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Abstract

We analyse different sequential algorithms for the recovery of object shape from a
single shading pattern generated under the assumption of a linear reflectance map.
The algorithms are based on the finite difference approximation of the derivatives.
They operate on a rectangular discrete image (or part of it) and use the height of the
sought-after surface along a curve in the image (image boundary) as initial data. The
evaluation of different numerical schemes is achieved by comparing stability,
convergence, and domains of influence of each scheme in question. The relative
difficulty of handling a linear case indicates that the case of non-linear reflectance
maps is far from being trivial.
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1 Introduction

In this paper, we present some results concerning the shape-from-shading problem in which the

reectance map is linear. Such a special case arises e.g. in the study of the maria of the moon

(see [1, Subsections 10.9 and 11.1.2]). If a small portion of a surface, described by the graph of a

function u, having reectivity properties approximated by a linear reectance map, is illuminated by

a distant point source of unit power in direction (a1; a2;�1), then the corresponding image E(x1; x2)

satis�es a linear image irradiance equation of the following form

�
a1
@u

@x1
(x1; x2) + a2

@u

@x2
(x1; x2) + 1

�
(a2

1
+ a2

2
+ 1)�1=2 = E(x1; x2); (1)

over 
 = f(x; y) 2 IR2 : E(x1; x2) > 0g. Letting E(x1; x2) = E(x1; x2)(a
2

1
+ a2

2
+ 1)1=2 � 1, one can

rewrite (1) as a transformed linear image irradiance equation

a1
@u

@x1
(x1; x2) + a2

@u

@x2
(x1; x2) = E(x1; x2): (2)

In this paper we evaluate di�erent �nite di�erence algorithms for a direct shape recovery modelled

by the equation (2). The original idea of this work is an extension of Kozera work in [4, 5], where

the convergence analysis of the �nite di�erence scheme based on central di�erence approximation of

the derivatives has been discussed. We continue to investigate here the issue of the stability and the

convergence of di�erent algorithms based on the combination of the forward and backward derivative

approximations. Convergence, stability, and domain of inuence, will be considered here as algorith-

mic features and used in this paper for evaluating shape reconstruction algorithms based on �nite

di�erence schemes. Critical to our approach is the assumption that u is given along some (not neces-

sarily smooth) initial curve  in the image (image boundary). The algorithms provide the numerical

solution of the following Cauchy problem (for u 2 C( �
) \ C2(
)) considered over a rectangle 
:

L(u(x1; x2)) = E(x1; x2) (3a)

u(x1; 0) = f(x1) 0 � x1 � a; for sgn(a1a2) � 0; (3b)

u(x1; b) = f(x1) 0 � x1 � a; for sgn(a1a2) < 0; (3c)

u(0; x2) = g(x2) 0 � x2 � b; (3d)

here Lu = a1ux1 + a2ux2 , and functions f 2 C([0; a]) \ C2((0; a)) and g 2 C([0; b]) \ C2((0; b))

satisfy f(0) = g(0), E 2 C2(
), and a1 and a2 are constants such that (a1; a2) 6= (0; 0). To simplify
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consideration we will assume that sgn(a1a2) � 0 and a2 6= 0 and therefore only the case (3)(a; b; d)

will be considered. The remaining cases can be treated analogously.

For a full version of this paper containing more experimental results and both convergence and

well-posedness proofs an interested reader is referred to Kozera and Klette [6]. Also a more detailed

information about general shape-from-shading problem can be found e.g. in [1], Horn and Brooks [2],

or Klette et al. [3].

2 Basic Notions and Theory for Finite Di�erence Schemes

We recall now standard de�nitions and results from the theory of solving linear partial di�erential

equations with the aid of the �nite di�erence method (see Van der Houwen [8, Chapter 1]).

Assume that an interval [0; T ] and a domain G � IR together with its boundary � and �G = G[�

are given and that (E0( �G); k kE0
), (E( �G); k k �G

), (E(� ); k kG), and (E(G); k kG) are linear normed

spaces of scalar (vector) functions, de�ned respectively, on the set of points �G, �G� [0; T ], � � [0; T ],

and G� [0; T ]. Consider now the following problem

Ut(x; t) +D(x; t)Ux(x; t) = H(x; t); U(� � [0; T ]) = 	(� ); and U(x; 0) = U0(x); (4)

where (x; t) 2 G � [0; T ], the scalar functions U0 2 E0( �G), 	 2 E(� ), and the vector function

F (x; t) = (H(x; t);D(x; t)) 2 E(G). An initial boundary value problem LU = (U0; F; 	) may be

interpreted as a mapping of the unknown function U onto the triple of functions (U0;H; 	), or if we

want to include dependence of U on the vector coe�cient D, as a mapping onto a triple (U0; F; 	):

More precisely, problem of �nding the inverse of a given mapping L : DL ! �L of an unknown

function U 2 DL = (E( �G); k k �G
) onto a known element (U0; F; 	) 2 �L = (E0( �G) � E(G) �

E(� ); k k�), where k(U0; F; 	)k� = kU0kE0
+ kFkG + k	k� ; will be called initial boundary value

problem.

The initial boundary value problem LU = (U0; F; 	) is said to be well-posed with respect to the

norms in E( �G) and in E0( �G) � E(G) � E(� ) if L has a unique inverse L�1 which is continuous at

the point (U0; F; 	).

We shall now introduce the de�nition of the uniform grid sequence. We replace the continuous

interval [0; T ] by a discrete set of points [t0 = 0; t1; t2; : : : ; tM = T ], where ti+1 � ti = �t (for each

i 2 [0; : : : ;M � 1]) and M�t = T , together with a �nite set of points ��t � � such that the distance

between two consecutive points in the X-axis direction satis�es �x = N (�t) and NN (�t) = �(G),

where �(G) denotes the measure of G. These three sets of points constitute a grid or net Q�t in
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�G� [0; T ] i.e. Q�t = �G�t�ftkg
N

k=0
; where �G�t = G�t[��t. We assume that a sequence of nets Q�t

is de�ned in such a way that lim�t!0+ Q�t is dense in �G � [0; T ]. The last requirement is satis�ed

when lim�t!0+ N (�t) = 0. Furthermore, we introduce the corresponding normed grid spaces

(E0( �G�t); k kE0�t
); (E( �G�t); k k �G�t

); (E(��t); k k��t); and (E(G�t); k kG�t) (5)

de�ned on the sets �G�t, �G�t�ftkg
N

k=0
, ��t�ftkg

N

k=0
, and G�t�ftkg

N

k=0
, respectively. The elements

of these spaces are called net functions and will be denoted by lower case letters u0, u,  , and f .

A mappingR�t of an unknown net function u of (E( �G�t); k k �G�t
) into the known element (u0; f;  )

of (E0( �G�t)�E(G�t)�E(��t); k k�t�), where k(u0; f;  )k�t� = ku0kE0�t
+kfkG�t+k k��t is de�ned

for each net Q�t, will be called a �nite di�erence scheme. Di�erence schemes can be described by

the equation R�tu = (u0; f;  ), with the domain and range of R�t denoted by DR�t (called as a

discrete domain of inuence) and �R�t, respectively. It will be assumed that both DR�t and �R�t

are linear spaces and R�t has a unique inverse R�1
�t
, which is continuous in DR�t for every �t 6= 0.

We can also de�ne a set DI � 
 called a domain of inuence as DI = cl (
S
DR�t) (where symbol cl

denotes the set closure operation) which clearly depends on a given initial boundary value problem,

grid sequence and associated �nite di�erence scheme.

Let us now introduce the discretisation operator [ ]d(�t) which transforms a function U 2 E( �G) to

its discrete analogue [U ]d(�t) de�ned as U reduced to the domain of the net Q�t. In the same manner

we can de�ne discretised elements [U0]d(�t) 2 E0( �G�t), [F ]d(�t) 2 E(G�t), and [	 ]d(�t) 2 E(��t). In

this paper we shall use the convention:

[U ]d(�t) = u; [U0]d(�t) = u0; [F ]d(�t) = f; and [	 ]d(�t) =  ;

where f = (h; d). Moreover, it is also assumed that the norms on the grid sequence fQ�tg�t match

the corresponding norms from the related \continuous spaces" i.e.

kuk �G�t
! kUk �G

; ku0kE0�t
! kU0kE0

; kfkG�t ! kFkG; and k k��t ! k	k� ; (6)

as �t! 0:

We shall now introduce the basic de�nitions. Assume now that eU is a solution to the initial

boundary value problem L eU = (U0; F; 	); and that u is a solution to the corresponding discrete

problem

R�tu = (u0; f;  ): (7)
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If R�t is to be a good approximation of L we should expect that the function eu = [ eU ]d(�t); for some

element (eu0; ef; e ), satis�es a �nite di�erence equation R�teu = (eu0; ef; e ) which closely relates to (7).

The value k[L eU ]d(�t) � R�teuk�t� is called the error of approximation. The value ku � euk �G�t
is in

turn called the discretisation error.

De�nition 1. We say that a di�erence scheme is consistent with an initial boundary value problem

if the error of approximation converges to zero as �t ! 0. We say also that a di�erence scheme is

convergent to the solution u (if it exists) if the discretisation error converges to zero as �t! 0.

Finally, we shall de�ne a notion of stability for the linear di�erence schemes in the sense of Rjabenki

and Filippov (see also [8]).

De�nition 2. A linear di�erence scheme is R-F stable if operators fR�1
�t
g are uniformly bounded as

�t! 0.

The natural question arises here about the relationship between the stability and convergence of

the consistent di�erence schemes. Combining the De�nition 5.3 and 6.2 with the Theorem 5.1 (see

Van der Houwen [8]) we have the following:

Theorem 1 A consistent and R-F stable �nite-di�erence scheme is convergent to the solution of

L eU = (U0; F; 	) (if such solution exists).

Of course for a Cauchy problem (3)(a,b,d), we have T = b, x2 = t, G = (0; a), � = f0g, U0(x1) =

f(x1), 	(� ) = g(x2), H(x1; x2) = (1=a2)E(x1; x2), and D(x1; x2) = (a1=a2). The corresponding

normed spaces are assumed to be here as follows:

E0( �G) = fU0 : [0; a]! IR : U0 2 C([0; a]) \ C
2((0; a))g

with kU0kE0
= maxx12[0;a]jU0(x1)j,

E( �G) = f(E; (a1=a2)) : [0; a]� [0; b]! IR2 : E; (a1=a2) 2 C([0; a]� [0; b]) \ C2((0; a) � (0; b))g

with k(E; (a1=a2))k �G
= max(x1;x2)2[0;a]�[0;b]jE(x1; x2)j+max(x1;x2)2[0;a]�[0;b]j(a1=a2)(x1; x2)j,

E(� ) = fg : f0g � [0; b]! IR : g 2 C(f0g � [0; b]) \ C2(f0g � (0; b))g

with kgkG = maxx22[0;b]jg(0; x2)j, and

E(G) = fU : (0; a) � [0; b]! IR : U 2 C([0; a]� [0; b]) \ C2((0; a) � (0; b))g

5



with kUkG = max(x1;x2)2[0;a]�[0;b]jU(x1; x2)j.

In a similar manner we can introduce discrete analogues of the above case of \continuous in-

�nity norms" in the corresponding grid spaces (5). It is clear that such discrete analogues satisfy

compatibility conditions (6).

3 Evaluation of Di�erent Finite-Di�erence Schemes

We shall pass now to the derivation of a number of �nite di�erence schemes for the linear shape-from-

shading problem de�ned by (3)(a,b,d). We assume here that �x2 = (b=M), �x1 = (a=M) (where

M 2 [0; 1; : : : ;1]; soM = N), ((a1�x2)=(a2N (�x2))) = const, and that a function u is a C2 solution

to (2). For the sake of convenience we assume that problem (3) is well-posed (for su�cient conditions

assuring well-posedness of (3) see [6]).

3.1 Forward-Forward Finite Di�erence Approximation

Applying forward di�erence approximations together with Taylor's formula yields

@u

@x1

�������
n

j

=
un
j+1

� un
j

�x1
+O(�x1) and

@u

@x2

�������
n

j

=
un+1

j
� un

j

�x2
+O(�x2); (8)

for any j; n 2 f1; : : : ;M � 1g; here un
j
, @u

@x1

����n
j

, and @u

@x2

����n
j

denote the values of u, @u

@x1
, and @u

@x2
,

respectively, at the point (x1j ; x2n) in the grid; �x1 and �x2 denote the distances between grid

points in the respective directions; M denotes the density of the grid. By substituting (8) into (2) at

each point (x1j; x2n), we get

a1
un
j+1

� un
j

�x1
+ a2

un+1

j
� un

j

�x2
+O(�x1;�x2) = En

j : (9)

Denoting by v an approximate of u, we obtain from (9) the following �nite di�erence equation

a1
vn
j+1

� vn
j

�x1
+ a2

vn+1

j
� vn

j

�x2
= En

j :

This leads to the sequential two-level explicit scheme

vn+1

j
=

�
1 +

a1�x2

a2�x1

�
vnj �

a1�x2

a2�x1
vnj+1

+
�x2

a2
En

j (10)

with j; n 2 f1; : : : ;M�1g. The above formula is an example of the so-called explicit iterative canonical

form, (see [6]) for which a single value of v at level n+ 1, depends explicitly on the values of v from

the preceding levels. We are ready now to establish the following result (for a full proof see [6]):
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Fig. 1. (a) The graph of the function uv(x; y) = (1=(4(1 + (1� x
2
� y

2)2))) being a volcano-like surface. (b) The graph

of the function um(x; y) = (1=(2(1 + x
2 + y

2)2)) being a mountain-like surface.

Theorem 2 Consider the problem (3) over a rectangle 
. Let

� = (a1�x2)(a2�x1)
�1 be a �xed constant. Then, numerical scheme (10) is R-F stable, if and only if

�1 � � � 0. Consequently (by Th. 1), for �1 � � � 0, the sequence of functions fu�x2g (where each

u�x2 is a solution of (10) with �x2 temporarily �xed) is convergent to the solution of the Cauchy

problem (3), while �x2 ! 0.

As mentioned before, given an initial boundary value problem (3), the scheme (10) recovers the

unknown shape over a domain of inuence which, for a1 6= 0 and M = N , coincides with

DI = f(x1; x2) 2 IR2 : 0 � x1 � a; and 0 � x2 � (�b=a)x1 + bg; (11)

and for a1 = 0 with the entire �
.

The algorithm (10) has been tested on a number of commonly encountered shapes. For example,

with�x1=�x2 = 1:0, a1 = �0:5, and a2 = 1:0, and thus � = �0:5, the volcano-like surface represented

by the graph of the function uv(x; y) = (1=(4(1+(1�x2�y2)2))) (see Figure 1a) and for the mountain-

like surface represented by the graph of the function um(x; y) = (1=(2(1 + x2+ y2)2)) (see Figure 1b)

were taken as test surfaces. The absolute errors between heights of the ideal and computed surfaces

are presented in Figure 2. It should also be noted that for � =2 [�1; 0] an implementation of numerical

scheme (10), for both volcano-like and mountain-like surfaces, resulted in instability of (10) (see [6]).
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Fig. 2. (a) The absolute error between volcano-like and computed surface for the forward-forward scheme. (b) The

absolute error between mountain-like and computed surface for the forward-forward scheme.

3.2 Backward-Forward Finite Di�erence Approximation

Applying now a backward di�erence approximation to ux1

@u

@x1

�������
n

j

=
un
j
� un

j�1

�x1
+O(�x1);

and a forward di�erence approximation to ux2 leads to the corresponding two-level explicit �nite

di�erence scheme

vn+1

j
=

�
1�

a1�x2

a2�x1

�
vnj +

a1�x2

a2�x1
vnj�1 +

�x2

a2
En

j ; (12)

with j; n 2 f1; : : : ;M � 1g. We shall now establish the corresponding stability and convergence result

for the latter �nite di�erence scheme (for a full proof see [6]).

Theorem 3 Consider the problem (3) over a rectangle 
. Let

� = (a1�x2)(a2�x1)
�1 be a �xed constant. Then, numerical scheme (12) is R-F stable, if and only

if 0 � � � 1. Consequently (by Th. 1), for 0 � � � 1, the sequence of functions fu�x2g (where each

u�x2 is a solution of (12) with �x2 temporarily �xed) is convergent to the solution of the Cauchy

problem (3), while �x2 ! 0.

As easily veri�ed the domain of inuence of scheme (12) coincides with �
, for arbitrary �. Thus

given the criterion of deriving a global shape reconstruction algorithm, it is clear that (12) provides

a better reconstruction means as opposed to (10). Of course the last observation is based on the

assumption that the Cauchy problem (3)(a,b,d) is here considered.
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Fig. 3. (a) The absolute error between volcano-like and computed surface for the backward-forward scheme. (b) The

absolute error between mountain-like and computed surface for the backward-forward scheme.

The algorithm (12) has been tested for the same shapes as in the previous case. With �x1=�x2 =

1:0, a1 = 0:5, and a2 = 1:0, and thus � = 0:5, the absolute errors between heights of the ideal and

computed surfaces are presented in Figure 3.

3.3 Forward-Backward Finite Di�erence Approximation

Applying now a forward di�erence approximation to ux1 and a backward di�erence approximation to

ux2 leads to the following two-level explicit horizontal scheme

vnj+1
=

�
1�

a2�x1

a1�x2

�
vnj +

a2�x1

a1�x2
vn�1
j

+
�x1

a1
En

j ; (13)

(for a1 6= 0), or otherwise to the following vertical two-level explicit scheme

vnj = vn�1
j

+
�x2

a2
En

j ; (14)

with j; n 2 f1; : : : ;M � 1g. Observe that for the scheme (13) the role of increment step �t is played

by �x1 (if we do not want to deal with implicit schemes). Clearly, the shape reconstruction proceeds

here sequentially along X1-axis direction (opposite to the so far presented cases). In a natural way,

the boundary condition is represented by the function f(x1) and the corresponding initial condition

by the function g(x2). We shall present now the next convergence result for the schemes (13) and

(14) (for a full proof see [6]).

Theorem 4 Consider the problem (3) over a rectangle 
. Let

e� = (a2�x1)(a1�x2)
�1 be a �xed constant. Then, numerical scheme (13) is R-F stable, if and only

if 0 � e� � 1. Consequently (by Th. 1), for 0 � e� � 1, the sequence of functions fu�x1g (where each
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Fig. 4. (a) The absolute error between volcano-like and computed surface for the forward-backward scheme. (b) The

absolute error between mountain-like and computed surface for the forward-backward scheme.

u�x1 is a solution of (13) with �x1 temporarily �xed) is convergent to the solution of the Cauchy

problem (3), while �x1 ! 0. Moreover, numerical scheme (14) is R-F stable and its sequence of

computed solutions fu�x2g converges to the solution of the corresponding Cauchy problem (3), while

�x2 ! 0.

A simple inspection shows, that for both schemes the domains of inuence coincide with �
. For

the sake of brevity we discuss here only the performance of the scheme (14). It has been tested for

the same sample surfaces as in the previous cases. With �x1=�x2 = 1:0, a1 = 1:0, and a2 = 0:5, and

thus e� = 0:5, the absolute errors between heights of the ideal and computed surfaces are presented

in Figure 4.

3.4 Backward-Backward Finite Di�erence Approximation

Applying now backward di�erence approximation for both derivatives ux1 and ux2 we arrive at the

following two-level implicit scheme

vnj =
1

1 + �
vn�1
j

+
�

1 + �
vnj�1 +

�x2

a2(1 + �)
En

j (15)

(for � 6= �1), or otherwise at the following two-level explicit scheme

vnj�1 = un�1
j

+
�x2

a2
En

j ; (16)

with j; n 2 f1; : : : ;M�1g and � = (a1�x2=a2�x1). It is clear that (15) (due to its symmetry) cannot

be straightforward reduced to the canonical explicit iterative form by a mere change of the \evolution

direction" (as presented in the last subsection). This implicit scheme can still be however transformed
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Fig. 5. (a) The absolute error between volcano-like and computed surface for the backward-backward scheme. (b) The

absolute error between mountain-like and computed surface for the backward-backward scheme.

to such explicit form (see Subsection 3:4 in [6]). We present now a theorem establishing the stability

and convergence of the schemes (15) and (16) (for a full proof see [6]).

Theorem 5 Consider the problem (3) over a rectangle 
. Let

� = (a1�x2)(a2�x1)
�1 be a �xed constant. Then, numerical scheme (15) is R-F stable, if and only

if � � 0. Consequently (by Th. 1), for � � 0, the sequence of functions fu�x2g (where each u�x2 is

a solution of (15) with �x2 temporarily �xed) is convergent to the solution of the Cauchy problem

(3), while �x2 ! 0. Moreover, numerical scheme (16) is R-F stable and its sequence of computed

solutions fu�x2g converges to the solution of the corresponding Cauchy problem (3), while �x2 ! 0.

An easy inspection shows that the domain of inuence for the scheme (15) covers the entire �
,

whereas for (16) coincides with (11). We discuss briey the corresponding experimental results only

for the scheme (15). It has been tested for the same functions as previously. With �x1=�x2 = 1:0,

a1 = 0:5, and a2 = 1:0, and thus � = 0:5, the absolute errors between heights of the ideal and

computed surfaces are presented in Figure 5.

Conclusions

A number of algorithms based on the �nite di�erence method applied to linear shape from shading is

here presented and analysed. The evaluation of di�erent numerical schemes is achieved by comparing

stability, convergence, and domains of inuence of each scheme in question. The relative di�culty of

handling a linear case indicates that the case of non-linear reectance maps is far from being trivial.

It should be pointed out, however, that a �nite di�erence technique can also be applied for the non-

linear PDEs (see e.g. Rosinger [7]). We conclude this paper by remarking that the base characteristic
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direction (a1; a2) coincides with the x2�axis (x1�axis) direction only if a1 = 0 and a2 6= 0 (a2 = 0

and a1 6= 0). Thus the algorithms discussed in this paper are essentially di�erent from Horn's one

(see [1, Subsection 11.1.2]). Moreover, in comparison with the method of characteristic strips used by

Horn, all schemes presented in this paper are supplemented by a full convergence analysis.
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