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Abstract. The report reviews selected results in the �eld of geometrical
measurements and reconstructions of simply-connected compact sets of

points in R3 which have internal points (i.e. a special class of 3D objects)

based on gridding techniques. Two soundness properties of approaches
are discussed with respect to the selected grid resolution: convergence

and convergence towards the "true" value. The existence of sound multi-

grid approaches is discussed for problems as (1) volume and surface area
measurement for Jordan sets (i.e. 3D objects bounded by Jordan sur-

faces), (2) approximations of planes based on sampled data, (3) surface

reconstructions based on gradient information, and (4) surface recovery
by solving a (special) linear di�erential equation system. The report con-

cludes with a brief discussion of arising digital or computational geometry

problems relevant to the discussed subjects.

1 Introduction

This report deals with approximations and representations of objects (sets, sur-

faces, faces, planes etc.) in three-dimensional (3D) space that are initially given

by discrete data arrays. The application background is image analysis of three-

dimensional objects based on given digitized data. The input information may

be either a voxel data set, where voxel stands for volume element which is the

sample value at a grid point, or it may be one or several digitized projections

of real-world scenes. Example application areas are biomedical 3D image anal-

ysis, or industrial surface inspection, respectively. The analysis task is directed

towards reconstructing or analyzing an unknown 3D object.

To be precise, an object in the 3D Euclidean space R3 is a connected com-

pact set. A compact set is characterised by two properties: any in�nite sequence

of points of this set contains a convergent subsequence, and the set is closed

with respect to the topology of the Euclidean space. Lateron in this report we

restrict our objects of interest on sets bounded by a Jordan surface, or on sets

which are just a single Jordan face in 3D. An object in three-dimensional space

may be characterised to be either one-dimensional, two-dimensional, or three-

dimensional. A one-dimensional object in R3 is a curve. A two-dimensional ob-

ject in R3 has no internal points (with respect to the 3D topology), i.e. it is a

surface in R
3: A 3D object is a connected compact set in R3 which has inter-

nal points with respect to the 3D topology. Furthermore we will assume that



a 3D object in this report is also simply-connected. A simply-connected set is

homeomorphic to a unit ball.

This report is not a general review. It is based on subjective selections of

relevant topics and results (without citing proofs) in the area of geometrical

measurements and surface reconstructions based on gridding techniques.

1.1 Soundness Properties

The length of a diagonal of a square with side length a can not be measured

via the length of a piecewise constant function because the total length of the

piecewise constant function is always 2a independent of the number or the size

of the steps, and does not converge towards a
p
2 if the step-size goes to zero.

This is a popular example of the following problem: assume that a real-world

object is given and we have only some sampled or digitized data about this 3D

object. What is the appropriate method to calculate a speci�c feature of this

object, or to represent it? Does the method ensure that progress in technology

(higher resolution of cameras, more storage, digital images of larger size etc.)

will lead to "improved" results?

Sound multigrid measurement approaches for areas in 2D, or for volumes in

3D are not especially hard to specify (the 3D case will be discussed below). For

the "diagonal of a square" example above the size of the area below the "diago-

nal" staircase function will converge towards the size of the triangle de�ned by

two sides of the square and the diagonal if the step size goes to zero. However

the sound measurement of perimeters in 2D, or of surface areas in 3D are more

di�cult problems.

Digital geometry techniques or computational geometry algorithms may be

used to represent and analyze the given discrete data. The chosen technique

should be sound with respect to the general measurement or representation prob-

lem that discrete measurements (sampled data) are given about a certain object,

and that this object has to be represented in a certain data structure (speci�c

features, speci�c approximative representations etc.).

We consider the following two soundness properties of measurement or re-

construction techniques in this report:

CONVERGENCE: Data acquisition at higher spatial resolutions should lead to

a certain type of convergence (as uniform, pointwise etc.) for the values of mea-

sured features, or for the calculated representations such as reconstructed planes,

straight lines, surfaces etc.

PROPER VALUE: Convergence should be towards the "true" value, the "true"

data etc.

The �rst soundness property requires a proof of a certain type of convergence.

The diagonal in the staircase example above is always 2a, i.e. it trivally converges.

The proof of the second soundness property (convergence towards the "true"

value) is often more di�cult than a proof of a certain type of convergence. Be-



sides the mathematical di�culty of such a proof it requires in application areas

as computer vision or image analysis also at �rst a fundamental problem analy-

sis: what is actually the "true data", the so-called ground truth? The objects of

interest may be well-de�ned by a deterministical, a fuzzy or a statistical math-

ematical model, or characterised by a certain degree of objective or subjective

uncertainty.

Often the "true" data is unknown in applications of image analysis. In image

analysis the 3D object is given in a certain discrete form as, e.g., a (discrete)

voxel data set, and must be analyzed based on this discrete information which

is characterized by a given grid resolution. Sometimes we may also utilise a cer-

tain a-priori geometric model (as polyhedron, or "smooth surface object") of the

unknown 3D object. However we will focus on the general case where just the

given discrete information (voxels, gradient values at grid point position etc.)

speci�es the input. For example, many imaging processes such as Computer To-

mography (CT), Magnetic Resonance Imaging (MRI) or Confocal Microscopy

(CSLM), provide a series of aligned planar scans which together comprise a spe-

cial voxel data set, a voxel data cube. Some microscope image analysis processes

are based on digitized slices of objects where at �rst the obtained images have

to be aligned. However, assuming correct alignment also in these cases such a

voxel data cube is given describing a certain 3D object. The object � of interest,

represented in this data cube, is normally given as a fuzzy set and not de�ned by

a Jordan surface. Fig. 1 intends to visualise such a "fuzzy situation" of capturing

real objects.

Θ dig(Θ) hidden in data cube f

dig

Fig. 1. An unknown real-world object � , the ground truth, is represented after image
acquisition as dig (�), and this information is "hidden" within a voxel data cube f of

labeled grid points.



Higher resolutions during image acquisition may allow to restrict the range

of possible (subjective) object interpretations, i.e. to improve the understanding

of the "hidden" 3D object. This is an important argument for the approach

discussed in this report.

The study of soundness properties of suggested measurement or reconstruc-

tion techniques can be based on synthetic input data as a solution for generating

"ground truth" simulating real input data. However such experiments are always

just case studies for a speci�c type of hypothetical input data.

The ideal solution is the mathematical modeling of the measurement or re-

construction problem where the truth is de�ned in general mathematical terms.

An evaluation approach based on a general mathematical model of an assumed

measurement and representation problem does not require experiments with real

or synthetic input data (besides that, such experiments may be useful to illus-

trate or to validate), but it is restricted to a certain class of precisely de�nable

problems. In such a mathematical model we have not to discuss di�culties with

specifying a "ground truth" because there is only one truth in such a model.

In deterministic models the problem of convergence is always considered with

respect to convergence towards a uniquely de�ned true value, without statisti-

cal distributions or fuzzy uncertainties. This report discusses such well-de�ned

deterministic situations.

What is the "true" surface area in case of mathematically de�ned 3D objects?

There must be a unique answer to this question. Indeed this question is easy to

answer for objects as planar, polygonal faces. It is easy to model a plane, a

polygonal face or a straight line. The diagonal in the staircase example above

has length a
p
2: But what about curved objects as an ellipsoid in general form

(assuming three di�erent values for the three radii of such an ellipsoid) modelling

"curved objects" in the real world?

Fortunately integration and di�erentiation techniques for modeling surfaces

in 3D Euclidean space were already studied in mathematics since the 19th cen-

tury, see, e.g., No. 109 in [19], and provide proper approaches for modeling and

measuring of object surfaces. But note that "simple" objects as an ellipsoid in

general form are already quite di�cult with respect to the determination of an

analytical surface area formula, and numeric calculations are often prefered in

mathematical software systems.

1.2 Jordan Faces

C. Jordan (1838 Lyon - 1922 Paris) is already famous in the image analysis

literature for his curve theorem often cited for separations in 2D Euclidean space.

A generalization of this Jordan curve theorem is also valid for speci�c sets of

points in 3D space allowing a more speci�c de�nition of 3D objects which we

will call Jordan sets.

However at �rst we start the de�nition of a general surface model for simply-

connected compact 3D objects by assuming a segmentation of the 3D object

surface into several faces.



De�nition1. (Jordan Face): A Jordan face F in 3D Euclidean space R3 is

a set of points F � R
3 in parameteric form F = FB(';  ; �) where B � R

2 is a

simply-connected compact set and ';  ; and � are three functions di�erentiable

for all positions (u; v) in B; such that

FB(';  ; �) = f(x; y; z) : x = '(u; v) ^ y =  (u; v) ^ z = �(u; v) ^ (u; v) 2 Bg ;

and for which it is assumed that each point in FB(';  ; �) is de�ned by exactly

one point (u; v) 2 B; and that the rank of the matrix of the �rst derivatives�
'u  u �u
'v  v �v

�

is equal to two for all positions (u; v) 2 B:

From this de�nition it follows that at each position b = (u; v) at least one of the

three subdeterminants

A =

���� u �u
 v �v

���� ; B =

�����u 'u
�v 'v

���� ; and C =

����'u  u
'v  v

����
is not equal to zero. These subdeterminants may be used to de�ne the area

Jarea(F) of face F as follows

Jarea(F) =

Z
B

p
A2 + B2 + C2db

assuming that F is measurable (see De�nition 3 below).

For example assume any simply-connected planar compact face F: Then B

may be chosen parallel to the F plane, with ' (u; v) = const;  (u; v) = u; and

� (u; v) = v: The rank of the corresponding matrix�
0

0

1

0

0

1

�

is two and the equation

Jarea (F) =

Z
B

db = Jarea (B)

reduces the 3D measurement problem to a 2D measurement problem. It follows

that any simply-connected planar compact set F is a Jordan face according to

the de�nition above, and it is measurable if its 2D projection is measurable.

The measurability de�nition [19] of Jordan faces F = FB (';  ; �) is based

on a triangulation of a bounded superset B1 of B satisfying B � I (B1) ; where

I (B1) denotes the 2D interior of the set B1; and the �rst order derivatives of the

functions ';  ; � exist and they are continuous in I (B1) : Formally this means

that ';  ; � 2 C(1) (I (B1)) : In No. 108 of [19] it is shown that the angles �

of such triangulations (of the base sets of the resulting polyhedral faces) have



to satisfy the constraint � < 2�/3 (independently shown by O. H�older in 1882,

G. Peano in 1890, and H. A. Schwarz in 1890) to avoid inaccurate surface value

calculations for curved surfaces. This might also be cited as a remarkable result

for triangulations in modern computer graphics.

De�nition2. (Triangular Subdivision): Let B1 � R
2 be a simply-connec-

ted compact set with B � I (B1) and assume an angle ! with 0 < ! < �/3:

Then any network Z of triangles completely covering B1 and satisfying the fol-

lowing two properties,

(i) all angles of triangles in Z are less or equal to � � !; and

(ii) for all triangles in Z having at least one point in common with set B it holds

that all three corner points are in set B1;

is called a triangular subdivision Z of B1 with respect to B:

De�nition3. (Measurable Jordan Face): Let F = FB (';  ; �) be a Jordan

face as de�ned above. Assume that there exists a simply-connected compact set

B1 � R
2 such that B � I (B1) ; the functions ';  ; � are in C(1) (I (B1)) ;

and there exists a sequence Z1; Z2; Z3; ... of triangular subdivisions of B1 with

respect to B such that

at ! 0

where at denotes the maximum length of any side of any triangle in the subdi-

vision Zt: Each triangular subdivision Z of B1 with respect to B de�nes a poly-

hedral approximation F (Z) of the given Jordan face F = FB (';  ; �) ; forming

an in�nite sequence of polyhedral approximations

F (Z1) ; F (Z2) ; F (Z3) ; :::

having well-de�ned surface areas

Jarea (F (Z1)) ; Jarea (F (Z2)) ; Jarea (F (Z3)) ; :::

The Jordan face F is measurable if it has a bounded surface area

Jarea (F) = sup
t

Jarea (F (Zt)) :

Theorem4. (Jordan Face Area Theorem): For a measurable Jordan face

F = FB (';  ; �) it holds

Jarea (F) =

Z
B

p
A2 +B2 +C2 db

independent of the chosen parametrization B; ';  ; where A; B and C are the

subdeterminants as de�ned above.



This theorem is a historic result about Jordan faces, and a complete proof may

be found in [19]. It points out that a proof about the measurability of a given

Jordan face (and its value of the surface area) may be based on just one selected

parametrization of this face, and on just one selected triangular subdivision

satisfying the angle constraint as speci�ed in De�nition 2.

1.3 Jordan Surfaces

A single Jordan face can not form a complete surface of a non-trivial (i.e. having

a non-zero volume value) 3D object. Because of the assumed property that each

point in FB (';  ; �) is de�ned by exactly one point (u; v) 2 B it follows that

at least two faces are necessary to obtain a closed surface of a non-trivial 3D

object. Furthermore, the assumed C(1) property of functions ';  ; and � allows

no discontinuities within a single Jordan face, as it appears at edges of polyhedral

objects. A polyhedron is a 3D object where the 3D interior is simply-connected,

and the boundary is the union of a �nite number of simply-connected planar

compact sets. A single Jordan face can not in general be "an edge" (i.e. two

incident non-complanar faces of the boundary) of a polyhedron.

De�nition5. (Jordan Set, Jordan Surface, Surface Area): A Jordan set

is a simply-connected compact set � � R
3 the boundary of which is the union of

a �nite number of measurable Jordan faces F1; F2; ..., Fn: A Jordan surface

S = S (�) is the boundary @� of a Jordan set �; i.e.

S = F1 [F2 [ :::[Fn:

Assuming that the 2D interiors of the sets Ft are pairwise disjoint the surface

area of S is de�ned as

Jarea (S) = Jarea (F1) + Jarea (F2) + :::+ Jarea (Fn) :

The open set I (�) = �� @� is the 3D interior of this Jordan set �: Note that

a Jordan set is always homeomorphic to a unit ball, and a Jordan surface is

always homeomorphic to the unit sphere, i.e. the surface of the unit ball. Each

polyhedron is a Jordan set and many curved 3D objects may be classi�ed to be

Jordan sets.

A smooth Jordan set has a surface which possesses a uniquely de�ned tangent

plane in each of its surface points. Note that this is not necessarily the case for

a union of measurable Jordan faces. The following Theorem holds for smooth,

and also for non-smooth Jordan surfaces.

Theorem6. (Jordan Surface Theorem): Any surface S of a Jordan set

subdivides the R
3 into three disjoint sets I; the set S itself, and a set E =

R
3 � (S [ I) where I and E are open sets with @I = @E = S.



The open set E = E (S) is the 3D exterior of the Jordan set S [ I: "Going from
I to E " means that we have "to leave I " by passing through its boundary

@I = S; i.e. any curve starting in I and ending in E intersects the given surface

S at least once. A Jordan surface speci�es a separation in 3D Euclidean space

as a Jordan curve does in 2D Euclidean space.

So far the surface area of a Jordan set (from now on our more specialised

model of a 3D object) is speci�ed in this report, and further features (as vol-

umes Jvolume (�) ; centroids, moments, potentials etc. of Jordan sets �) may be

uniquely de�ned following classical mathematical texts as [19]. Such features are

the "true data" in deterministic mathematical models which may be discussed

with respect of multigrid convergence of algorithms or approaches.

Image acquisition may be modeled at a certain level of abstraction as a

mapping of a given Jordan set, which is surrounded by further Jordan sets,

into a digital space. Techniques generating a voxel data cube are mapping the

whole Jordan set and its surrounding set(s) into a certain grid. Techniques based

on projective mappings produce some projective images of the given Jordan set

within speci�ed image grids. The next Section deals with the digitization process

related to the �rst approach of 3D image acquisition.

Note that the treatment of 3D objects with fuzzy surfaces would require a

non-trivial extension of the Jordan set model, of the following digitizationmodels

etc.

2 Object Digitization

Grids (not only orthogonal ones) were introduced by C. Jordan and G. Peano

around 1890 for de�ning measurable sets (now known as the Jordan, or the

Jordan-Peano area of a set). The formation of digital geometry as a fundamental

subject in image analysis by A. Rosenfeld around 1965 was an important step for

establishing a scienti�c approach in image analysis in contrast to an application

oriented approach. The mapping of "real objects" into grid point sets was always

an inherent problem in digital geometry, and several models are in use as an

abstraction of the image acquisition processes.

2.1 Orthogonal Grids at Di�erent Resolutions

We assume labeled points p in the 3D orthogonal grid, with integer coordinates

(i; j; k) at grid point positions, to be the raw representation of the digitized

object data, where 1 � i; j; k � N: In the case of binary labels we assume either

f (i; j; k) = 0 or f (i; j; k) = 1; and 0 means that the grid point is "not in

the object', and 1 means that the grid point is "inside of the object". In the

case of fuzzy labels f (i; j; k) = u in the interval [0; 1] it is normally intended

that label u means that a grid point is an object point "with fuzzy weight u."

For example assume grey value images and a threshold T for separating object

from background image values. Then u may be de�ned by a certain normalized

distance between the current image value and the threshold value T:



A voxel data cube f may be described as being an N �N �N set of labeled

grid points. We consider only the binary 3D cubic grid model in this report.

Orthogonal grids subdivide the space R3 with di�erent resolutions, say 2�r with

r = 0; 1; 2; :::;where each grid point (i; j; k) having integer coordinates represents

a cell

Cr (i; j; k) =
�
(x; y; z) 2 R3 : x 2 [i]r ^ y 2 [j]r ^ z 2 [k]r

	
in R3; with

[m]r =
�
x :

�
m� 1

2

�
� 2�r � x �

�
m + 1

2

�
� 2�r

	
for an integer m: Each cell is a Jordan set, it has a volume of

Jvolume (Cr (i; j; k)) = 2�3r;

its surface consists of at least six Jordan faces, and its surface area equals

Jarea (Cr (i; j; k)) = 6 � 2�2r:

In relation to the �xed coordinate scales of the reference space R3 we de�ne Z3
r

to be the r-grid point set where each r-grid point (i; j; k) is the midpoint of the

cell Cr (i; j; k):

De�nition7. (Grid Point Set of Speci�ed Resolution):The r-grid point

structure
�
Z
3; �r

�
consists of the base set Z3 of all grid points in 3D, and

an interpretation �r which maps an r-grid point (i; j; k) into R
3; onto the

midpoint of the cell Cr (i; j; k) ; for r = 0; 1; 2; :::: Let Z3
r =

�
�r (p) : p 2 Z3

	
:

It follows that Zr = fm � 2�r : m 2 Zg : An r-grid point p may be speci�ed by

its name (i; j; k) 2 Z3 or by its geometrical location �r (p) :

This dual approach allows the discussion of general grid terminology as neigh-

borhoods or connectedness on the base of names of r-grid points in Z3; and ge-

ometric properties of re�ned grids on the base of their geometric interpretations

in Z3
r :

All Nr � Nr � Nr r-grid points p = (i; j; k) correspond to a �nite subset

of the in�nite base set Z3: Assuming that the overall geometrically represented

cube in R3; the universe

Cuni =
�
(x; y; z) 2 R3 : 0 � x; y; z � N0 + 1

	
is constant for a certain image analysis situation it follows that a larger resolution

parameter r means a larger resolution Nr = 2r � (N0 + 1)� 1; and vice versa.

Grid point spaces may be de�ned based on such a speci�ed r-grid point

structure, and these spaces are fundamental for multi-dimensional image analysis

problems, see [24]. Neighborhood relations are introduced on the base set Z3 to

specify adjacency or connectedness properties. For 0 � t � 2 and t 2 Z; let

fixt = f(x1; x2; x3) : 8i (1 � i � 3! xi 2 f�1; 0;+1g) ^ card fi : xi = 0g = tg



be a subset of the surface of a three-dimensional cube [�1;+1]3 : For example,

(1; 0; 1) 2 fix1 is in the surface but not a corner of this cube, and fix0 =

f�1;+1g3 represents the set of all corners of this cube. Assuming that any grid

point p 2 Z
3 also denotes a grid vector, from the origin to the grid point p; it

follows that the addition of two grid points is uniquely de�ned.

De�nition8. (Neighborhood and Adjacency of Grid Points):For p 2 Z
3

and 0 � t � 2; the set

�t (p) = p+

2[
j=t

fixj

denotes the t-neighborhood of point p: For q 2 �t (p) we say that q is a

t-neighbor of p; and that p and q are t-adjacent.

The relation of t-adjacency is irre
exive and symmetric. The transitive closure

of this relation de�nes t-connectedness for sets of grid points in 3D. For p 2 Z
3

and 0 � t � 2 we have

card (�t (p)) =

2X
j=t

23�j
�
3

j

�
;

i.e. card (�2 (p)) = 6, card (�1 (p)) = 18; and card (�0 (p)) = 26; accordingly the

notions 6-, 18-, or 26-neighborhood or 6-, 18-, or 26-connectedness are common in

digital 3D image analysis. A homogeneous grid point net
�
Z
3; �t

�
can be de�ned,

representing an in�nite undirected labeled graph, with vertex set Z3 and edge

set �
(p;q) : p 2 Z3 ^ q 2 �t (p)

	
:

Nets of grid points are studied in [32]. The homogeneous net of r-grid points�
Z
3; �t; �r

�
is also characterized by the interpretation �r :

2.2 Digitization Schemes

A digitization mapping can be speci�ed as a model of the given physical image

acquisition process. This allows the use of real-world test objects for evaluation.

The exact modeling of imaging processes such as confocal microscopy or MRI is

a complex task, and evaluations based on statistical data (i.e. populations of test

objects, e.g. calibration spheres [3]) are proper techniques to achieve meaningful

results. We will not follow that way in this report. Each image acquisition process

(MRI, confocal microscopy etc.) would need its own speci�cation. We prefer a

more general approach.

A general digitization model speci�es a certain mapping of given planes,

straight lines, Jordan sets, etc. contained in the universal cube Cuni; into an

orthogonal grid of size Nr �Nr �Nr : See for example [10] for a general scheme

to de�ne such models for n-dimensional spaces but without modeling re�ned

resolutions.



A common (but in relation to hardware devices, idealized) model for digitiz-

ing oriented real arcs in R
2 into the grid Z

2
r may be described as follows (the

so-called grid intersection digitization [14, 23]). For any intersection point of

arc 
 with a grid line de�ned by two points (i; j1) ; (i; j2) or (i1; j) ; (i2; j) in Z
2
r

the closest (according to Euclidean metric) grid point in Z2
r to this intersection

point in R2 will be chosen as an element of the digital image of 
; if the inter-

section point is the midpoint of a grid edge then the point on the right side of 


(according to its orientation) is chosen. In [8] a similar grid intersection scheme

was used for the digitization of straight lines in R3:

Using this intersection scheme, the straight line (orientation with increase of

parameter a )


 =
n�
a; 2�(r+1) + a

�
: a 2 R

o
in R2 will always, for any r � 0; lead to the digital image

Ar = f(q; q) : q 2 Zrg ;

for example. If in the case where the intersection point is a midpoint of a grid

edge the point on the left side of 
 is chosen, then the digital image

Br = f(q; q+ 1) : q 2 Zrg

would be the digitization result. If in this midpoint case the point closest to the

origin is chosen the digital image

Ar [Br

would result.

We return to the 3D case. To avoid such "midpoint discussions" for curves

in 3D it can be suggested that we assume for arcs 
 in R3 that for any crossing

with a grid plane
xi = q 2 Zr

at point p there is exactly one grid point in Z3
r that is the closest grid point to

p; for any coordinate axis 1 � i � 3: This assumption is violated only by a set

of measure zero assuming a straightforward de�ned measurable space of all arcs

in 3D.

Let ��
r be a bounded subset of R3 containing at least the origin of R3; for

r = 1; 2; 3; ::: and � is a metavariable of a name of the given set. Examples for

such sets ��
r are

�cube
r =

�
(x1; x2; x3) : max

1�i�3
jxij � 2�r

�
;

�octahedron
r =

(
(x1; x2; x3) : max

(
jx1j ; jx2j ; jx3j ; 12

3X
i=1

jxij
)

� 2�r

)
;

�sphere
r =

(
(x1; x2; x3) :

3X
i=1

x2i � 2�2r

)
; and



�cross
r =

�
(x1; x2; x3) : max

1�i�3
jxij � 2�r ^ 9j (1 � j � m ^ xj = 0)

�
;

for r = 1; 2; 3; ::::

Let ��
r (q) = fq+ p : p 2 ��

r g = q +��
r for any point q 2 R

3: For any r-

grid point p = (i � 2�r; j � 2�r; k � 2�r) 2 Z3
r and � 2 foctahedron; sphere; crossg

it holds that

�cube
r (p) = Cr�1 (i; j; k) ;

and the sets ��
r (p) are subsets of the cell Cr�1 (i; j; k).

Furthermore assume that ��
r satis�es the following uniqueness condition

that for each point p 2 R
3 there exists at most one grid point q 2 Z3

r such

that p 2 ��
r (q) : The given example sets satisfy these constraints. It holds that

q 2 Z3
r is exactly the only one r-grid point in ��

r (q) : We use such a set ��
r as

the domain of in
uence of a digitization scheme, where � speci�es the name of

the scheme.

De�nition9. (Intersection Digitization): For p 2 R
3; a name � and r =

1; 2; 3; ::: let

DIG�
r (p) =

�
fqg if q 2 Z3

r and p 2 ��
r (q)

; otherwise

For a subset � of R3;

DIG�
r (�) =

[
p2�

DIG�
r (p)

denotes the digital image of� according to the intersection digitizationmap-

ping DIG�
r :

Corollary 10. An r-grid point q 2 Z3
r is in the digital image DIG�

r (�) of a set

� � R
3 i� � \��

r (q) 6= ;:

The di�erent domains of in
uence de�ne intersection digitization schemes as

DIGcube
r ; DIGoctahedron

r ; DIGsphere
r ; or DIGcross

r : The scheme DIGcross
r is the

grid-intersection digitization in 3D. In [4] it is shown that grid-intersection dig-

itization is "a poor choice" for digital curve representation in 3D space and that

cube quantization, which leads to 6-connected r-grid points in Z3
r ; should be pre-

ferred. The sphere intersection digitization scheme is not suitable for curves since

even in�nite straight lines can pass between the spheres without intersecting any

of them, see Fig. 2.

However for digitizing Jordan sets � the use of such intersection digitization

schemes may be suggested for consideration. An intersection digitization of a

Jordan set � leads to a certain r-grid point set which may also be represented

as a binary voxel data cube f .



Fig. 2. The generalization of 2D circle intersection digitization to 3D spherical digi-
tization (on the left) allows that in�nite straight lines can pass between the spheres

without intersecting any of them. However the scheme can be considered for digitizing

solid 3D objects. The cube intersection digitization (on the right) maps a straight line
into a 6-connected grid-point sequence [4].

De�nition11. (Inclusion Digitization): For a subset � of R3 and a domain

of in
uence ��
r ;

dig�r (�) =
�
q 2 Z3

r : ��
r (q) � I (�)

	
denotes the digital image of � according to the inclusion digitization map-

ping dig�r :

Examples of inclusion digitization mappings are digcuber ; digcrossr ; digspherer ; and

digoctahedronr : The assumed properties of areas of in
uence lead to the following

Corollary12. For any set � � R
3 and any domain of in
uence ��

r it holds

that dig�r (�) � � \ Z3
r � DIG�

r (�) :

Following traditional approaches in 2D digital geometry we useDIGcube
r to de�ne

an outer interior I+r = I+r (�) ; and digcuber to de�ne an inner interior I�r =

I�r (�) of a Jordan set �: Let

volr (G) =
[
q2G

�cube
r+1 (q)

where G denotes a set (of geometric locations) of r-grid points in Z3
r ; and r =

0; 1; 2; :::: The general de�nition utilizing arbitrary domains of in
uence is as

follows:



De�nition13. (Inner, Intermediate and Outer Interior): For a subset �

of R3 and a domain of in
uence ��
r ;

I
��
r = I��r (�) = volr (dig

�
r (�)) and I

�+
r = I�+r (�) = volr (DIG

�
r (�))

denote the inner and the outer interior, respectively, and

Ir = Ir (�) = volr
�
� \ Z3

r

�
denotes the intermediate interior.

The inner, intermediate, and outer exterior E��
r ; Er ; and E

�+
r could be de�ned

in a similar way. - With Corollary 12 it follows immediately that also these vol-

ume data satisfy the monotonicity property of

Corollary 14. [25] For any set � � R
3 and any domain of in
uence ��

r it

holds that I��r (�) � Ir (�) � I�+r (�) :

It follows that

Jvolume

�
I��r (�)

�
= card (dig�r (�)) � 2�3r;

Jvolume (Ir (�)) = card
�
� \ Z3

r

�
� 2�3r;

and

Jvolume

�
I�+r (�)

�
= card (DIG�

r (�)) � 2�3r

are the volumes of these di�erent discrete representations of the given set � �
R

3; and the surface areas Jarea of these di�erent discrete representations may be

calculated in a similar way adding all the surface areas of faces on the boundaries

of the sets I��r ; Ir; and I
�+
r : In the following we omit the domain of in
uence

index � if the discussion is about the cube digitization scheme, i.e. it is digr =

digcuber ; I+r = I
cube+
r etc. in what follows.

Theorem15. (Cube Digitization Theorem): The proper inclusion I
�
r �

I (I+r ) holds for any non-empty subset � of R3 .

It follows that @I�r \@I+r = ;: Note that the set I�r may be empty for a non-empty

set � and a selected resolution r: But the set I+r will always be non-empty for a

non-empty set �: Fig. 3 illustrates an example of square intersection digitization

in 2D. Here the polygonal border of this polygon passes on the left exactly

through the vertices of cells introducing some extra cells into the outer interior,

and it also possesses a "thin spike" ("thin" with respect to the resolution!) on the

right generating some cells for the outer interior which are further away from the

inner interior. Similar situations may appear for cube intersection digitization

in 3D. Examples in the 3D space are illustrated in Fig. 4 and in Fig. 5, where

a sphere and a torus (note: this is not a simply-connected object) are used as

ground truth, respectively.



Fig. 3. Cells in 2D showing the inner interior (one cell - dark shaded) and the outer
interior (14 cells - light or dark shaded).

3 Convergence Analysis

So far the necessary de�nitions were given for starting the analysis of such speci�c

3D image analysis problems as measuring the volume or the surface area of a

digitized 3D object, approximating a connected region of given digital surface

points by a special explicit face function as, e.g., a plane, calculating height data

of an object face which is only given by gradient values at discrete locations,

or discrete recovery of a Jordan face as a special solution of a Cauchy problem.

The latter two problems are relevant to shape reconstruction, see [11]. The

brief discussion of these four situations are di�erent case studies of the general

soundness approach if gridding techniques are applied.

3.1 Volume and Surface Area Calculation

We assume as input a �nite 6-connected set G � Z
3 of grid points. This set is

assumed to be a digital representation of a Jordan set �; for a certain resolution

parameter r: Therefore it is assumed that G is geometrically interpreted to be

an r-grid point set contained in Z3
r :

TASK: The task is to calculate the volume and the surface area of � based on

the available input set G � Z
3
r :

What is methodologically a sound approach for calculating these features

satisfying the soundness properties stated in Section 1.1?

The digitization process is modeled as being a cube intersection digitization

method. Thus the given grid point set G is identi�ed with an r-grid point rep-



Fig. 4. Inner interiors (on the left) and outer interiors (on the right) of a sphere, i.e. a

Jordan set, for three di�erent grid resolutions [7].

resentation DIGr (�) of the unknown 3D object �; and this set de�nes the

inner interior I�r : Furthermore we can generate the smallest possible (which is

uniquely de�ned, see the Cube Digitization Theorem above) outer interior I+r
by a simple dilation operation on G using the 26-neighborhood as a structural

element (dilation is de�ned and studied on the set Z3 of names of r-grid points).

This dilation leads to an expanded set G+ which may be considered to be the

set DIGr (�) which �nally de�nes I+r : Because the actual shape of set � in R3

is unknown we are not able to suggest an approximation of the intermediate

interior Ir :

The volume calculation for the unknown object � in R
3 may be based on

Jvolume (I
�
r ) as well as on Jvolume (I

+
r ) ; see [25]. Both approaches are sound



Fig. 5. Inner interiors (on the left) and outer interiors (on the right) of a torus (note:
not a Jordan set), for two di�erent grid resolutions [7].

(convergence and convergence towards proper value) for Jordan sets � :

Theorem16. (Volume Measurement Theorem): For any Jordan set � �
R

3 it holds that

Jvolume (�) = sup
r!1

Jvolume

�
I
�

r

�
= inf

r!1
Jvolume

�
I
+
r

�
;

where G = digr (�) ; I
�
r = volr (G) ; and I+r = volr (G

+) :

Unfortunately such a convergence

Jvolume (�) = lim
r!1

Jvolume

�
I
�

r

�
= lim

r!1
Jvolume

�
I
+
r

�
to the proper value is not true in general for the case of surface area measurement.

However a sound measurement procedure for surface areas of Jordan sets was

developed in [29]. For explaining this approach we �rst note that both the inner

interior I�r = volr (G) ; and the outer interior I+r = volr (G
+) are polyhedrons

in R3; with I�r � I (I+r ) (see Cube Digitization Theorem).

Theorem17. (Minimum Jordan Surface Theorem [29] ): Assume that

�1; �2 are polyhedrons in R
3 with �1 � I (�2) : Then there exists a uniquely



de�ned Jordan surface S in �2 � I (�1) with minimum surface area, which is

the boundary of a certain polyhedron �:

The set �2� I (�1) is polyhedral bounded and compact. It follows that the

minimum Jordan surface S = @� "is between" the inner polyhedral surface @�1

and the outer polyhedral surface @�2; i.e. �1 � � � �2:

Corollary 18. There exists a uniquely de�ned minimum Jordan surface in the

connected compact set volr (G
+)� I (volr (G)) :

Starting with a Jordan set �; the set G was de�ned by resolution r: Thus � and

r uniquely de�ne a minimum Jordan surface MJSr (�) having a surface area of

Jarea (MJSr (�)) :

For a convex set such as the sphere, the minimum Jordan surface is simply

de�ned by the convex hull of the inner interior.

Theorem19. (Surface Measurement Theorem [29] ): For any smooth

Jordan set � � R
3 it holds that

Jarea (@�) = lim
r!1

Jarea (MJSr (�))

where MJSr (�) is the uniquely de�ned minimum Jordan surface for resolution

r = 0; 1; 2; ::::

The theorem is also valid for Jordan surfaces which possess a �nite number of

edges. A polyhedron has its surface area well de�nited. Altogether this speci�es

a sound (i.e. convergence and convergence towards the proper value) procedure

for calculating the surface area of a digitized Jordan set. However the design of

time-e�cient algorithms for calculating the minimumJordan surface polyhedron

should be an interesting problem in computational geometry where a 6-connected

grid point set is given as input. The 2D case of minimum perimeter polygons is

treated in [27, 28].

Marching cubes [18] may be considered to de�ne an approximation technique

for calculating minimumJordan surfaces. Each elementary grid cube, de�ned by

eight grid points, is treated according to a look-up table for de�ning planar

surface patches within this elementary grid cube. See [5] for a complete set

of marching cubes con�gurations. The fourteen basic con�gurations originally

suggested by [18] are incomplete. Occasionally they generate "surfaces with

holes". The marching cubes algorithm determines the surface by deciding how

the surface intersects a given elementary grid cube. A surface can intersect an

elementary grid cube in 28 di�erent ways, and these can be represented as four-

teen major cases with respect to rotational symmetry. Alternatively a method

developed by [34] calculates the contour chains immediately without using a

look-up table of all 28 di�erent cases.

Disambiguities of the marching cube look-up tables are discussed in [33]. A

marching tetrahedra algorithmwas suggested in [22]. It generates more triangles

than the marching cubes algorithm in general. Trilinear interpolation functions

were used in [2] for the di�erent basic cases of the marching cubes algorithm. In



comparison to the marching cube algorithm [5] the accuracy of the calculated

surface area improved by using this trilinear marching cube algorithm, which

was con�rmed for a few synthetic Jordan faces.

3.2 Approximation of Planes

We assume as input a �nite set G � Z
3 of grid points. This set is assumed to be

a digital representation of a planar set � with non-empty 2D interior incident

with a plane � � R
3: We assume that G is geometrically interpreted to be an

r-grid point set contained in Z
3
r: Concerning the digitization method assume

that the plane � is digitized using an intersection digitization scheme DIGbelow
r

in which the �rst grid points "below the given plane" are taken, i.e. we translate

the set �cube
r by

�
0; 0; 1

2

�
half of a Z

3
r unit 2�r; "open it" at the upper face,

and the resulting set is �below
r : This digitization scheme is also equivalent to

translating the plane by half of a Z3
r unit towards the xy-plane and rounding o�

z-values with respect to this unit.

This digitization scheme de�nes a digital plane as an r-grid point set

DIGbelow
r (�) =

�
(i; j; k) 2 Z3

r : k = bai+ bj + ccr
	

where bucr is the greatest number in Zr not larger than the real number u: This

set is arbitrary sparse as a plane approaches vertical.

TASK: A non-vertical plane � has to be determined in the explicit form z =

a0x+ b0y + c0 from the �nite input set G � Z
3
r :

The input set Gr = DIGbelow
r (�) is a �nite subset of a digital plane. Of

course there are di�erent planes � which may generate a set Gr in this way.

Therefore a solution specifying the unknown ground truth � is not possible if

only one input set Gr is given. But still we may be able to solve this task

by calculating a unique solution �r which converges towards � as the resolution

increases, see Fig. 6. A distance measure on the set of all planes has to be de�ned

for specifying convergence of planes. A convergent method for calculating such

a sequence of planes �r would be methodologically sound with respect to the

soundness properties stated in Section 1.1. As a necessary condition the method

should allow calculation of a unique solution �r for given sets Gr; for r � r0:

The task may be generalised with respect to higher-order approximation

faces. At �rst we discuss a speci�c aspect of this task: What is the minimum

size of a set Gr which allows a certain calculation of an approximation plane?

The use of least-squares approximation allows us to specify a general method

for calculating approximation planes based on discrete input data.

The use of a least-squares approximation techniques for representations of

digital objects was proposed in [20]. In [21] it was proved that the least-squares

approximation straight-line uniquely determines the digital straight-line where

the input data are given for a certain digital interval.



plane α

plane α

plane α

plane α
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2

3

Fig. 6. A 2D sketch of three consecutive approximations of a given plane. The lowest

resolution produces a plane supported by four sampling points, the next resolution

level is based on seven sampling points, and the third resolution level is based on 13
samples, all below or on the given plane. The approximation planes will intersect the

given plane somewhere in general.

We de�ne the least-squares approximation plane

LSAplane (Gr)

for Gr to be a plane which minimizes the sum of the squares of the vertical

distances to all points in Gr: Note that this error measure is related to the

assumed digitization model, and the resolution parameter r has impact on this

measure by de�ning scaling and the sampling rate for the set � incident with �:

A method for determining such least-squares approximation planes is well-

known from statistics, see, e.g. [1], where a general, not necessary digital input

f(xi; yi; zi) : i = 1; 2; :::; tg is assumed. A comparison with an unknown ground

truth is not relevant in statistics, and a discussion of di�erent resolutions is also

irrelevant in this general case. For such a general case assume that the equation

of the least-squares approximation plane LSAplane (G) is parameterized as z =

ax+ by + c: Then the error function

� (G; a; b; c) =

tX
i=1

(axi + byi + c� zi)
2



has to be minimized. This traditional optimization problem is solved by obtain-

ing the coe�cients a; b; and c from the equation system

@�

@a
= 0;

@�

@b
= 0; and

@�

@c
= 0;

i.e.

a

tX
i=1

x2i + b

tX
i=1

xiyi + c

tX
i=1

xi =

tX
i=1

xizi;

a

tX
i=1

xiyi + b

tX
i=1

y2i + c

tX
i=1

yi =

tX
i=1

yizi; and

a

tX
i=1

xi + b

tX
i=1

yi + c

tX
i=1

1 =

tX
i=1

zi:

A unique solution exists whenever the determinant of this equation system

is not zero. For example, if all points in G coincide with a straight line then the

solution is not unique.

The special case of a digital input setGr was studied in [12]. An r-grid point

set Gr � Z
3
r is a digital quadrangle if there exists a plane � in R3 and integers

m and n such that

Gr =
�
(i; j; k) : 2�r � i � m � 2�r ^ 2�r � j � n � 2�r ^ k = bai+ bj + ccr

	
:

The projection proj1;2 (Gr) of a digital quadrangle into the ij-plane is a rect-

angular set of r-grid points. As for � in general, there are di�erent planes �

satisfying this equation for a given digital quadrangle.

The coe�cients

tX
i=1

1;

tX
i=1

xi;

tX
i=1

yi;

tX
i=1

x2i ;

tX
i=1

y2i ; and

tX
i=1

xiyi

of the general equation system can easily be calculated for the assumed input of

a digital quadrangle. Let

Mab (Gr) =
X

(i;j;k(i;j))2Gr

ia � jb � k (i; j)

be the moment of order ab of the set Gr: This leads to a special form of this

equation system:

nm (m � 1) (2m � 1)

6
� a+ nm (n � 1) (m � 1)

4
� b+ nm (m� 1)

2
� c =M10 (Gr) ;

nm (n� 1) (m � 1)

4
� a+ nm (2n� 1) (n� 1)

6
� b+ nm (n� 1)

2
� c =M01 (Gr) ;

and
nm (m � 1)

2
� a + nm (n� 1)

2
� b+ nm � c =M00 (Gr) :



This system has a determinant equal to

�
n2 � 1

� �
m2 � 1

�
n3m3

�
144;

and so, for n > 1 and m > 1 the coe�cients a; b; and c are uniquely determined.

Theorem20. (LSA Uniqueness Theorem [12] ): Let Gr � Z
3
r ; Hr � Z

3
r ;

with proj1;2 (Gr) = proj1;2 (Hr) : Assume that both sets contain at least three

non-collinear r�grid points, and let LSAplane (Gr) and LSAplane (Hr) be the

corresponding least-squares approximation planes. Then it holds that Gr = Hr

i� LSAplane (Gr) = LSAplane (Hr) :

This result allows to de�ne storage-e�cient coding schemes for digital plane

segments. In the context of this Section it may also support a possible way

to answer the question about the soundness of the least-squares approximation

approach.

Asuume a given set � with non-empty interior and incident with a plane �:

It holds that for r � r0; any input set Gr = DIGbelow
r (�) always contains at

least three non-collinear r�grid points. Thus it holds that for r � r0 the set Gr

uniquely determines a plane � (Gr) = �r with representation z = arx+bry+cr :

The plane � is assumed to be speci�ed by z = a0x + b0y + c0: We de�ne the

distance between such two planes by

dplane (� (Gr) ; �) =

q
(ar � a0)

2
+ (br � b0)

2
+ (cr � c0)

2
:

This measure dplane is a metric on the set of all planes in R3:

Theorem21. (LSA Convergence Theorem): Asuume a given set � with

non-empty interior and incident with a plane �: Then it holds that

lim
r!1

dplane (�r; �) = 0:

This Theorem follows from the equation system given above, and it even

holds that

dplane (�; � (Gr+1)) � dplane (�; � (Gr)) ;

for r � r0: There are cases where

dplane (�; � (Gr+1)) = dplane (�; � (Gr)) ;

see for example a plane � parallel to the xy-plane de�ned by z = const � 2�r1
where const is an integer.



3.3 Integration of Jordan Face Gradients

There are many publications about numeric di�erentiations, but just a few pub-

lication about integration based on discrete input data, see [13].

We assume as input a �nite set Pr of gradients (p (x; y) ; q (x; y))
T 2 R

2 at

exactly all r-grid point positions in the interior of the base set

proj1;2 (Cuni) =
�
(x; y) 2 R2 : 0 � x; y � N0 + 1

	
of the universal cube Cuni: This set is assumed to be a digital representation

of one (!) measurable Jordan face F = FB (';  ; �) ; for a certain resolution pa-

rameter r: For the sequence of �nite grids I (B) \ Z3
r it holds that

lim
r!1

�
I (B) \ Z3

r

�
is dense in B: W.l.o.g., let B = proj1;2 (Cuni) ; x = ' (x; y) ; y =  (x; y) ; and

z = � (x; y) ; i.e. the face is assumed to be in a position that allows a unique

representation with respect to the xy-plane. It follows that

p (x; y) = �x (x; y) =
@�(x;y)

@x
and q (x; y) = �y (x; y) =

@�(x;y)

@y
:

The assumed input situation corresponds to a certain step in shading based shape

recovery, see, e.g., [11], when at �rst gradients are calculated based on given

radiance information, and surface recovery has still to be performed based on

this intermediate gradient information. For this case the open set I (B) may be

considered to be the em image domain in the projection plane, and z = � (x; y)

denotes the depth of the surface points (roughly: the distance between the camera

and the projected object surface) assuming parallel projection as the model of

the image acquisition process. Based on this we may restrict the possible set of

functions �, e.g. forbidding unlimited numbers of oscillations as in

z = � (x; y) = cos
�
1
x

�
;

or "steep slopes" characterized by very high gradient magnitudes, or "very dy-

namic" depth values where the di�erence between minimum and maximum ex-

ceeds a reasonable threshold. However we state the basic task in general form:

TASK: The task is to calculate the face F based on the available input set Pr

of gradients at r-grid point positions.

Integration is uniquely determined up to an additive constant what corre-

sponds to a translation of function �; i.e. only a main function �0 may be calcu-

lated with z = �0 (x; y)+const; but the global additive parameter const remains

unknown. Thus the task is actually that a di�erentiable main function �0 has

to be calculated, and const; a global "shift in depth", can not be speci�ed. In

computer vision applications, this value const can be estimated by triangulation

techniques (a pair of corresponding points in binocular stereo images, a surface

point illuminated by a laser point light source, etc.). Also note that we are not



able to calculate explicit representations of an unknown face F in general. The

face F can be the "visible surface of an scene object of arbitrary complexity".

The goal is to generate all �0 values at all r-grid points in the open base set

I (B) :

After this speci�cation of the task, we �rst have to determine for which Jor-

dan surfaces this problem of calculating �0 values based on gradient information

is uniquely solvable. As a corollary of Frobenius' Theorem it holds that the in-

tegrability condition

py (x; y) = qx (x; y)

has to be satis�ed on B for the given vector �eld of gradients:

Theorem22. (Face Integrability Theorem): Let (p (x; y) ; q (x; y))
T

be a

C(1) (B) -continuous vector �eld. Then there exists a C(2) (B) -continuous main

function � (x; y) with �x = p and �y = q on B i� � satis�es the integrability

condition on B:

For example, the Schwarz function

� (x; y) =

8<
:

xy(x2�y2)
x2+y2

; if (x; y) 6= (0; 0)

0 ; if (x; y) = (0; 0)

does not satisfy the integrability condition in point (0; 0) : Furthermore there

are functions which satisfy the integrability condition, but which are not C(2)

-continuous [11]. The measurable Jordan face F = FB (�) is de�ned to be inte-

grable if � is C(2) (B) -continuous.

Now let 
 be a piecewise C(1) curve in the set B;


 : [a; b] ! R
2; and 
 (t) = (
1 (t) ; 
2 (t)) = (x (t) ; y (t))

with a < b; 
 (a) = (x0; y0) and 
 (b) = (�x; �y) : For any curve of this kind and

any integrable face F it holds that

� (�x; �y) = � (x0; y0) +

Z



p (x; y) dx+ q (x; y) dy

= � (x0; y0) +

bZ
a

[p (
1 (t) ; 
2 (t)) � _
1 (t) + q (
1 (t) ; 
2 (t)) � _
2 (t)]dt;

i.e. the result of the face function � at position (�x; �y) is independent of the chosen

curve 
: However the chosen initial value � (x0; y0) has in
uence.

Now we consider the digital case. The gradient values of face F are assumed

to be given for grid point positions.

The "path integration model" has stimulated di�erent local techniques for

discrete integration. Furthermore a few global techniques were discussed for a

�xed level of resolution, see [13].



For discussing the local techniques let us assume that for r � 0 the digital

path

gr =
h
(x1; y1) ; (x2; y2) ; :::;

�
x(2r(N0+1)�1)

2 ; y(2r(N0+1)�1)
2

�i
is a repetition free 4-connected path passing through exactly all Nr � Nr r-

grid points in the open base set I (B) : For consecutive grid points (xt�1; yt�1) ;

(xt; yt) in this path gr; for 2 � t � (2r (N0 + 1) � 1)
2
; it is

either dxt = 2�r and dyt = 0; or dxt = 0 and dyt = 2�r;

where xt = xt�1 + dxt and yt = yt�1 + dyt: Such a path may follow a certain

general generation scheme, e.g., to be a meander, a Peano, or a Hilbert scan

[26], and it may be considered to be a digital sample (e.g. by grid-intersection

digitization) of a piecewise C(1) curve 
r in the set B; i.e. the curve 
r has

exactly all points listed in the digital path gr; as its digital image, i.e. all r-grid

points in the open base set I (B) in the order as speci�ed by the given digitial

path. W.l.o.g. we may also assume that gr always starts (say with a "diagonal

step") at

(x1; y1) =
�
2�r; 2�r

�
and ends at, say (assume N0 is even)�

x2r(N0+1)�1; y2r(N0+1)�1

�
=
�
N0 + 1� 2�r; 2�r

�
:

This allows 
r to start at 
r (a) = (0; 0) in "one corner" of the base set B; and

leading to the corner 
r (b) = (N0 + 1; 0) : We assume that z0 = � (0; 0) is given

and take this value as a the initial depth value for the discrete path integration

�r (xs; ys) = z0 +

sX
t=1

(p (xt; yt) dxt + q (xt; yt) dyt)

where point (x0; y0) = (0; 0) is assumed to be the start point of the path gr for

de�ning the initial step values dx1 and dy1:

The values dxt and dyt would be de�ned by a chosen digital path scheme,

e.g. the meander, for grid resolution r:

Then the following question may be asked: Assume that F = FB (�) is an

integrable face and p is any point in the open base set I (B) : For what classes

of integrable faces and of discrete integration pathes we can state that for any

" > 0 there exists an integer r" and an r"-grid point p" in I (B) such that

j� (p)� �r" (p")j < "?

All planar faces and any discrete integration path satisfy this statement.

A discrete path integration method satisfying this statement is sound with

respect to convergence and convergence towards the proper value. The recent

progress in shading based shape recovery (which leads to gradient information) is

one argument for suggesting the study of such problems in local or global discrete

integration. For practical applications a more detailed discussion of soundness

properties may be of interest, as robustness with respect to noise, or with respect

to "steep gradients" ("steep" in relation to the resolution r ), see [13]. In this



Fig. 7. A K-shaped synthetic polyhedron with a maximum height of 162.43 grid units

(on the left). The maximum height error of the reconstructed surface (on the right) is
equal to 90.94 grid units where the visualized height values are averages of four di�er-

ent discrete path integrations (i.e. integrations following four di�erent digital paths),

see [13].

paper it was shown that the discussed discrete path integration technique has

drawbacks if the face F = FB (�) is more characterized by being a Jordan surface

consisting of several planar faces (a "polyhedral object") instead of being a single

integrable face, see Fig. 7. Of course, this corresponds to the Face Integrability

Theorem as cited above.

3.4 Solution of a Cauchy Problem

As a �nal (and solved) task for discussing the stated soundness properties of

geometric algorithms based on gridding techniques we consider a special Cauchy

problem. We assume as discrete input a collection of image data E (x; y) at

exactly all r-grid point positions in the 2D interior I (B) of the base set of

the universal cube Cuni: These image intensities are assumed to correspond to

re
ectance properties of the projected object surfaces according to a certain

re
ectance model. Assuming a linear re
ectance model this leads to the (trans-

formed) linear image irradiance equation

a
@�

@x
(x; y) + b

@�

@y
(x; y) = E (x; y) ;

which was studied in [15, 16]. As in Section 3.3 before we assume a measurable

Jordan face F = FB (�) de�ned on set B where the values of the depth function

� are assumed to be known at some boundary points of B (boundary condition).



The function E is assumed to be integrable on B; and let (a; b) 6= (0; 0) :

TASK: The task is to calculate the face F based on the available input set

of irradiance values E (x; y) at r-grid point positions, and based on a speci�ed

boundary condition, where the face satis�es the linear image irradiance equation.

More precisely, we are interested in a numerical solution of the following

Cauchy problem: The face function � is assumed to be integrable on base set B:

If sgn (ab) � 0 then

� (x; 0) = f (x) ; for 0 � x � N0 + 1

is given as boundary condition, and if sgn (ab) < 0 then

� (x;N0 + 1) = f (x) ; for 0 � x � N0 + 1

is given. Furthermore also

� (0; y) = g (y) ; for 0 � y � N0 + 1

is assumed to be known. The functions f; g are integrable on [0; N0 + 1] and

satisfy f (0) = g (0) if sgn (ab) � 0; or f (0) = g (N0 + 1) if sgn (ab) < 0:

This Cauchy problem is given in "digital form", i.e. only values at r-grid

point positions are given for functions p = �x; q = �y; E; f; and g:

For solving linear partial di�erential equations with the aid of the �nite

di�erence method see [31], Chapter 1. As mentioned before in Section 3.3 it

holds that
lim
r!1

�
I (B) \ Z3

r

�
is dense in B: Assuming normed function spaces on B this sequence of grids

allows us to de�ne corresponding normed grid spaces, de�ned on subsets of

B \ Z3
r ; for functions de�ned on r-grid points, see [15, 16] for details. A �nite

di�erence scheme (FDS) is de�ned for all grids B \ Z3
r of di�erent resolution, for

r = 0; 1; 2; :::; and basically it characterizes an operator Rr mapping an unknown

function de�ned on B; as � in our case, into a function �r;

Rr (�) = �r; with �r (i; j) � �
�
i � 2�r; j � 2�r

�
de�ned on r-grid points which is considered to be an approximation of the un-

known function.

For example, applying a (simple) forward di�erence approach together with

Taylor's expansion yields

@�

@x

����
(i;j)

r

=
�r (i+ 1; j) � � (i; j)

2�r
+O

�
2�r

�
in the x-direction, and

@�

@y

����
(i;j)

r

=
�r (i; j + 1) � � (i; j)

2�r
+O

�
2�r

�



in the y-direction. A (simple) backward di�erence approach in x-direction is given

by

@�

@x

����
(i;j)

r

=
� (i; j) � � (i � 1; j)

2�r
+ O

�
2�r

�
;

just to mention a further example. The di�erences are normalized by the distance

2�r between neighboring r-grid points, in x- or in y-direction. Larger neighbor-

hoods could be used for de�ning more complex forward or backward approaches,

and further approaches may also be based on symmetric, or unbalanced neigh-

borhoods of r-grid points. Finally, a �nite di�erence scheme is characterized by

selecting one approach for the x�; and an other one for the y-direction.

The forward-forward FDS transforms the given di�erential equation into

a � �r (i+ 1; j) � �r (i; j)

2�r
+b � �r (i; j + 1)� �r (i; j)

2�r
+O

�
2�r

�
= E

�
i2�r ; j2�r

�
;

and this equation may be simpli�ed as

~�r (i; j + 1) =
�
1 + a

b

�
� ~�r (i; j)� a

b
� ~�r (i + 1; j) + 2�r

b
�E

�
i2�r; j2�r

�
;

where ~�r (i; j) is used as an approximation for function �r (i; j) : The backward-

forward FDS leads to

~�r (i; j + 1) =
�
1� a

b

�
� ~�r (i; j) + a

b
� ~�r (i � 1; j) + 2�r

b
�E

�
i2�r; j2�r

�
;

the forward-backward FDS leads to

~�r (i+ 1; j) =
�
1� b

a

�
� ~�r (i; j) + b

a
� ~�r (i; j � 1) + 2�r

a
�E

�
i2�r; j2�r

�
;

and the backward-backward FDS leads to

~�r (i; j) =
1

1+c
� ~�r (i; j � 1) + c

1+c
� ~�r (i� 1; j) + 2�r

b(1+c)
�E

�
i2�r ; j2�r

�
;

where c = a
b
6= �1; and to

~�r (i� 1; j) = ~�r (i; j � 1) + 2�r

b
�E

�
i2�r; j2�r

�
otherwise for c = �1: These schemes were studied in [15, 16].

A �nite di�erence scheme is consistent with an initial boundary value problem

if the error of approximation in representing the original problem converges to

zero as 2�r ! 0: The listed four schemes are consistent.

A �nite di�erence scheme is convergent to the solution �r (if it exists) if the

digitization error converges to zero as 2�r ! 0: A further notion of stability

for linear di�erence schemes was de�ned by Rjabenki and Filippov, see [31]. A

linear di�erence scheme is RF stable if the operators�
R�1r

	
r=0;1;2;:::

are uniformly bounded as 2�r ! 0:



Theorem23. (General FDS Convergence Theorem [31], Theorem 5.1 ):

A consistent and RF stable �nite di�erence scheme is convergent to the solution

of the given Cauchy problem if such a solution exists.

For the convergence analysis of the given schemes let c = a
b
assuming that b 6= 0;

and d = b
a
assuming that a 6= 0:

Theorem24. (FDS RF Stability Theorem [15] ): The forward-forward

FDS is RF stable i� �1 � c � 0: The backward-forward FDS is RF stable i�

0 � c � 1: The forward-backward FDS is RF stable i� 0 � d � 1: The backward-

backward FDS is RF stable i� c � 0 or c = �1:

Fig. 8. An example of a suggested function for testing di�erent surface techniques [2].

Consequently (by the General FDS Convergence Theorem), in these positive

cases the sequences of functions

f~�rgr=0;1;2;:::
are convergent to the solution of the speci�ed Cauchy problem. A few illustra-

tions of shape recovery results were visualized in [15, 16] for synthetic input

functions � as the volcano

�volcano (x; y) = 1
.�

4
�
1 +

�
1� x2 � y2

�2��
and the mountain

�mountain (x; y) = 1
.�

2
�
1 + x2 + y2

�2�



where it was assumed that the shading values on these Jordan faces satisfy the

linear image irradiance equation. A more complex function,

�hills(x; y) =
sin(3x)4 + cos(2y)4 + sin(x+ 4y)3 � cos(xy)5

2
+ 1;

is shown in Fig. 8.

Such functions may de�ne a certain testbed for a more detailed comparison of

the behavior of the di�erent surface recovery techniques as the minimumJordan

surface calculation assuming a certain digitization method, the approximation of

faces assuming a certain prede�ned explicit analytic shape, the recovery based on

gradients generating gradients based on numeric di�erentiation, or the recovery

based on solutions of di�erential equation systems assuming a speci�c object-

surface re
ectance model.

4 Conclusions

Fundamental approaches "How to de�ne a 3D surface?", "How to approximate

discrete surface points?", "How to perform discrete integration?", or "How to

solve a linear di�erential equation system based on discrete input data?" were

discussed with respect to possible improvements if new technologies allow higher

grid resolutions. Such discussions and related results might be of interest for re-

considering some established approaches in digital geometry. For example, [30],

property 1, de�ne a Jordan boundary as a set which satis�es the Jordan surface

theorem in 3D space. Their boundary tracking algorithm for boundary faces of

the cells of a given 3D grid point set may be used for sound volume calcula-

tions, but not for sound surface area calculations. A near-Jordanness property

(in short: every path from an element in the interior to an element of the exterior

exits through the given set of polygons), see e.g. [6], was used in recent publica-

tions of G. Herman, J. K. Udupa et al. for discussing the partition of the digital

space into an inside and an outside. A Jordan surface of a 6-connected cellular

complex [9] satis�es the Jordan surface theorem because it is just a special case

of a Jordan surface. It was proved, see [6], that the near-Jordanness property is

useful for discussing algorithmic approaches for digital spaces.

The same soundness criterion was discussed for four di�erent situations. In

three cases we can state that the problem (i.e. de�ning a technique, and proving

that this technique satis�es the soundness properties) is solved. Finding sound

techniques for solving the discrete integration problem seems to be of fundamen-

tal complexity. However, the discussed "discrete surface problem" and "discrete

Cauchy problem" might be compared at complexity level, and both problems

were solved already.

The calculation of features of digital objects de�ned by voxel sets is certainly

a topic in digital geometry. However the �rst example, the Jordan surface prob-

lem, should already point out that a model in continuous mathematics may help

to propose a sound approach for feature calculation. The next examples did lead

more and more away from the digital geometric case, ending with the study of



a Cauchy problem at a numerical or analytical level of mathematics. However,

in all these cases gridding techniques are or should be applied. As a general hy-

pothesis this leads to the opinion that di�erent geometric approaches relevant to

3D object analysis will increasingly interact in the future. This is also expected

at the computational level.

Recent interest in computational geometry develops also towards the study

of e�cacy (i.e. robustness or numerical stability) of geometric algorithms, see

[17]. The studied soundness constraints might be interpreted in this direction.

The calculation of the minimum Jordan surface (Section 3.1) should be of high

interest in this area. The calculation of the least-squares approximation plane

(Section 3.2) belongs obviously to the class of geometric optimization prob-

lems, also studied in computational geometry. However, in [17] only the 2D case

of polygonal curve approximation is cited in this class, and not this 3D com-

putational problem. The gradient based recovery approach (Section 3.3) may

also lead to interesting computational questions if combined with accuracy or

approximation constraints.

The 3D shape description and recovery problem, based on digital input data,

is a very multi-disciplinary problem. CAD systems apply a broad variety of

digital surface representation techniques. Gridding techniques for di�erential

equations, as brie
y discussed in Section 3.4, are also studied in computational

physics, see [35] - just to cite two �elds di�erent from 3D image analysis.
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