM when both � and the Gaussian curvature of at least one solution

do not vanish. Such a symmetry is characteristic for the single-image shape

recovery when a point light-source is positioned overhead. However, one can

expect non-uniqueness (in two point light-source photometric stereo) resulting

from replacing u by �u+ c for the graphs with zero Gaussiam curvature. Note

also that, if an admissible class of shapes contains only convex/concave surfaces
consisting exclusively of elliptic points the second solution (if it exists) consists

exclusively of hyperbolic points. Such a theoretical solution is considered not
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physically plausible as being a priori excluded from an admissible class of sur-

faces. Consequently, any restriction of class of admissible solutions, might also

disambiguate a possible case of non-uniqueness in 2S PSM.

Example 2 Let p = (0; 0;�1) and q = (1=
p
3; 1=

p
3;�1=

p
3): Let E1(x; y) =

(x2 + y2 + 1)�1=2 and E2(x; y) = (x+ y + 1)
�
3(x2 + y2 + 1)

��1=2
: Consider the

corresponding two image irradiance equations for 2S PSM:

1q
u2x + u2y + 1

=
1p

x2 + y2 + 1
;

(49)

ux + uy + 1
p
3
q
u2x + u2y + 1

=
x+ y + 1p

3
p
x2 + y2 + 1

de�ned over � = f(x; y) 2 <2 : x + y + 1 � 0; x < yg: An easy inspec-

tion shows that � vanishes only along the line x = y and thus � is positive

over �: Applying Theorems 2 and 3 yields that both vector �elds (u+x ; u
+
y ) =

(y; x) and (u�x ; u
�
y ) = (x; y) are C2 integrable. Moreover, the corresponding

C2=C1 class solutions to (49), de�ned over �; are given up to a constant as

u+(x; y) = xy and u�(x; y) = 1
2
(x2 + y2): Alternatively, we can �rst inte-

grate one of the vector �elds, say (u+x ; u
+
y ) and verify that u+ satis�es (45).

Hence the second vector �eld (u�x ; u
�
y ) is also C2 integrable. By (46), the

function u+(x; y) = �(1=
p
3(x + y)) +  (1=

p
3(y � x)): Furthermore, formu-

lae (47) and (48) yield �(x) = u+((
p
3x=2); (

p
3x=2)) � c = (3=4)x2 � c and

 (x) = u+(�(
p
3x=2); (

p
3x=2))+c = �(3=4)x2+c: Using Theorem 6 results in

u�(x; y) = �(1=
p
3(x+y))� (1=

p
3(y�x)) = (x2+y2)=2; which obviously coin-

cides with the second solution, already determined by using a standard contour

gradient integration method. Observe that u� also satis�es (45). Note, more-

over, that the graph of u+ consists exclusively of hyperbolic points with negative

Gaussian curvature Ku+(x; y) = �(1+x2+y2)�2; whereas the graph of u� con-

sists exclusively of elliptic points with positive Gaussian curvature Ku�(x; y) =

(1 + x2 + y2)�2: Hence, the equation Ku(x; y; u(x; y)) = �Kv(x; y; v(x; y)) is

clearly also ful�lled. The reconstructed surfaces coincide with the Lambertian

paraboloid and hyperboloid, respectively.

The Case when � � 0: We consider the case when � introduced in Theorem

2 vanishes, for given E1 and E2 de�ned (captured) over some domain 
:

An immediate consequence of Theorem 2 is that there is at most one C2=C1

class solution to the system (2). The next theorem formulates a necessary and

su�cient condition for existence of exactly one solution u of class C2 to the

system (2) (see [Kozera 1991]).

Theorem 7 Let E1 and E2 be functions of class C1 over a simply connected
region 
 of <2 with values in (0; 1]: Suppose that � � 0 on 
 and that � =

(p3 � q3hpjqi)E1 + (q3 � p3hpjqi)E2 does not vanish over 
: Then a necessary
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and su�cient condition for the existence of exactly one class C2 solution u of
(2) is (g1=g3)y = (g2=g3)x; where

g1 = (q1hpjqi � p1)E1 + (p1hpjqi � q1)E2;

g2 = (q2hpjqi � p2)E1 + (p2hpjqi � q2)E2;

g3 = (p3 � q3hpjqi)E1 + (q3 � p3hpjqi)E2:

Furthermore, in case of � vanishing over 
; it can be shown that the graph

of u constitutes a developable surface of cylindrical type and that vectors, n =

(ux; uy;�1); p; and q are co-planar, for each (x; y) 2 
: For a more detailed

analysis an interested reader is referred to [Kozera 1992].

We close this subsection with an example highlighting another important

aspect appearing in 2S PSM. As it turns out, the uniqueness problem is not a

mere function of an unknown surface but also depends on the mutual position of

vectors n = (ux; uy;�1); p; and q: This is explicitly illustrated in the following

example:

Example 3 Let q = (q1(q
2
1+q

2
2+1)�1=2; q2(q

2
1+q

2
2+1)�1=2;�(q21+q22+1)�1=2)

and p = (0; 0;�1); and let E1(x; y) = (a2 + b2 + 1)�1=2 and E2(x; y) = (aq1 +

bq2+1)(a
2+b2+1)�1=2(q21+q

2
2+1)

�1=2: Assume that vectors p and q are linearly

independent. Consider now the corresponding two image irradiance equations

for 2S PSM:

1q
u2x + u2y + 1

=
1p

a2 + b2 + 1
;

(50)

q1ux + q2uy + 1p
q21 + q22 + 1

q
u2x + u2y + 1

=
q1a+ q2b+ 1p

q21 + q22 + 1
p
a2 + b2 + 1

:

As straightforward calculation shows that � vanishes over 
; if aq2 � bq1 = 0:

The latter happens only and only if three vectors n = (ux; uy;�1); p; and q

are co-planar, i.e. when they are linearly dependent. Theorem 7 yields the

existence of exactly one C2=C1 solution to (50) de�ned as u(x; y) = ax+ by+ c:

If, in turn, aq2�bq1 6= 0 (i.e. vectors n; p; and q are linearly independent) then

� is positive over 
: Thus, the Theorem 3 assures the existence of exactly two

C2=C1 solutions: u+(x; y) = ax+by+c and u�(x; y) = Ax+By+c; where A =

(a(q21�q22)+2bq1q2)=(q21+q22) and B = (b(q22�q21)+2aq1q2)=(q21+q22):As expected,
the condition (45) is satis�ed by both u+ and u� and Ku+(x; y; u

+(x; y)) =

�Ku� (x; y; u
�(x; y)) = 0: Note, �nally, that each reconstructed surface coin-

cides with a Lambertian plane.

The Case when � � 0: So far we have considered the cases in which � is either

positive or vanishes over a given domain 
: Now we shall treat the situation in

which � is non-negative. Our analysis will not be complete as we shall con�ne

ourselves to the speci�c case concerning the topology of the zero sets of �:
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Namely, we assume that region 
 = D1 [ D2 [ �; where subdomains D1 and

D2; and a smooth curve � are mutually disjoint, � is positive over D1[D2; and

� vanishes over �: It can be veri�ed that this special topological case is obeyed

by most pairs of images and pairs of point light-source directions.

Assume that there exists at least one solution u of class C2 to (2) and that

the irradiance functions E1; E2 appearing in these equations are C1 class over


: Suppose that the set f(x; y) 2 
 : � = 0g is a smooth curve � such that


 n � = D1 [D2; where D1 and D2 are disjoint open subsets of 
; on which, of

course, � is positive. By Theorem 3, there exist at most two solutions (u11; u
2
1)

to (2) of class C2 over D1 and at most two solutions (u12; u
2
2) to (2) of class C

2

over D2; respectively. We do not exclude the possibility that u1i = u2i for either

i = 1; or i = 2; or i = 1 and i = 2: Clearly, the restriction of u to Di coincides

with either u1i or u2i for i = 1; 2: Conversely, suppose that for some i and j

with i; j = 1; 2 and some constant c the limits lim(x0;y0)2D1!(x;y)2� u
i
1(x

0; y0) =

lim(x0;y0)2D2!(x;y)2� (u
j
2(x

0; y0) + c) = gij(x; y) exist for each (x; y) 2 �: Set

vij(x; y) =

8<:
ui1(x; y) if(x; y) 2 D1;

gij(x; y) if(x; y) 2 �;

u
j
2(x; y) + c if(x; y) 2 D2

(51)

and suppose that for each (x; y) 2 � the function vij is of class C
2: Then vij is

a class C2 solution of (2) over 
 and in such a case we say that the functions

ui1 and u
j
2 bifurcate along � in the C2 class. It is clear that, up to a constant,

one can de�ne in this way at most four solutions of class C2 to (2) over 
:

The next result establishes necessary and su�cient conditions for such a

bifurcation to take place (see [Kozera 1991]):

Theorem 8 Let p = (0; 0;�1) and let q = (q1; q2; q3) be such that q21 + q22 > 0

and kqk = 1: For a pair of C1 class functions E1 and E2 de�ning a system
(2), suppose that the set f(x; y) 2 
 : � = 0g is a smooth curve � such that

 n� = D1 [D2; where D1 and D2 are disjoint open subsets of 
: Assume that
there exist two di�erent solutions of class C2 to (2) over D1 and two di�erent
solutions of class C2 to (2) over D2; respectively. Let u be a solution over D1

and v be a solution over D2 such that g(x; y) = lim(x0;y0)2D1!(x;y)2� u(x
0; y0)

= lim(x0;y0)2D2!(x;y)2�(v(x
0; y0) + c); for some choice of constant c: Assume,

moreover, that the triplet of functions (u; v; g) de�nes in (51) a C1 class function
z over 
: If q21 � q22 6= 0; then the function z is of class C2 over 
 if and only
if, for each (x; y) 2 �,

lim
(x0;y0)2D1!(x;y)2�

uxx(x
0; y0) = lim

(x0;y0)2D2!(x;y)2�
vxx(x

0; y0);

lim
(x0;y0)2D1!(x;y)2�

uyy(x
0; y0) = lim

(x0;y0)2D2!(x;y)2�
vyy(x

0; y0):

If q21 � q22 = 0; then the function z is of class C2 over 
 if and only if, for each
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(x; y) 2 �; either

lim
(x0;y0)2D1!(x;y)2�

uxx(x
0; y0) = lim

(x0;y0)2D2!(x;y)2�
vxx(x

0; y0);

lim
(x0;y0)2D1!(x;y)2�

uxy(x
0; y0) = lim

(x0;y0)2D2!(x;y)2�
vxy(x

0; y0);

or

lim
(x0;y0)2D1!(x;y)2�

uyy(x
0; y0) = lim

(x0;y0)2D2!(x;y)2�
vyy(x

0; y0);

lim
(x0;y0)2D1!(x;y)2�

uxy(x
0; y0) = lim

(x0;y0)2D2!(x;y)2�
vxy(x

0; y0):

It should be emphasized that a similar result establishing su�cient conditions

for C1 class bifurcations can be derived. As shown in [Kozera 1991] such bi-

furcations are generically feasible. Furthermore, it can also be proved that, if

there exist exactly two C2 class solutions to (2), de�ned over D1 and D2; then

only an even number of C2 class bifurcations is possible. This combined with

the case of having exactly one C2 solution over D1 and/or D2 permits to have

either zero, one, two, or four C2 class solutions to (2), de�ned globally over 
:

Recall, however, that the existence of a unique solution of class C2; over D1 and

D2; is generically assured (see the subsection covering the case when � > 0):

Therefore, a global generic uniqueness result for C2 class functions, considered

over 
 can also be ascertained.

An interested reader is referred to [Kozera 1992] for a more detailed discus-

sion of this case. We present now an example in which a di�erent number of

C2=C1 class bifurcations appear in 2S PSM.

Example 4 One bifurcation - a generic case: Assume that p = (0; 0;�1) and
q = (q1; q2; q3) are linearly independent and that kqk = 1: It is easy to show

that for the corresponding two images of a Lambertian hemisphere uh(x; y) =

�
p
1� x2 � y2; function � vanishes along � = f(x; y) 2 
 : q2x � q1y = 0g:

Clearly, the curve � decomposes 
 into two disjoints subdomains D1 and D2;

over which � is positive. As the condition (45) is not satis�ed by uh over bothD1

and D2; Theorem 4 assures that there exists exactly one C2 class solution over

each D1 and D2 which is uh: Thus, there can be maximumone C2 class solution

over 
; subject to the existence of a successful C2 class bifurcation along the

curve �: As the hemisphere uh constitutes a global C
2 class solution over 
; the

existence of at least one C2 class bifurcation is therefore ascertained. Summing

up, two images of a Lambertian hemisphere can be uniquely interpreted within

the set of C2 class functions.

Two bifurcations: Consider two image irradiance equations introduced in

Example 3. Let 
 be a simply connected set containing the D1 = f(x; y) 2

 : x < yg; D2 = f(x; y) 2 
 : x > yg; and � = f(x; y) 2 
 : x = yg: As
mentioned before � vanishes along � and, moreover, there exist exactly two

C2 class solutions to (49), over D1 and D2; de�ned as follows: u+(x; y) =

xy and u�(x; y) = (x2 + y2)=2: An easy inspection shows that only two C2

class bifurcations succeed. Namely, by using (51), formulae u(x; y) = xy and
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v(x; y) = (x2 + y2)=2 yield two C2 class functions de�ned globally over entire


: The remaining two other functions (introduced in (51))

w(x; y) =

8<:
xy if(x; y) 2 D1;

x2 if(x; y) 2 �;

(x2 + y2)=2 if(x; y) 2 D2

z(x; y) =

8<:
(x2 + y2)=2 if(x; y) 2 D1;

x2 if(x; y) 2 �;

xy if(x; y) 2 D2

are not of class C2 along the line �: A simple veri�cation shows, however, that

both functions w and z are still C1 class functions over �: Hence there exist

exactly two (four) C2 (C1) class solutions to the problem (49) considered over

entire 
:

Four bifurcations: Let p = (0; 0;�1) and q = (0; 1=
p
2;�1=

p
2); and let

E1(x; y) = (1 + x8)�1=2 and E2(x; y) = (2(1 + x8))�1=2 be de�ned over 
 =

<2: A straightforward calculation shows that for the corresponding two image

irradiance equations a function � vanishes only along the line x = 0; i.e. over

the y�axis. Moreover, there exist, over both D1 = f(x; y) 2 <2 : x > 0g and

D2 = f(x; y) 2 <2 : x < 0g; exactly two C2 class solutions: u(x; y) = x5=5 and

v(x; y) = �x5=5: It is a matter of simple calculation to show that four functions:

v11; v12; v21; and v22 (de�ned with the aid of formula (51)) are of class C2 over

�: Therefore, there exist exactly four C2 class solutions over entire 
: Note that,

if 
 does not contain y�axis, then there existonly two C2 class solutions to the

corresponding 2S PSM problem, namely u and v; and in this case there is no

possibility of having bifurcations.

It is evident now, that bifurcations can either reduce or increase the number of

global C2=C1 class solutions over the entire domain 
: However, a reduction

case, due to the condition (45), is generic. Note �nally, that if none of the

integrability conditions is ful�lled or none of the bifurcations succeeds, a pair

of such spurious images cannot be generated by a genuine Lambertian surface,

see [Kozera 1991].

4.2 Albedo Independent Analysis

As discussed for equation (39), all gradients which are consistent with any 2S

PSM irradiance pair can be calculated by using equation (39). If we look at

the corresponding points on the Gaussian sphere, then every pair of positive

irradiances restricts the orientations to a half of a great circle because the lat-

ter is represented in the gradient space by a straight line. In contrast to the

gradient space the representation of orientations using the Gaussian sphere is

independent from the viewer direction v: Therefore, the number of solutions

reduces implicitly from a great circle to a half of a great circle since only those

orientations are relevant.
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The perimeter of the circles can be seen as a measure of the cardinality

of the orientations which are consistent with the irradiances. The larger the

irradiance value, the smaller the perimeter of the circle. The irradiance E and

the perimeter of the circle are related through the equation

U = 2� �
 
1�

�
E

E0�

�2!
: (52)

On the other hand, the perimeter of the circle of albedo independent 2S methods

remains always equal to 2� for all irradiance pairs and therefore it is in general

larger than the circles in SFS methods while keeping the viewer direction and

the restriction of the orientations by the illumination directions in mind. Be-

sides the surface orientation another unknown variable, the albedo �; exists for

2S methods. Neighboring orientations on the surface are often linked together

through smoothness assumptions as discussed in Section 4.1. From a formal

point of view such assumptions would also be sensible for the albedo. But for

real-world objects discontinuous albedo changes are more likely. Usually dis-

continuous albedo variations occur more often than smooth color value changes

or gray value changes.

Assume that a unique gradient map of a Lambertian surface has to be re-

covered from a pair of irradiance images without knowing the albedo value �:

Assume that the two illumination directions s1 and s2 are known associated

with the irradiance images.

[Lee & Rosenfeld 1985] propose a 3D shape recovery method for Lambertian

surfaces that can be approximated locally by spheres. Under the assumption

of a locally spherical surface it can be shown that the possible orientations can

be restricted to a straight line in the gradient space for a given a single image

irradiance value E: This is even possible without knowledge of the E0� term.

The restriction to a straight line follows by using the irradiance changes for

the considered image point. It can be shown that this straight line can be

represented by the equation

Ey � p� Ex � q = tan(�(s)) � (cos(�(s)) �Ey � sin(�(s)) �Ex) : (53)

As for linear re
ectance maps two irradiances are su�cient to recover the gradi-

ent (p; q) = (ux; uy) uniquely by intersecting two straight lines, for each image

point. This solution is not only independent of the albedo �; it can be calculated

so that the solution becomes independent of the absolute irradiances of the light

sources, as well. In practice this makes the determination of the illumination

parameters easier. As a conclusion the knowledge of the ratio E01=E02 of the

irradiances values is su�cient. For the numerical determination of the partial

derivatives of the image irradiance function E(x; y) it has to be assumed that

the albedo � does not change in the immediate neighborhood of an image point.
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5 Shape from Shading

The SFS problem is the hardest in the class of shading based shape recovery

problems. The given information is a single image E and a re
ectance model

[Horn 1990, Zhang et. al 1994].

It was shown by [Horn 1986] that the SFS problem for a Lambertian surface

with constant albedo corresponds to that of solving the following �rst-order

partial di�erential equation

E(x; y) =
p1 � ux + p2 � uy � p3p

p21 + p22 + p23 �
q
u2x + u2y + 1

; (54)

de�ned over a domain 
:We consider here the case when the albedo is constant,

see (54). Given 0 � E(x; y) � 1; the questions of the existence and uniqueness

of solutions to (54) arise naturally. Existence corresponds to the problem of

whether a given shading pattern with intensity between 0 and 1 is generated

by a genuine Lambertian surface. Uniqueness corresponds to that of whether

a shading pattern is due to one and only one Lambertian shape (given up to a

constant). We shall analyze in this section only the case when s = (0; 0;�1):
One can rewrite then (54) as the eikonal equation

u2x + u2y = E(x; y) (55)

with E(x; y) = E(x; y)�2 � 1:

In this section we present �rst two di�erent classes of images for which

there are no genuine shapes. In the second part of this section we refer to the

uniqueness problem for the eikonal equation (55). Lastly, we brie
y discuss a

number of methods recovering the unknown surface from its single image.

5.1 Images without Solution

Let R be either a positive number or +1. Let f be a non-negative continuous

function on the interval [0; R) vanishing exactly at zero. Consider equation (55)

with

E(x; y) = f(
p
x2 + y2) (56)

given over D(R) = f(x; y) 2 <2 : x2 + y2 < R2g. With this special form of

image, the class of circularly-symmetric solutions is of the form �U + k, where

U (x; y) =

Z px2+y2

0

p
f(�) d�: (57)

A condition on f guaranteeing that all solutions to the corresponding eikonal

equation are unbounded may readily be formulated. Clearly, in the class of

circularly-symmetric solutions, this su�cient condition is
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Z R

0

p
f(�) d� = +1: (58)

It is less evident, though true, that the same condition is su�cient in the general

case. In fact, we have the following (see [Brooks et. al 1992]):

Theorem 9 Let f be a non-negative continuous function on [0; R) vanishing
exactly at zero and satisfying (58). Then there is no bounded C1 solution in

D(R) to (55) with E given by E(x; y) = f(
p
x2 + y2).

Interestingly, condition (58) is not only su�cient but also necessary for the un-

boundedness of all solutions to the equation in question. We have the following

theorem (see [Brooks et. al 1992, Brooks et. al 1992a]):

Theorem 10 Let f be a non-negative continuous function in [0; R) vanishing

exactly at zero and satisfying
RR
0

p
f(�) d� < +1: Then every solution in D(R)

to (55) with E(x; y) = f(
p
x2 + y2) is bounded.

Observe that whether the integral
R R
0

p
f(�) d� is �nite or in�nite depends

exclusively on the behaviour of f near R. The integral will be in�nite if, for

example, f(r) diverges to in�nity su�ciently rapidly as r tends to R. This

means that, in the context of real images of Lambertian surfaces illuminated

by an overhead point light-source, a circularly-symmetric image cannot be de-

rived from a genuine shape if it gets dark too quickly as the image boundary is

approached.

We now establish the existence of images E for which there is no solution

whatsoever to equation (55). See also [Brooks et. al 1992b, Horn et. al 1989].

Theorem 11 Let 
 be a bounded open connected subset of the <2 with boundary
@
 being a piecewise C1 curve of length `@
. Let (x0; y0) be a point in 
 and r
be a positive number such that the closed disc �D(x0; y0; r) of radius r centered
at (x0; y0) is contained in 
. Suppose E is a non-negative continuous function
on the closure of 
; positive in 
; such that

4r
p
E1 > `@


p
E2; (59)

where E1 = minfE(x; y) : (x; y) 2 �D(x0; y0; r)g and E2 = maxfE(x; y) :

(x; y) 2 @
g: Then there is no C1 solution to (55) in 
.

Note that the theorem is of local character: if 
 is a subset of a domain � and

E is a non-negative function on � whose restriction to 
 satis�es (59) for some

choice of �D(x0; y0; r) in 
, then, obviously, there is no C1 solution to (55) in

�. Reformulated in terms of Lambertian shading, this locality property can be

expressed as saying that no genuine image can admit too dark a spot on too

bright a background, assuming that the background does not contain a point

having unit brightness. The precise balance between the quali�cations \too

dark" and \too bright" is, of course, given by condition (59).
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5.2 Ambiguous Shading Patterns

The second part of this section refers to the uniqueness problem for the eikonal

equation (55). Uniqueness of this kind has been demonstrated in the case where

E(x; y) = (x2+y2)(1�x2�y2)�1: Deift and Sylvester [Deift & Sylvester 1981],

proved that �(1 � x2 � y2)1=2 + k are the only C2 solutions to this equation

over the unit disc D(1). All of these solutions are hemispherical in shape. In

an e�ort to obtain a more general result, [Bruss 1982] asserted the following: if

D(R) is the disc in the xy-plane with radius R centered at the origin, and f is

a continuous function on [0; R) of class C2 over (0; R) satisfying the following

conditions:

(i) f(0) = 0 and f(r) > 0 for 0 < r < R,

(ii) limr!0 f
0(r) = 0, limr!0 f

00(r) exists and is positive,

(iii) limr!R f(r) = +1,

then all solutions of class C2 to (55) in D(R) with E(x; y) = f(
p
x2 + y2) take

the form

�
Z px2+y2

0

p
f(�) d� + k; (60)

and so are circularly symmetric with common shape. It is possible to show

that the above Bruss' Ph.D. claim is invalid (for the construction of the speci�c

counter-example see [Brooks et. al 1992a, Brooks et. al 1992b]). Similarly, in

[Kozera 1997a] it was recently shown that Brooks' Ph.D. uniqueness results

[Brooks 1983, Brooks 1983a] concerning the images of the Lambertian plane and

hemi-sphere have been erroneously proved. Some new uniqueness results have

been also established in [Oliensis 1991] and [Rouy & Tourin 1992]. It should be

noted, however, that these results introduce additional uniqueness enforcement

conditions that cannot be easily obtained as the initial data from a mere single

image.

We shall present now a number of surface reconstruction algorithms for a

single-image shape recovery and will brie
y discuss their intrinsic limitations.

5.3 Method of Characteristic Strips

This method is based on the classical approach from the theory of the �rst-order

partial di�erential equations applied to the equation

F (x; y; u; p; q) = 0; (61)

where F (x; y; u; p; q) = p2+q2�E(x; y) over image 
. This was �rst introduced

in the shape-from-shading literature by [Horn 1986]. For a more detailed theory

discussing the general case of F involving n-independent variables, an interested
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reader is referred to [John 1971]. We shall brie
y now outline the basics of the

method of characteristic strips in the context of the shape-from-shading problem.

Given an initial curve 
 � <2 in the image (image boundary) 
 and sur-

face height over 
, the unknown surface S(t; s) is generated along the so-called

base characteristics (x(t; s); y(t; s)) expressed in a parametric form depending on

(t; s)-variables (see the �rst two equations in (62)). Here, variable s parametrizes

initial curve 
 and variable t parametrizes the evolution of the surface S(t; s)

along base charctersistic direction (i.e. whenever s is �xed). Another words,

the surface S is swept out by the family of characteristics of the form

t! (x(t; s); y(t; s); u(t; s); p(t; s); q(t; s))

satisfying the corresponding system of �ve ordinary di�erential equations (called

also characteristic equations)

xt(t; s) = 2p(t; s);

yt(t; s) = 2q(t; s);

ut(t; s) = 2E(x(t; s); y(t; s)); (62)

pt(t; s) = Ex(x(t; s); y(t; s));
qt(t; s) = Ey(x(t; s); y(t; s)):

It is assumed here that the function u de�ned over generalized initial curvee
 2 R5

x(0; s) = x0(s);

y(0; s) = y0(s);

u(0; s) = u0(s); (63)

p(0; s) = p0(s);

q(0; s) = q0(s)

satis�es an eikonal equation and a chain-rule along e

p20(s) + q20(s) = E(x0(s); y0(s)); (64)

_u0(s) = p0(s) _x0(s) + q0(s) _y0(s); (65)

and that the curve 
 obeys the so-called non-charcteristic condition

_x0Fq � _y0Fp 6= 0; (66)

for all (x0(s); y0(s)) 2 
(s). The last condition excludes the case when the initial
curve 
 coincides with the base characteristic direction. In such a situation

the solution would collapse to a single curve in <3. Note also that, if p0(s0)

and q0(s0) are a priori given, then by using implicit function theorem and

condition (66) one can �nd p0(s) and q0(s), de�ned in some neighbourhood of

s0. Assuming that 
 is non-characteristic and that F and 
 are of class C2, the

following result (due to Cauchy; see e.g [John 1971]) can be established:
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Theorem 12 There exists, in some strip neighbourhood of 
, exactly one C1

solution (x(t; s); y(t; s); u(t; s); p(t; s); q(t; s)) of Cauchy problem (62) and (63)

such that eu(x(t; s); y(t; s)) = u(t(x; y) s(x; y)) de�nes a unique C2 solution to
the problem (61).

With the aid of the above theorem, one can transform a given �rst-order partial

di�erential equation into an equivalent system of �ve mutually coupled ordinary

di�erential equations. Such transformation, in general, renders still a di�ucult

task for �nding an exact analytic solution to a corresponding Cauchy problem

(62) and (63). To see it, note that the unknown functions appearing in left-hand

sides of (62), reappear also in the right-hands of the same system in a non-linear

form. The alternative, is to resort e.g. to the �nite-di�erence approximations of

the derivatives applied to the left-hand sides of the system (62). Consequently,

by using a forward-di�erence derivative approximation, the following sequential

scheme can be derived:

x(tn+1; sk) = x(tn; sk) + 2�tp(tn; sk);

y(tn+1; sk) = y(tn; sk) + 2�tq(tn; sk);

u(tn+1; sk) = u(tn; sk) + 2�tE(x(tn; sk); y(tn; sk)); (67)

p(tn+1; sk) = p(tn; sk) + �tEx(x(tn; sk); y(tn; sk));
q(tn+1; sk) = q(tn; sk) + �tEy(x(tn; sk); y(tn; sk));

where each (tn; sk) represents the corresponding point on the grid expressed in

(t; s) coordinate system. It is clear that given the scheme (67) and Dirichlet

and Neumann boundary conditions (63) one can sequentially �nd a numerical

solution to (62). The following convergence and stability results for the above

numerical scheme can be established (see e.g [Gear 1971]):

Theorem 13 Assume that function E 2 C2(�
) is de�ned over compact �
.
Then, if 0 � t � b, the numerical solution to (67) is convergent to the solu-
tion (x(t; s); y(t; s); u(t; s); p(t; s); q(t; s)) of the Cauchy problem (62) and (63).
Moreover, a corresponding �nite-di�erence scheme (67) is stable with the sta-
bility upper-bound constant equal to ebL, where

�1 = 2 sup
(x;y)2


fjEx(x; y)j+ jEy(x; y)jg; �2 = sup
(x;y)2


fjExx(x; y)j+ jEyx(x; y)jg;

�3 = sup
(x;y)2


fjExy(x; y)j+ jEyy(x; y)jg;

and constant L = max1�i�3f2; j�ijg: Finally, the scheme (67) is absolutely
stable, if j1 + �tLj � 1.

The main problem with the method of characteristic strips stems out from the

fact that the surface should not be reconstructed over (t; s) coordinate sys-

tem but in the standard cartesian (x; y) coordinate system. The corresponding

transformation between two coordinate systems usually changes the rectangular
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grid (expressed in (t; s) variables) to the curvilinear cartesian grid. Hence, the

coverage of the image domain by base characterstics (x(t; s); y(t; s)) tends to be

uneven, resulting in a inhomogeneous density of the reconstructed surface. The

next problem is that the coverage of the image domain will only be extensive if

the initial curve and surface are appropriately chosen. Furthermore, the method

is not amenable to parallelism and should not be applied in the neighbourhood

of the occluding boundary, where constant L = 1. Note, however, that for

any �xed constant L, a strong stability condition can be enforced by shrinking

�t, respectively. The latter assures that the computed numerical solution to

(67) is \close" to the ideal solution to (67), and thus, by the last convergence

result, \close" to the solution of the Cauchy problem (62) and (63). Finally,

it should be pointed out that method of characteristic strips requires Dirichlet

and Neumann boundary conditions which, in case if not a priori given, might

not be easily obtainable from a mere image 
.

We close this section with an example illustrating some di�culties which

might appear in solving analyticly the Cauchy problem (62) and (63), even in

special simple cases of eikonal equation.

Example 5 Consider the following eikonal equation

u2x(x; y) + u2y(x; y) = c; (68)

where c > 0 is an arbitrary constant. With no extra bounadry conditions the

problem is ill-posed as the family of functions v(x; y) = ax+by, where a2+b2 = c,

constitutes di�erent C2 class solutions to (68). Let us now incorporate Dirichlet

and Neumann boundary conditions along the Y�axis: v(0; y) = �by, vx(0; y) = �a,

and vy(0; y) = �b, where (�a;�b) 6= (0; 0), �a 6= 0, and �a2+�b2 = c. The corresponding

Cauchy problem (62) and (63) takes the following form:

(a) xt(t; s) = 2p(t; s);

(b) yt(t; s) = 2q(t; s);

(c) ut(t; s) = 2c; (69)

(d) pt(t; s) = 0;

(e) qt(t; s) = 0;

with the corresponding boundary conditions de�ned as

(a) x(0; s) = 0;

(b) y(0; s) = s;

(c) u(0; s) = �bs; (70)

(d) p(0; s) = �a;

(e) q(0; s) = �b:

Note that the conditions (64), (65), and (65) are here clearly satis�ed. Further-

more, (69)(d; e) combined with (70)(d; e) yields p(t; s) = �a and q(t; s) = �b. By
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coupling (69)(a) and (70)(a) together with (69)(b) and (70)(b) we obtain that

x(t; s) = 2�at and y(t; s) = 2�bt+s. Thus, t(x; y) = x=2�a and s(x; y) = y�(�b=�a)x.

With the aid of (69)(c) and (70)(c) we arrive at u(t; s) = ct+�bs. Putting t(x; y)

and s(x; y) back into u(t; s), and bearing in mind that c = �a2 + �b2, we �nally

obtain u(t; s) = eu(x(t; s); y(t; s)) = �ax+ �by. Theorem 12 assures also, that the

latter forms a unique C2 class solution to Cauchy problem (69) and (70). A

moment re
ection reveals, however, that �nding an exact analytic solution for

u2x(x; y) + u2y(x; y) = x2 + y2, by using the method of characteristic strips, is

much more complicated.

5.4 Method of Equal-height Contours

This method is a variant of the method of characteristic strips. Namely, it

is assumed here that 
(s), (where s 2 (a; b)) is a smooth (piecewise smooth)

equal-height contour contained in the image 
 (i.e. eu(x; y) = C over 
). By

imposing such special Dirichlet boundary conditions it is possible to determine

the Neumann boundary conditions, up to two pairs of gradient de�ned along

curve 
. In case of equal-height contour a corresponding solution eu is generated

along the evolution of equal-height contours 
t, for which 
0 = 
. Another

words, the unknown surface is swept out by (
t; eu(
t)), where the family 
t(s) =

f(x(t; s); y(t; s)) : (s; t) 2 (a; b)� (c; d)g of equal-height contours is generated by

solving the following Cauchy problem:

xt(t; s) = � ys(t; s)p
E(x(t; s); y(t; s))(x2s(t; s) + y2s(t; s))

;

yt(t; s) = � xs(t; s)p
E(x(t; s); y(t; s))(x2s(t; s) + y2s(t; s))

;

(71)

x(0; s) = x0(s);

y(0; s) = y0(s);

and 
0(s) = (x(0; s); y(0; s)) is the initial equal-height contour. A �nal solutioneu is given here by

eu(x(t; s); y(t; s)) = u(t; s) = t+ C; (72)

where u(0; s) = C. The choice of appropriate pair of signs (+;�) or (�;+) in
formulae (71), governs the direction of evolution of equal-height contours (either

outwards or inwards).

Note that, if we di�erentiate eu(x(t; s); y(t; s)) = t over the parameter s, the

chain rule yields p(t; s)xs(t; s)+ q(t; s)ys(t; s) = 0. This combined with the fact

that p2(t; s) + q2(t; s) = E(x(t; s); y(t; s)) implies that

p(t; s) = �ys(t; s)
p
E(x(t; s); y(t; s))p

x2s(t; s) + y2s (t; s)
and
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q(t; s) = �xs(t; s)
p
E(x(t; s); y(t; s))p

x2s(t; s) + y2s(t; s)
: (73)

In particular, for s = 0, there exist exactly two choices of Neumann boundary

conditions guaranteeing, in each case, the existence of a unique C2 class solution

to a corresponding Cauchy problem (see Theorem 12). Indeed, let u be a C2

class solution to problem (71) and (72) with Dirichlet boundary condition set

to u(
) = C. An easy inspection shows that function v = �u + 2C satis�es

u2x + u2y = E(x; y), Dirichlet boundary conditions v(
) = C, and one of the

Neumann boundary conditions (73). Thus, we have an essential duality in

solving a Cauchy problem (71) and (72), which is ambiguous up to a vertical

shift and mirror-like re
ection.

Note, that (71), (72), and (73) can be transformed into an equivalent system

of �ve characteristic strip equations:

xt(t; s) =
p(t; s)

p2(t; s) + q2(t; s)
;

yt(t; s) =
q(t; s)

p2(t; s) + q2(t; s)
;

ut(t; s) = 1; (74)

pt(t; s) =
Ex(x(t; s); y(t; s))
2(p2(t; s) + q2(t; s))

;

qt(t; s) =
Ey(x(t; s); y(t; s))
2(p2(t; s) + q2(t; s))

:

The last system di�ers from the system of characteristic strips by the speed

of evolution along the base charctersitic direction. Thus, both systems are equiv-

alent and render the same solution. This variant of the method of characteris-

tic strips was mentioned in shape-from-shading literature by [Bruckstein 1988]

and later re-introduced by [Kimmel & Bruckstein 1994]. For a more detailed

mathematical analysis of this method an interested reader is also referred here

to [Osher 1993, Sethian 1985]. The corresponding discrete method of equal-

height contour evolution is analyzed by [Osher & Sethian 1988, Sethian 1990].

Recently, a Fast Marching Level Set Method has been applied to the eikonal

equation over a rectangular grid [Sethian 1996]. An interested reader is also re-

ferred to [Kozera & Klette 1997], where convergence, stability, and performance

of various �nite-di�erence schemes (applied over a rectangular grid to the linear

shape from shading problem) have been discussed.

Note �nally, that the knowledge of the initial equal-height contour (which is

a clear drawback of this method), as opposed to the general case of extracting

general Dirichlet and Neumann boundary conditions (necessary for applying a

method of characteristic strips) can, in certain cases, be obtainable. The latter

happens e.g., if the surface is positioned on the horizontal plane and disappears

continuously from the viewing direction.

We shall close this subsection with an example illustrating the equal-height

contour method.
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Example 6 Consider the eikonal equation introduced in (68). Let the initial

height-contour 
0(s) be x(0; s) = s=a, y(0; s) = �s=b, along which u(0; s) = 0,

and ab 6= 0. We search for eu(x(t; s); y(t; s)) = u(t; s) = t, where the pair

(x(t; s); y(t; s)) satis�es the following system:

xt(t; s) =
�ys(t; s)p

c(x2s(t; s) + y2s (t; s))
;

yt(t; s) =
xs(t; s)p

c(x2s(t; s) + y2s (t; s))
:

u(t; s) = t (75)

x(0; s) = x0(s);

y(0; s) = y0(s):

In order to solve (75), pertinent Neumann boundary conditions have to be

incorporated. Choosing in (73) a pair (�;+) we obtain:

p(t; s) =
�ys(t; s)

p
cp

x2s(t; s) + y2s(t; s)
and q(t; s) =

xs(t; s)
p
cp

x2s(t; s) + y2s(t; s)
:

Thus p(0; s) = a and q(0; s) = b along initial equal-height contour 
0(s) and

therefore the last two equations of (74) yields p(t; s) = a and q(t; s) = b.

This, together with the �rst two equations of (74) yields x(t; s) = (a=c)t+ s=a

and y(t; s) = (b=c)t � s=b. Hence, t(x; y) = ax + by. As eu(x(t; s); y(t; s)) =

u(t; s) = t we �nally arrive at one of two C2 class solution to (75). Choosing,

in turn, the second pair (+;�) in (73) we obtain the second C2 class solutionev(�x(t; s); �y(t; s)) = �a�x� b�y to problem (75).

5.5 Direct Variational Method

The methods of [Horn 1986] and [Bruckstein 1988] rely in a crucial way on

provision of prior information (Dirichlet or Neumann boundary conditions).

The amount of necessary information usually exceeds the minimal amount of

initial data required by various theoretical uniqueness results. This is so because

the algorithms based on di�erential equations cannot proceed by starting from

singular points (i.e. for the point for which E(x0; y0) = 0) which, as it turns

out, are important clues for the shape recovery process.

In this section we shall only outline a direct variational method by analysing
the simpliest case. For a more general case see [Brooks & Chojnacki 1994]. We

assume here that a domain 
 has exactly one singular point S0 = (x0; y0). A

direct variational method discussed in [Brooks & Chojnacki 1994] is based on

the following crucial result.

Theorem 14 If a function u satis�es an eikonal equation (55) over a domain

, and X and Y are points in 
 that can be joined by the base characteristic
curve wholly contained in 
, then the relative depth ju(X)�u(Y )j bewteen points
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of the graph of u is given by

ju(X)� u(Y )j = min



Z



p
Edl; (76)

where the minimum is taken over all piecewise smooth curves 
 in 
 joining X
and Y , and the integration is meant with respect to standard measure.

The proof of Theorem 14 reveals that a minimal value of (76) is attained along

the base characteristic direction (i.e. along gradient direction). It can be shown

that for the convex (concave) Lambertian surface the corresponding image has

exactly one singular point S0 (where ux(S0) = uy(S0) = 0) and that each point

of the image X 2 
 can be joined by the base characteristic curve with S0.

Consequently, the previous theorem yields:

u(X) = u(S0) �min



Z



p
Edl and u(X) = u(S0) +min




Z



p
Edl; (77)

whenever the surface is convex/concave. Note that, for the saddle-like func-

tion u(x; y) = xy the base characteristic pattern (which in case of arbitrary

eikonal equation coincides with the gradient direction) does not have the above

property. Consequently, the method presented here can only be applicable to

the convex (concave) surfaces. In an e�ort of extending this result for an im-

age containing more than one singular point a generalization of the notion of

the convex (concave) surface is necessary. It is useful at this stage to consider

those smooth surfaces having base characteristic curves pointing outward (or in-

ward) at the periphery of the domain. They are called convex skirt surfaces (see
[Brooks & Chojnacki 1994] or [Oliensis 1991]). In addition, it is assumed that

the convex skirt function, in the neighbourhood of the singular point S0, has a

non-vanishing Hessian. By using index theory (see [Brooks & Chojnacki 1994])

it can be shown that the number of singular points has to be odd. Moreover,

if N+ denotes the number of concave singular surface points, N� denotes the

number of convex singular surface points, and N� denotes the number of saddle

singular surface points then it can be shown that any convex skirt surface with

non-vanishing Hessian has to satisfy the following condition N++N��N� = 1:

The latter imposes a clear constraint on the number of possible solutions. For

n = 1, we have only two possible cases: N+ = 1 together with its morror-like re-


ection N� = 1. For the case when n = 3, there are four possible solutions. An

interested reader is referred here to [Brooks & Chojnacki 1994], where a method

of �nding a convex skirt solution (generalizing Theorem 14) together with ex-

plicit shape recovery algorithm is presented. A similar topic is also discussed

by [Oliensis & Dupuis 1993].

Finally, we point out that in order to derive a computational scheme for

(77) Dijkstra's greedy algorithm for �nding the shortest path from the single

source to any other node on a weighted graph can be used [Cormen et. al 1990].

The source here, will be a singular point S0, the nodes of the graph coincide

with the rectangular grid points and the edges are the straight lines joining the
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eight neihgbouring points with any point at the grid. Assuming that the grid

increment is h, the corresponding weigth function ! assigned to each existing

edge ((xi; yj); (xk; yl)) can be de�ned as:

!((xi; yj); (xk; yl)) =(
h
2 (
p
E(xi; yj) +

p
E(xk; yl)); if jk � ij+ jl � jj = 1;

hp
2
(
p
E(xi; yj) +

p
E(xk; yl)); if jk � ij+ jl � jj = 2:

(78)

For more detailed analysis concerning numerical schemes for (77) an interested

reader is refered to [Brooks & Chojnacki 1994] and [Cormen et. al 1990].

The use of the above optimization method reduces the number of initial in-

formation necessary to ascertain well-posedness of a given shape-from-shading

problem (e.g no boundary conditions are here requested). Similarly to the case

of photometric stereo, the unknown function u is found, up to an arbitray con-

stant. In addition, the computational scheme for (77) can be derived over a

�xed rectangular grid. The major disadvantage stems out, however, from the

necessity of tightening the originial class of C1 class surfaces to convex/concave

skirt C1 class surfaces. Such a restriction appears neither in photometric stereo

nor in other single image shape reconstruction algorithms. The latter is, how-

ever, achieved by imposing additional constraints such as multiple illuminations

or accessibility of boundary conditions.

6 Concluding Remarks

SFS methods require a strong restriction of the object surfaces because the

problem to recover a surface from a single image is extremely underdetermined.

Therefore, SFS is an ill-posed problem. Assumptions on the surface properties

support to �nd a unique solution to a certain extent. But with every additional

restriction the practical use of such methods declines as well. Very critical

simpli�cations are the following three assumptions.

(i) The term E0� is known and constant.

(ii) The surfaces are at least C1-continuous.

(iii) 3D coordinates of singular points and/or singular orientations are known.

This TR informed about 2S and 3S PSM techniques which allow to refrain

from assumptions (i) and (iii). Assumption (ii) is also related to the discrete

integration problem as brie
y discussed in Section 2.3. PSM techniques can be

improved further by using colored light sources [Woodham 1994, Drew 1994], or

by integration of shadow information [Solomon & Ikeuchi 1996, Schl�uns 1997].

This TR also informed about theoretical work, and here we can state a situation

where SFS or albedo dependent 2S PSM are analysed at greater detail as 3S

PSM so far. However there exist more contributions to fundamentals of 3S PSM

as cited in this TR.
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In comparison to di�erent shape recovery techniques (for a detailed descrip-

tion of di�erent techniques see, e.g., [Klette et. al 1998]), as based on structured

lighting, or on motion and occluding boundaries, shading based shape recovery

has special bene�ts (use of inexpensive equipment, no dangerous radiation). It

o�ers reasonable accuracy and time-e�cient reconstructions for selected appli-

cations.
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