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Chapter 1

On Depth Recovery from Gradient Vector Fields

Tiangong Wei and Reinhard Klette

CITR, Department of Computer Science, The University of Auckland
Tamaki Campus, Auckland, New Zealand

Depth recovery from gradient vector fields is required when reconstructing a
surface (in three-dimensional space) from its gradients. Such a reconstruction
task results, for example, for techniques in computer vision aiming at calculat-
ing surface normals (such as shape from shading, photometric stereo, shape from
texture, shape from contours and so on). Surprisingly, discrete integration has
not been studied very intensively so far. This chapter presents three classes of
methods for solving problems of depth recovery from gradient vector fields: a
two-scan method, a Fourier-transform based method, and a wavelet-transform
based method. These methods extend previously known techniques, and related
proofs are given in a short but concise form.

The two-scan method consists of two different scans through a given gradient
vector field. The final surface height values can be determined by averaging these
two scans. Fourier-transform based methods are noniterative so that boundary
conditions are not needed, and their robustness to noisy gradient estimates can be
improved by choosing associated weighting parameters. The wavelet-transform
based method overcomes the disadvantage of the Fourier-transform based method,
which implicitly require that a surface height function is periodic. Experimental
results using synthetic and real images are also presented.

1.1. Introduction

Discrete integration maps a dense but discrete gradient vector field into a surface
representation, normally identified as “height” or “depth”. The authors studied
discrete integration in the context of computer vision. Here, this way of surface
recovery may be part of techniques such as shape from shading (SFS), photometric
stereo, shape from texture, or shape from contours. The SFS problem is to recon-
struct the 3D shape of an object from a single 2D image of the object using shading
and or lighting models for surface normal calculation. Algorithms for solving the
SFS problem (see, for example, [9, 11, 14, 20, 23]) consist typically of two steps:
the first step is to obtain the estimates of surface gradients or surface normals for
a discrete set of visible points on the object surface (i.e., discrete gradient vector
fields), and the second step is to recover the surface height from the estimated sur-
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face orientation. This second step results in the problem of depth recovery from
gradient vector fields.

The problem of depth recovery from gradients also arises when applying the
photometric stereo method (PSM) [22]. PSM is to recover the 3D shape of an object
from more than one image taken at the same attitude but for varying illumination.
PSM allows an approximate solution for surface normals [10, 13, 22]. A subsequent
integration step (i.e., depth recovery from gradients) is again required to convert
estimated surface normals into an estimate of the surface shape.

Shape from texture is another area that leads to the depth recovery from gra-
dients problem. Smith et al. [18, 19] proposed a technique for the recovery of a
surface texture relief. The recovered texture relief has an useful potential for both
visualization and numerical assessments of surface roughness, or for obtaining other
parameters such as peak height or peak count. The technique utilizes three or more
images to determine a dense gradient field at first. This gradient field is then in-
tegrated to obtain the surface texture relief. On the other hand, texture gradient
is related to surface shape parameters (orientation, curvature). Shape recovery is
made possible by measuring the texture gradient in the image.

The problem of depth recovery from gradients also results when inferring surface
shape from a Gauss map or surface shape from the Hessian matrix [5], where the
task is the estimation of an unknown surface height from a set of measurements
of the gradients of some surface function. Therefore, it turns out that the entire
shape reconstruction process can often be decomposed into two independent steps:
gradient computation and gradient integration.

As mentioned above, several active fields of research related to computer vision
produce gradient values for a discrete set of visible points on object surfaces. In
order to achieve the relative height or depth values of the surface, these surface
gradients have to be integrated by using gradient integration techniques.

Only a few numerical methods for the depth recovery from gradients problem
have been developed. These methods have been classified traditionally into two
categories: local integration methods [3, 7, 12, 16, 24] and global integration meth-
ods [6, 8, 21].

So far, the problem of depth recovery from gradients has not been studied often.
Just for illustration, recent papers such as [2, 17] still apply algorithms for discrete
integration as proposed about 20 years ago. In this chapter, we present theory,
algorithms, and experiments for three classes of methods (different o those two
categories mentioned before) for depth recovery from gradients.

The structure of the chapter is as follows. Section 1.2 analyzes the integrability
of vector fields, and gives a brief review of related numerical methods for depth
recovery from gradients. Section 1.3 discusses a two-scan method. Section 1.4
deals with the Fourier-transform based method for depth recovery from gradients.
Section 1.5 presents a wavelet-transform based method. Section 1.6 presents exper-
imental results using synthetic and real images. Section 1.7 concludes the chapter.
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1.2. Depth Recovery from Gradient Vector Fields

It is a nontrivial problem of computing a surface height function Z(x, y) from an
estimated surface gradient field (p(x, y), q(x, y)). First, given a vector field (p, q),
it may not correspond to a gradient field of any surface height function Z(x, y)
at all. Second, different surface height functions will have the same gradients (for
example, looking orthogonally onto a stair case may produce the same gradient field
as looking onto a plane). Therefore, the problem of depth recovery from gradients
is ill-posed. It is only reasonable to determine the surface height function up to an
additive constant, (i.e., the relative surface height). Notice that the relative surface
height map is sometimes sufficient to recognize or inspect an object (e.g., for surface
planarity tests in industrial surface inspection); and the relative surface height map
may be transformed into absolute values if height values are available for proper
scaling.

1.2.1. Integrability of Vector Fields

Generally, a given gradient field p(x, y), q(x, y) may not correspond to any surface
height function at all. In order of p(x, y), q(x, y) to be the gradients of a sur-
face height function, the given gradient field must be integrable. A vector field
(p(x, y), q(x, y)) over a simply connected domain Ω is integrable if there exists some
surface height function Z(x, y) ∈ C1(Ω) such that it satisfies the weak integrability
condition

Zx(x, y) = p(x, y) (1.1)

Zy(x, y) = q(x, y) (1.2)

for all (x, y) ∈ Ω, where the subscripts denote partial derivatives. In other words,
a gradient vector field is integrable if it is the gradient field of some surface height
function.

Given a vector field (p(x, y), q(x, y)) over a simply connected domain Ω. Inte-
grability can be characterized for two slightly different cases:

(i) Assume that components p(x, y) and q(x, y) are continuously differentiable;
then the vector field (p(x, y), q(x, y)) is integrable if and only if

py(x, y) = qx(x, y) (1.3)

for all points in Ω; in other words, the surface height function Z(x, y) ∈
C2(Ω) satisfies the strong integrability condition

Zxy(x, y) = Zyx(x, y) (1.4)

(ii) Only assume that the components p(x, y) and q(x, y) are continuous; then
the vector field is integrable if and only if∮

γ

p(x, y)dx+ q(x, y)dy = 0
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for any closed curve γ in Ω; in other words, the surface height function
Z(x, y) ∈ C1(Ω) satisfies the partial integrability condition∮

γ

Zx(x, y)dx+ Zy(x, y)dy = 0

If the components of a vector field are continuously differentiable, then it is easy
to determine whether or not it is integrable or nonintegrable by using the strong
integrability condition.

1.2.2. Local and Global Integration Methods

In local integration methods [3, 7, 12, 24], an arbitrary initial height value Z0 is
preset for a starting point (x0, y0) somewhere in the image of the surface. Then,
the relative heights at every point (x, y), which are consistent with this arbitrarily
given height value Z0, will be calculated according to a local approximation rule.
Therefore, local integration approaches strongly depend on data accuracy (to avoid
error propagation).

To compute surface height Z(x, y) from the estimated surface gradient fields
(p(x, y), q(x, y)), global integration techniques [6, 9] are based on minimizing the
quadratic error functional (cost functional) between ideal and given gradient values:

W =
∫∫

Ω

[|Zx − p|2 + |Zy − q|2]dxdy (1.5)

The above functional is invariant when a constant value is added to the surface
height Z(x, y). This expresses the fact that depth recovery from gradients can only
reconstruct a surface height up to a constant.

Generally speaking, there are three possible methods to solve this optimiza-
tion problem: variational approaches, direct discretization methods, and expansion
methods. The variational approach [9] results in an Euler-Lagrange equation as
the necessary condition for a minimum. Then there is a need to solve this Poisson
equation. In order to solve the minimization problem (1.5) numerically, the contin-
uous functional W is converted into a discrete problem directly by a discretization
method. The disadvantage of variational approaches or discretization methods is
the requirement of boundary conditions. But boundary information is not easy to
obtain when dealing with depth recovery from gradients.

The surface height is expressed as a linear combination of a set of basis functions
in expansion methods such as proposed and studied in [6] (and used for formulating
a Frankot-Chellappa algorithm in [13]). Nevertheless, the errors of this algorithm are
high for imperfect estimates of surface gradients, or noisy gradient vector fields [12].
Also, the algorithm is very sensitive to abrupt changes in orientation. In this chap-
ter, we will focus on expanding the surface height function using the Fourier basis
functions and third-order Daubechies’ scaling basis functions.
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1.3. Two-Scan Method

This section presents a local method for depth recovery from gradients. Suppose
that the surface normals at four grid points {(i, j), (i+ 1, j), (i, j+ 1), (i+ 1, j+ 1)}
are represented by the following surface gradients:

ni,j = (pi,j , qi,j ,−1)T

ni+1,j = (pi+1,j , qi+1,j ,−1)T

ni,j+1 = (pi,j+1, qi,j+1,−1)T

ni+1,j+1= (pi+1,j+1, qi+1,j+1,−1)T

Consider grid points (i, j + 1) and (i + 1, j + 1); since the line connecting points
(i, j + 1, Zi,j+1) and (i + 1, j + 1, Zi+1,j+1) is approximately perpendicular to the
average normal between these two points, the dot product of the slope of this line
and the average normal is equal to zero. This gives

Zi+1,j+1 = Zi,j+1 +
1
2

(pi,j+1 + pi+1,j+1)

Similarly, we obtain the following regressive relation for grid points (i + 1, j) and
(i+ 1, j + 1):

Zi+1,j+1 = Zi+1,j +
1
2

(qi+1,j + qi+1,j+1)

Adding above two recursions together, and dividing the result by 2 gives

Zi+1,j+1 =
1
2

(Zi,j+1 + Zi+1,j)

+
1
4

(pi,j+1 + pi+1,j+1 + qi+1,j + qi+1,j+1) (1.6)

Suppose further that the total number of points on the object surface be N ×N . If
two arbitrary initial height values are preset at grid points (1, 1) and (N,N), then
the two-scan algorithm consists of two stages; the first stage starts at the left-most,
bottom-most corner of the given gradient field, and determines the height values
along x-axis and y-axis by discretizing (1.1) in terms of the forward differences

Zi,1 = Zi−1,1 + pi−1,1 (1.7)

Z1,j = Z1,j−1 + q1,j−1 (1.8)

where i = 2, ..., N, j = 2, ..., N. Then scan the image vertically using (1.6). The
second stage starts at the right-top corner of the given gradient field and sets the
height values by

Zi−1,N = Zi,N − pi,N (1.9)

ZN,j−1 = ZN,j − qN,j (1.10)

Then scan the image horizontally using the following recursive equation

Zi−1,j−1 =
1
2

(Zi−1,j + Zi,j−1)−
1
4

(pi−1,j + pi,j + qi,j−1 + qi,j)
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Since the estimated height values may be affected by the choice of the initial height
value, we take an average of the two scan values for the surface height.

1.4. Fourier-Transform Based Methods

[6] suggested a solution for the SFS problem to enforce the weak integrability
condition (1.1) by using the theory of projections onto convex sets. Their method
is to project the given (possibly, non-integrable gradient field) onto the nearest
integrable gradient field in the least-square sense. In order to improve the accuracy
and robustness, and to strengthen the relation between the surface height function
and the given gradient field, we introduce two new constraints as follows:

Zxx(x, y) = px(x, y)

Zyy(x, y) = qy(x, y)

The two new constraints model the behavior of a change rate in second-order deriva-
tives between the variables. Therefore, the changes of surface height will be more
regular. Having the new constraints, we consider the following energy functional

W =
∫∫

Ω

[
|Zx − p|2 + |Zy − q|2

]
dxdy

+ λ

∫∫
Ω

[
|Zxx − px|2 + |Zyy − qy|2

]
dxdy

+ µ1

∫∫
Ω

(
|Zx|2 + |Zy|2

)
dxdy

+ µ2

∫∫
Ω

(
|Zxx|2 + 2|Zxy|2 + |Zyy|2

)
dxdy (1.11)

where non-negative parameters λ, µ1, and µ2 establish a trade-off between those
constraints (i.e., they are used to adjust the weighting between the constraints).
This cost function reflects the relations among Z(x, y), p(x, y), and q(x, y) more
effectively, and makes the best use of the information provided by the given gra-
dient field because it not only constraints the tangent line of the surface, but also
constraints its concavity and convexity. The following objective is to solve for the
unknown Z(x, y) subject to an optimization process which minimizes the cost func-
tion W .

To solve this minimization problem (1.11), Fourier-transform techniques can be
applied. The two-dimensional Fourier transform of the surface function Z(x, y) is
defined by

ZF (u, v) =
∫∫

Ω

Z(x, y)e−j(ux+vy)dxdy (1.12)

and the inverse Fourier transform is defined by

Z(x, y) =
1
2π

∫∫
Ω

ZF (u, v)ej(ux+vy)dudv (1.13)
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where j =
√
−1 is the imaginary unit, and u and v represent the two-dimensional

frequencies in the Fourier domain. The following differentiation properties can be
obtained easily:

Zx(x, y) ↔ juZF (u, v)

Zy(x, y) ↔ jvZF (u, v)

Zxx(x, y) ↔ −u2ZF (u, v)

Zyy(x, y) ↔ −v2ZF (u, v)

Zxy(x, y) ↔ −uvZF (u, v)

where the sign ↔ means that the Fourier transform of the function on the left-hand
side is equal to the one on the right-hand side.

Let P (u, v) and Q(u, v) be the Fourier transforms of the given gradients p(x, y)
and q(x, y), respectively. Taking the Fourier transform in the functional (1.11),
and using the differentiation properties of the Fourier transform and the following
Parseval’s formula∫∫

Ω

|Z(x, y)|2dxdy =
1
2π

∫∫
Ω

|ZF (u, v)|2dudv (1.14)

we obtain that

1
2π

∫∫
Ω

[
|juZF − P |2 + |jvZF −Q|2

]
dudv

+
λ

2π

∫∫
Ω

[∣∣−u2ZF − juP
∣∣2 +

∣∣−v2ZF − jvQ
∣∣2] dudv

+
µ1

2π

∫∫
Ω

[
|juZF |2 + |jvZF |2

]
dudv

+
µ2

2π

∫∫
Ω

[∣∣−u2ZF

∣∣2 + 2 |−uvZF |2 +
∣∣−v2ZF

∣∣2] dudv
→ minimum

where ZF = ZF (u, v), P = P (u, v), and Q = Q(u, v).The left-hand side of the above
expression can be expanded into

1
2π

∫∫
Ω

[
u2ZFZ

∗
F − juZFP

∗ + juZ∗FP + PP ∗

+v2ZFZ
∗
F − jvZFQ

∗ + jvZ∗FQ+QQ∗] dudv
+
λ

2π

∫∫
Ω

[
u4ZFZ

∗
F − ju3ZFP

∗ + ju3Z∗FP + u2PP ∗

+v4ZFZ
∗
F − jv3ZFQ

∗ + jv3Z∗FQ+ v2QQ∗] dudv
+
µ1

2π

∫∫
Ω

(
u2 + v2

)
ZFZ

∗
F dudv

+
µ2

2π

∫∫
Ω

(
u4 + 2u2v2 + v4

)
ZFZ

∗
F dudv
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where the asterisk ∗ denotes the complex conjugate. Differentiating the above
expression with respect to Z∗F and setting the result to zero, we can deduce the
necessary condition for a minimum of the cost function (1.11) as follows:(

u2ZF + juP + v2ZF + jvQ
)

+ λ
(
u4ZF + ju3P + v4ZF + jv3Q

)
+ µ1

(
u2 + v2

)
ZF + µ2

(
u4 + 2u2v2 + v4

)
ZF = 0

A rearrangement of this equation then yields[
λ
(
u4 + v4

)
+ (1 + µ1)

(
u2 + v2

)
+ µ2

(
u2 + v2

)2]
ZF (u, v)

+j
(
u+ λu3

)
P (u, v) + j

(
v + λv3

)
Q(u, v) = 0

Solving the above equation except for (u, v) 6= (0, 0), we obtain that

ZF (u, v) =
−j
(
u+ λu3

)
P (u, v)− j

(
v + λv3

)
Q(u, v)

λ (u4 + v4) + (1 + µ1) (u2 + v2) + µ2 (u2 + v2)2
(1.15)

Therefore, a Fourier transform of the unknown surface height Z(x, y) is expressed
as a function of Fourier transforms of given gradients p(x, y) and q(x, y). This
Fourier-transform based method can be summarized as follows:

Theorem 1.1. Given a gradient field (p(x, y), q(x, y)); the corresponding surface
height function Z(x, y) can be computed by taking the inverse Fourier transform of
ZF (u, v) in (1.15), where ZF (u, v), P (u, v), and Q(u, v), respectively, are Fourier
transforms of Z(x, y), p(x, y), and q(x, y).

Our algorithm (see Algorithm 1) specifies the implementation details for this
Fourier-transform based method. The constant pqmax eliminates gradient estimates
which define angles with the image plane close to 90◦, and a value such as pqmax = 12
is an option. Real parts are stored in arrays P1, Q1, and H1, and imaginary parts
in arrays P2, Q2, and H2. The initialization in line 19 can be by an estimated
value for the average height of the visible scene. Parameters λ, µ1 and µ2 should
be chosen based on experimental evidence for the given scene.

1.5. Wavelet-Transform Based Method

Wavelet theory has proved to be a powerful tool, and has begun to play a serious role
in a broad range of applications, including numerical analysis, pattern recognition,
signal and image processing. The wavelet transform is a generalization of the Fourier
transform. Wavelets have advantages over traditional Fourier methods in analyzing
physical situations where the function contains discontinuities and sharp spikes. In
order to take the advantages of the wavelet transform, we present a wavelets based
method for depth recovery from gradients.
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Algorithm 1 Fourier-Transform Based Method

1: input gradients p(x, y), q(x, y); parameters λ, µ1, and µ2

2: for 0 ≤ x, y ≤ N − 1 do
3: if (|p(x, y)| < pqmax & |q(x, y)| < pqmax) then
4: P1(x,y)=p(x,y); P2(x,y)=0;
5: Q1(x,y)=q(x,y); Q2(x,y)=0;
6: else
7: P1(x,y)=0; P2(x,y)=0;
8: Q1(x,y)=0; Q2(x,y)=0;
9: end if

10: end for
11: Calculate Fourier transform in place: P1(u,v), P2(u,v);
12: Calculate Fourier transform in place: Q1(u,v), Q2(u,v);
13: for 0 ≤ u, v ≤ N − 1 do
14: if (u 6= 0 & v 6= 0) then
15: ∆ = λ

(
u4 + v4

)
+ (1 + µ1)

(
u2 + v2

)
+ µ2

(
u2 + v2

)2 ;
16: H1(u, v) = [(u+ λu3)P2(u, v) + (v + λv3)Q2(u, v)]/∆;
17: H2(u, v) = [−(u+ λu3)P1(u, v)− (v + λv3)Q1(u, v)]/∆;
18: else
19: H1(0, 0) = average height; H2(0, 0) = 0;
20: end if
21: end for
22: Calculate inverse Fourier transform of H1(u,v) and H2(u,v) in place: H1(x,y),

H2(x,y);
23: for 0 ≤ x, y ≤ N − 1 do
24: Z(x, y) = H1(x, y);
25: end for

1.5.1. Daubechies Wavelet Basis

Let φ(x) and ψ(x) are the Daubechies scaling function and wavelet, respectively.
They both are implicitly defined by the following, two-scale relation [4]:

φ(x) =
∑
k∈Z

akφ(2x− k) (1.16)

and the equation

ψ(x) =
∑
k∈Z

(−1)ka1−kφ(2x− k) (1.17)

where Z = {· · · ,−1, 0, 1, · · · }, and ak are called the Daubechies wavelet filter coef-
ficients.

Connection coefficients (see, for example, Beylkin [1], Mallat [15]) play an impor-
tant role in representing the relation between the scaling function and differential
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operators. For k ∈ Z, the connection coefficients withMth order vanishing moments
(that is,

∫ +∞
−∞ xkφ(x)dx = 0, for 0 ≤ k ≤M) are defined by

Γ0
k =

∫
φ(x)φ(x− k)dx (1.18)

Γ1
k =

∫
φ(x)(x)φ(x− k)dx (1.19)

Γ2
k =

∫
φ(x)(x)φ(x)(x− k)dx (1.20)

Then we have the following properties:

(i) Γ1
0 = 0,

(ii) for the scaling function φ(x), which has Mth order vanishing moments,
Γ1

k = Γ2
k = 0, k /∈ [−2M + 2, 2M − 2], and

(iii) Γ0
k =

{
1, k = 0,
0, otherwise.

The connection coefficients for Daubechies’ wavelet with 3rd order vanishing mo-
ments are shown in Table 1.5.1:

Table 1.1. Connection coefficients for N = 3.

Γ1
k Γ2

k

Γ1
−4 =0.00034246575342 Γ2

−4 = -0.00535714285714

Γ1
−3 =0.01461187214612 Γ2

−3 = -0.11428571428571

Γ1
−2 =-0.14520547945206 Γ2

−2 = 0.87619047619052

Γ1
−1 =0.74520547945206 Γ2

−1 = -3.39047619047638

Γ1
0 =0.0 Γ2

0 = 5.26785714285743

Γ1
1 =-0.74520547945206 Γ2

1 = -3.39047619047638
Γ1

2 =0.14520547945206 Γ2
2 = 0.87619047619052

Γ1
3 =-0.01461187214612 Γ2

3 = -0.11428571428571

Γ1
4 =-0.00034246575342 Γ2

4 = -0.00535714285714

1.5.2. Iteration Formula for Wavelet-Transform Based Method

In order to discretize the functional (1.5), the tensor product of the third-order
Daubechies’ scaling functions is used to span the solution space. The surface height
is described as a linear combination of a set of scaling basis functions. After dis-
cretization, the problem of depth recovery from gradients becomes a discrete mini-
mization problem. To solve the minimization problem, a perturbation method will
be used. The surface height is finally decided after finding the weight coefficients.

We assume that the size of the domain of the surface Z(x, y) equals N × N .
Suppose further that the surface Z(x, y) is represented by a linear combination of
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a set of third-order Daubechies’ scaling basis functions in the following format:

Z(x, y) =
N−1∑
m=0

N−1∑
n=0

zm,nφm,n(x, y) (1.21)

where zm,n are the weight coefficients, φm,n(x, y) are the tensor products of the
third-order Daubechies scaling functions, with

φm,n(x, y) = φ(x−m)φ(y − n) (1.22)

For the known gradient values p(x, y) and q(x, y), we assume that

p(x, y) =
N−1∑
m=0

N−1∑
n=0

pm,nφm,n(x, y) (1.23)

q(x, y) =
N−1∑
m=0

N−1∑
n=0

qm,nφm,n(x, y) (1.24)

where the weight coefficients pm,n and qm,n can be determined by

pm,n =
∫ ∫

p(x, y)φm,n(x, y)dxdy (1.25)

qm,n =
∫ ∫

q(x, y)φm,n(x, y)dxdy (1.26)

Substituting (1.21), (1.23) and (1.24) into (1.5), we have that

W =
∫ ∫ ( N−1∑

m,n=0

zm,nφ
(x)
m,n(x, y)−

N−1∑
m,n=0

pm,nφm,n(x, y)

)2
 dxdy

+
∫ ∫ ( N−1∑

m,n=0

zm,nφ
(y)
m,n(x, y)−

N−1∑
m,n=0

qm,nφm,n(x, y)

)2
 dxdy

= W1 +W2, (1.27)

where

φ(x)
m,n(x, y) =

∂φm,n(x, y)
∂x

, φ(y)
m,n(x, y) =

∂φm,n(x, y)
∂y

In order to derive the iterative scheme for computing the surface height function
Z(x, y), let ∆zi,j represent the updates of zi,j in the iterative equation, and z′i,j be
the value after the update. Then we have that

z′i,j = zi,j + ∆zi,j (1.28)
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Substituting z′i,j into W1, W1 will be changed by ∆W1, that is,

W ′
1 = W1 + ∆W1

=
∫ ∫ [( N−1∑

m,n=0

zm,nφ
(x)
m,n(x, y)−

N−1∑
m,n=0

pm,nφm,n(x, y)

)
+ ∆zi,jφ

(x)
i,j (x, y)

]2

dxdy

= W1 + 2∆zi,j

N−1∑
m,n=0

zm,n

∫ ∫
φ(x)

m,n(x, y)φ(x)
i,j (x, y)dxdy

−2∆zi,j

N−1∑
m,n=0

pm,n

∫ ∫
φm,n(x, y)φ(x)

i,j (x, y)dxdy

+∆z2
i,j

∫ ∫
φ

(x)
i,j (x, y)φ(x)

i,j (x, y)dxdy (1.29)

By using the tensor product (1.22) and the definitions of the connection coefficients
(1.18), (1.19) and (1.20) yields∫ ∫

φ(x)
m,n(x, y)φ(x)

i,j (x, y)dxdy

=
∫ ∫

φx(x−m, y − n)φ(x)(x− i, y − j)dxdy

=
∫ ∫

φx(x−m)φ(y − n)φ(x)(x− i)φ(y − j)dxdy

=
∫
φx(x−m)φ(x)(x− i)dx

∫
φ(y − n)φ(y − j)dy

=
∫
φx(x)φ(x)(x− i+m)dx

∫
φ(y)φ(y − j + n)dy

= Γ2
i−mΓ0

j−n (1.30)

Using the same way, we obtain that∫ ∫
φm,n(x, y)φ(x)

i,j (x, y)dxdy = Γ1
i−mΓ0

j−n (1.31)∫ ∫
φ

(x)
i,j (x, y)φ(x)

i,j (x, y)dxdy = Γ2
0 (1.32)

Substituting (1.30), (1.31) and (1.32) into (1.29) gives

W ′
1 = W1 + 2∆zi,j

N−1∑
m,n=0

zm,nΓ2
i−mΓ0

j−n

− 2∆zi,j

N−1∑
m,n=0

pm,nΓ1
i−mΓ0

j−n + ∆z2
i,jΓ

2
0 (1.33)
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Using the same derivation, we have that

W ′
2 = W2 + ∆W2

= W2 + 2∆zi,j

N−1∑
m,n=0

zm,nΓ0
i−mΓ2

j−n

−2∆zi,j

N−1∑
m,n=0

qm,nΓ0
i−mΓ1

j−n + ∆z2
i,jΓ

2
0 (1.34)

Substituting (1.33) and (1.34) into (1.27), it is shown that the energy change is
given by

∆W = ∆W1 + ∆W2

= 2∆zi,j

N−1∑
m,n=0

zm,n

(
Γ2

i−mΓ0
j−n + Γ0

i−mΓ2
j−n

)
−2∆zi,j

N−1∑
m,n=0

pm,nΓ1
i−mΓ0

j−n − 2∆zi,j

N−1∑
m,n=0

qm,nΓ0
i−mΓ1

j−n + 2∆z2
i,jΓ

2
0

In order to make the cost function decrease as fast as possible, ∆W must be maxi-
mized. From ∂∆W/∂∆zi,j = 0, we have that

∆zi,j =
1

2Γ2
0

2N−2∑
k=−2N+2

[
(pi−k,j + qi,j−k) Γ1

k − (zi−k,j + zi,j−k) Γ2
k

]
(1.35)

Substituting (1.35) into (1.28) leads to the following iterative scheme:

zt+1
i,j = zt

i,j + ∆zi,j (1.36)

where t is the iteration index. By taking zero as the initial values, we can iteratively
solve the depth recovery from gradients problem using the iterative scheme (1.36).

1.6. Experimental Results

To investigate the performance of the algorithms described in the previous sections,
we have done several computer simulations on both synthetic and real images.

(a) (b) (c)

Fig. 1.1. Results of a synthetic vase object. (a) Original image. (b) 3D plot of the vase object.

(c) Reconstruction result using the proposed two-scan method.
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(a) (b) (c)

Fig. 1.2. Results for a torus object. (a) Original surface. (b) Gradient vector fields. (c) Recon-

structed surface using wavelet-transform based method.

1.6.1. Test on Noiseless Gradients

The two-scan method was tested on a synthetic vase image, which is generated
mathematically by the following explicit surface equation:

Z(x, y) =
√
f2(y)− x2

where

f(y) = 0.15− 0.1y(6y + 1)2(y − 1)2(3y − 2)2,

−0.5 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 1.0

The image of this synthetic vase object is shown on the left of Figure 1.1. The 3D
plot of the reconstructed surface using the proposed two-scan algorithm is shown in
the middle of Figure 1.1. By comparing the 3D plots of the true surface (middle)
and the reconstructed surface (right), we can see that they look very similar to each
other.

The wavelet-transform based method was applied to a torus image. The original
torus image is illustrated on the left of Figure 1.2. The gradient fields of the torus
surface is shown in the middle of Figure 1.2. The reconstructed surface height
from this gradient fields by the proposed wavelet based method is shown on the

Fig. 1.3. Image triplet of a Beethoven statue.
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Fig. 1.4. Recovered surface using the Frankot-Chellappa method.

Fig. 1.5. Recovered surface using our Fourier-transform based method, with λ = 0.5, and µ1 =

µ2 = 0.
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right of Figure 1.2. It can be seen that the shape of the torus object is correctly
reconstructed.

Figure 1.3 shows three captured images of a Beethoven plaster statue, using a
static camera but different light sources. The gradients were generated using the
albedo-independent photometric stereo method with three light sources (3S PSM)
as specified in [13]. Figure 1.5 illustrates both recovered surfaces. The left-hand
surface was calculated using the Frankot-Chellappa algorithm [6] as specified in [13],
and the right-hand surface was calculated using our Fourier-transform based method
with λ = 0.5, µ1 = 0, and µ2 = 0. By comparing the reconstructed surfaces shown
in Figure 1.5, we see that the Fourier-transform based method (with the specified
parameters) improves the recovered shape.

1.6.2. Test on Noisy Gradients

Generally speaking, local methods may provide an unreliable reconstruction, since
the errors can propagate along the scan paths. Therefore, we only test the proposed
Fourier-transform based method for noisy gradients. This method was implemented
with one synthetic image (peaks) and one real image (vase). The discrete gradient
vector fields were generated using an SFS algorithm proposed in [23]. The Gaus-
sian noise (with a mean, set to zero, and a standard deviation, set to 0.01) was
subsequently added to the generated gradient field in order to test the sensitivity
to noise.

(a) (b) (c)

Fig. 1.6. Results of a synthetic image. (a) Original surface. (b) Reconstructed surface using

the Frankot-Chellappa algorithm. (c) Reconstructed surface using our Fourier-transform based
method with λ = 0, µ1 = 0.1 and µ2 = 1.

Figure 1.6 and Figure 1.7 show the reconstructed surfaces when the parameters
are given by some specific values. Figure 1.6 shows the original 3D height plot
of a synthetic peaks surface (left), the 3D plot of reconstructed surfaces using the
Frankot-Chellappa algorithm (middle), and the 3D plot of the reconstructed surface
using our Fourier-transform based method with λ = 0, µ1 = 0.1, and µ2 = 1. By
comparing the true heights, we can see that the noise is reduced.

Figure 1.7 shows the 3D plot of the original vase surface (left). The reconstructed
surfaces with λ = 0, µ1 = µ2 = 0 and µ1 = 0.1, µ2 = 10 are shown in the middle
Figure 1.7 and on the right of Figure 1.7.
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(a) (b) (c)

Fig. 1.7. Results of a vase object. (a) Original surface. (b) Reconstructed surface using the
Frankot-Chellappa algorithm. (c) Reconstructed surface our Fourier-transform based method with

λ = 0, µ1 = 0.1, µ2 = 10.

1.7. Conclusion

This chapter proposed three classes of methods for solving the problem of depth
recovery from gradient vector fields, based on previous work by the authors (see, for
example, [21]). The derivation details of these approaches are given. The deriva-
tion process of the two-scan method is very simple. The wavelet-transform based
method is derived by representing the surface height as a linear combination of
third-order Daubechies’ scaling basis functions. This method converts the depth
recovery from gradients problem to one of solving an iterative equation. Hence, the
method can be easily implemented. The mathematics is somewhat more compli-
cated, but the fact that fewer iterations are required is the major advantage of the
wavelet-transform based method. The Fourier-transform based method has some
distinct advantages. The surface of the object is constructed in one pass utilizing all
of the given gradient estimates, and the robustness of the Fourier-transform based
method to noisy gradient fields can be improved by choosing associated weighting
parameters. The choice of parameters heavily affects the surface reconstructed from
gradients. Therefore, the criterion for the choice of the parameters and the relation
between the parameters and noise should be a future topic of research. Generally
speaking, a constrained minimization problem can be formulated for an optimal
choice of parameters. This is a problem which many researchers have been trying
to solve for several years, and so far there is no systematic way derived for choosing
parameters.
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