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Chapter 1

Euclidean Shortest Paths in Simple Polygons

Fajie Li and Reinhard Klette

Computer Science Department, The University of Auckland
Auckland, New Zealand

Let p and q be two points in a simple polygon Π. This chapter provides two
rubberband algorithms for computing a shortest path between p and q that is
contained in Π. The two algorithms are based on previously known results on
triangular or trapezoidal decompositions of simple polygons, and have either κ(ε)·
O(n) or κ(ε) · O(n log n) time complexity, where κ(ε) = (L0 − L)/ε, for the
true length L of the shortest path and length L0 of a used initial polygonal
path. Rubberband algorithms follow a straightforward design strategy, and the
proposed algorithms are easy to implement (after having the decompositions at
hand).

1.1. Introduction

Algorithms for computing Euclidean shortest paths (ESPs) between two points p

and q of a simple polygon Π, where the path is restricted to be fully contained in
Π, have applications in two-dimensional (2D) pattern recognition, picture analysis,
robotics, and so forth. They have been intensively studied.6–8,14

There is Chazelle’s3 linear-time algorithm for triangulating a simple polygon,
or an easier to describe, but O(n log n) algorithm for partitioning a simple polygon
into trapezoids.13 (The super-linear time complexity is only due to an initial sorting
step for all vertices of the given simple polygon Π.) The design of algorithms for cal-
culating ESPs within a simple polygon may use one of both partitioning algorithms
as a preprocess. This chapter shows how rubberband algorithms2 may be used to
calculate approximate ESPs within simple polygons, using either decompositions
into triangles or into trapezoids.

For a start we prove a basic property of exact ESPs for such cases; see also:10

Proposition 1.1. Each vertex (6= p, q) of the shortest path is a vertex of Π.

To see this, let ρ = 〈p, p1, p2, . . . , pk, q〉 be the shortest path from p to q com-
pletely contained in simple polygon Π. Assume that at least one pi ∈ ρ is not a
vertex of Π. Also assume that each pi is not redundant, which means that pi−1pipi+1

1
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Fig. 1.1. Illustration that each vertex of a shortest path is a vertex of Π, where v1v2v3v4v5... is
a polygonal part of the border of the simple polygon Π. Left, middle, right illustrate Cases 1, 2,

3 as discussed in the text, respectively.

must be a triangle (i.e., three points pi−1, pi and pi+1 are not collinear), where i =
1, 2, . . ., k and p0 = p, pk+1 = q.

Case 1: Non of the two edges pi−1pi and pipi+1 is on a tangent of Π (see Fig-
ure 1.1, left); then there exists a sufficiently small neighborhood of pi, denoted by
U(pi), such that for each point p′ ∈ U(pi) ∩ 4pi−1pipi+1 ⊂ Π• (the topological
closure of a simple polygon Π), both edges pi−1pi and pipi+1 are completely con-
tained in Π. By elementary geometry, we have that de(pi−1, p

′) + de(p′, pi+1) <

de(pi−1, pi) + de(pi, pi+1), where de denotes Euclidean distance. Therefore we may
obtain a shorter path from p to q by replacing pi by p′. This is a contraction to the
assumption that pi is a vertex of the shortest path ρ.

Case 2: Both pi−1pi and pipi+1 are on tangents of Π (see Figure 1.1, middle);
then we can also derive a contradiction. In fact, let p′i−1 and p′i+1 be the closest
vertices of Π such that p′i−1pi and pip

′
i+1 are on tangents of Π. Analogous to the first

case, there exists a point p′ such that the polygonal path p′i−1p
′p′i+1 is completely

contained in Π• and the length of p′i−1p
′p′i+1 is shorter than p′i−1pip

′
i+1. This is a

contradiction as well.
Case 3: Either pi−1pi or pipi+1 is a tangent of Π (see Figure 1.1, right); then

we may arrive at the same result as in Case 2.
This chapter is organized as follows. At first we introduce into rubberband

algorithms. Then we recall briefly decompositions of simple polygons and specify (as
a preliminary result) two approximate rubberband algorithms; we provide examples
of using them. All the given algorithms are then analyzed with respect to correctness
and time complexity. We also provide suggestions how to further improve the given
two rubberband algorithms.

1.2. Basics of Rubberband Algorithms

We explain basic ideas of a rubberband algorithm by using the following, very simple
2D example. In general, rubberband algorithms are for (approximate) calculations
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Fig. 1.2. Two step sets with possible initializations of Algorithm 1, both for k = 3.

of ESPs for 2D or 3D applications.12

Let Π be a plane. Assume that there are k > 1 line segments si ⊂ Π (for i =
1, 2, . . ., k) such that si ∩ sj = ∅, for i 6= j and i, j = 1, 2, . . ., k; see Figure 1.2.
The following simple rubberband algorithm (see Figure 1.3) approximates a shortest
path from p to q that intersects all the given segments si (at least once) in the given
order.

The accuracy parameter in Step 1 can be chosen such that maximum possible
numerical accuracy (on the given computer) is guaranteed. The initial path in Step 2
may, for example, be defined by centers of line segments. Vertices of the calculated
path move by local optimization, until the total length of the path between two
iterations only differs by ε at most. The series of lengths L calculated for each

1. Let ε = 10−10 (the chosen accuracy).
2. Compute the length L1 of the initial path ρ = 〈p, p1, p2, . . . , pk, q〉.
3. Let q1 = p and i = 1.
4. While i < k − 1 do:
4.1. Let q3 = pi+1.
4.2. Compute a point q2 ∈ si such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ si}.
4.3. Update ρ by replacing pi by q2.
4.4. Let q1 = pi and i = i + 1.
5.1. Let q3 = q.
5.2. Compute q2 ∈ sk such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ sk}.
5.3. Update ρ by replacing pk by q2.
6. Compute the length L2 of the updated path ρ = 〈p, p1, p2, . . . , pk, q〉.
7. Let δ = L1 − L2.
8. If δ > ε, then let L1 = L2 and go to Step 3.

Otherwise, stop.

Fig. 1.3. Algorithm 1: a simple rubberband algorithm for a given set of line segments.
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Fig. 1.4. Illustration of steps with joint endpoints.

iteration forms a decreasing Cauchy sequence lower bounded by zero, and is thus
guaranteed to converge to a minimum length. The path defined by this convergence
is called the limit path of Algorithm 1. In relation to Proposition 1.1, we have the
following for Algorithm 1:

Proposition 1.2. Each vertex (6= p, q) of the limit path of Algorithm 1 is a vertex
of Π.

Proof. Let ρ = 〈p, p1, p2, . . . , pk, q〉 be the limit path from p to q of Algorithm
1. Let i = 1, 2, . . ., or k and p0 = p, pk+1 = q. Assume that each pi ∈ ρ is not
redundant. Then pi must be an endpoint of si. (Otherwise, pi = pi−1pi+1 ∩ si.
This contradicts the assumption that pi is not redundant.) It follows that pi must
be a vertex of Π. �

The set {s1, s2, . . . , sk} is a step set of a rubberband algorithm if its union
contains all the vertices of the calculated path, and each si is a step element of the
rubberband algorithm that contains at least one vertex of the calculated path, for
i = 1, 2, . . ., k.

In this chapter, step sets are sets of line segments, which may have joint end-
points, but cannot have further points in common. Furthermore, in this chapter,
each step element contains exactly one vertex of the shortest path. For example, if
the input for Algorithm 1 is as in Figure 1.4, with

s1 = q1q2, s2 = q2q3, q1 = (0, 0), q2 = (2, 4), q3 = (3, 0), p = (1, 0), q = (2, 0)

then we also have segments with joint endpoints. Assume a path initialization using
p1 and p2, the centers of s1 and s2, respectively [i.e., p1 = (1, 2), and p2 = (2.5, 2)].
We obtain that the length of the initialized polyline ρ = 〈p, p1, p2, q〉 is equal to
5.5616 (rounded to four digits). Algorithm 1 calculates an approximate shortest
path ρ = 〈p, p′1, p

′
2, q〉 where p′1 = (0.3646, 0.7291), p′2 = (2.8636, 0.5455) and the

length of it is equal to 4.4944 (see Table 1.1, which lists resulting δs for the number
I of iterations). That means, Algorithm 1 is also able to deal with this input for
the assumed initialization.

However, if we assume a different initialization, such that p1 = p2 = q2; in this
case, Algorithm 1 will fail because the output of Step 4.2 in Algorithm 1 will be
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Table 1.1. Number I of iterations and resulting δs for the initialization illustrated by
Figure 1.4 [i.e., with p1 = (1, 2) and p2 = (2.5, 2) as initial points on the path].

I δ I δ I δ I δ

1 -0.8900 3 -0.0019 5 -8.4435e-008 7 -3.5740e-012
2 -0.1752 4 -1.2935e-005 6 -5.4930e-010

false: the calculated path equals ρ = 〈p, p′1, p
′
2, q〉, where p′1 = q2 and p′2 = q2, and

its length equals 8.1231. (Referring to Lemma 16,11 we see that p1 6= p0 and p2 in
this example.)

We call a situation as in this initialization example a degenerate path within
an application of a rubberband algorithm, and it may occur within initialization,
or at a later iteration of the algorithm. In general, it is defined by the occurrence
of at least two identical vertices of an initial or updated polygonal path. Such a
degenerate case causes Step 4.2 in Algorithm 1 to fail.

A degenerate path can be dealt with approximately: we will not allow p2 = q2.
To do so, we remove sufficiently small segments from both segments s1 and s2. The
following shows how to handle such a degenerate case (for example) for the assumed
data in Figure 1.4.

We modify the initial values of x1 and x2, and of y1 and y2 as follows:

δ′ = 2.221× 10−16 (for a reason, see below)

x1 = 2− δ′ and y1 = 2× x1

x2 = 2 + δ′ and y2 = −4× (x2 − 3)

p1 = (x1, y1) and p2 = (x2, y2)

Furthermore, let the accuracy be equals ε = 1.0 × 10−100. The length of the
initialized polyline ρ = 〈p, p1, p2, q〉 is equal to 8.1231. Algorithm 1 will ap-
proximate a shortest path ρ = 〈p, p′1, p

′
2, q〉, where p′1 = (0.3646, 0.7291) and

p′2 = (2.8636, 0.5455), and its length equals 4.4944 (see Table 1.2 for resulting δs in
dependency of the number I of iterations).

Of course, if we leave the accuracy to be equals ε = 1.0 × 10−10 then the

Table 1.2. Number I of iterations and resulting δs, for the example shown in Figure 1.4, with

p1 = (2 − δ′, 2(2 − δ′)) and p2 = (2 + δ′,−4((2 + δ′) − 3)) as initialization points and δ′ =

2.221e-16.

I δ I δ I δ I δ

1 -5.4831e-007 7 -1.2313 13 -7.0319e-010 19 8.8818e-016

2 -6.2779e-006 8 -2.0286 14 -4.5732e-012 20 8.8818e-016

3 -7.7817e-005 9 -0.2104 15 -3.0198e-014 21 -8.8818e-016
4 -9.6471e-004 10 -0.0024 16 -8.8818e-016 22 8.8818e-016

5 -0.0119 11 -1.6550e-005 17 8.8818e-016 23 -8.8818e-016

6 -0.1430 12 -1.0809e-007 18 -8.8818e-016 24 0
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algorithm will stop sooner, after less iterations. – The algorithm was implemented
on a Pentium 4 PC using Matlab 7.04. If we changed the value of δ′ into δ′ =
2.22 × 10−16 then we obtained the same wrong result as that for identical points
p1 = p2 = q2. This is because the computer was not able to recognize a difference
between x1 and x1 ∓ 2.22 × 10−16. However, for practical applications, the value
δ′ = 2.221 × 10−16 should be small or accurate enough in general (for this or a
matching implementation environment).

With the example above we also illustrate that the approximate algorithm may
be already de facto an exact algorithm if ε was chosen small enough (i.e., obtained
results are accurate within the given numerical limits of the used implementation
environment).

1.3. Decompositions and Approximate ESPs

There are (at least) two ways of decomposing a simple polygon: into triangles3 or
trapezoids.13 In the first case, Theorem 4.33 says that it is possible to compute a
triangulation of a simple polygon in linear time (and the algorithm is “fairly com-
plicated”). In the second case, Theorem 113 says that a given (“simple”) algorithm
for the decomposition into trapezoids has time complexity O(n log n), where n is
the number of vertices of the original simple polygon Π.

Step sets can be defined by selecting edges of triangles or trapzoids of those
decompositions.

1.3.1. Triangulation

Let Π be a simple polygon. Let T1 = {41,42, . . . ,4m} be such that Π = ∪m
i=14i

and 4i ∩4j = ∅ or = eij , where eij is an edge of both triangles 4i and 4j , i 6= j

and i, j = 1, 2, . . ., m. We construct a corresponding simple graph G = [V,E] where
V = {v1, v2, . . . , vm} and each edge e ∈ E is defined as follows: If 4i ∩ 4j = eij

6= ∅, then let e = vivj (where eij is an edge of both triangles 4i and 4j); and if
4i ∩ 4j = ∅, then there is not an edge between vi and vj , i < j and i, j = 1, 2,
. . ., m. We say that G is a (corresponding) graph with respect to the triangulated
simple polygon Π, denoted by GΠ.

Lemma 1.1. For each triangulated simple polygon Π, its corresponding graph GΠ

is a tree.

Proof. By contradiction. Suppose that GΠ is not a tree. Then there is
a cycle u1u2 · · ·um′u1 in GΠ. Consequently, there are a sequence of triangles
{4′

1,4′
2, . . . ,4′

m′} ⊆ T1 such that 4′
i ∩ 4′

j 6= ∅, where i 6= j and i, j = 1, 2,
. . ., m′. It follows that there is a polygonal curve ρ = w1w2 · · ·wm′w1 ⊂ ∪m′

i=14′
i.

Since Π is a simple polygon, ρ can be contracted into a single point inside of Π.
Note that we can find ρ such that there is a vertex of 4′

1, denoted by w, that is
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Input: the (original) tree T and two points p′, q′ ∈ V (T ).
Output: a unique path ρ from p′ to q′ in T .

1. Let Si = {v : d(v) = 1 ∧ v ∈ V (T )} \ {p′, q′}.
2. If Si = ∅, stop (the current T is already a path from p′ to q′).
3. Otherwise, let Let the unique neighbor of v ∈ Si be nv.
4. For each v ∈ Si, do the following:
4.1. Let Vij = ∅.
4.2. While d(nv) = 1 do:
4.2.1. If v = p′ or q′, then skip this while loop.
4.2.2. Otherwise, let Vij

= Vij
∪ {v}.

4.2.3. v = nv

4.3. Update T by removing v from the set of neighbors of nv.
4.4. Update T by removing Vij

from V (T ).
5. Goto Step 1.

Fig. 1.5. Procedure 1: step set calculation for a given triangulation.

inside of the region enclosed by ρ. Therefore, w must be a redundant vertex. This
contradicts to the fact that w is a vertex of Π. �

Let T be a tree and p 6= q, p, q ∈ V (T ). The following procedure will compute a
unique path from p to q in T . Although there exists a linear algorithm for computing
the shortest path between two vertices in a positive integer weighted graph,19 our
procedure below is much simpler because here the graph is (just) a tree.

We apply Procedure 1 (see Figure 1.5) as follows: Let T = GΠ and p′, q′ be
the vertices of T corresponding to the triangle containing p, q, respectively. Let
a sequence of triangles {4′

1,4′
2, . . . ,4′

m′} correspond to the vertices of the path
calculated by Procedure 1. Let {e1, e2, . . . , em′−1} be a sequence of edges such that
ei = 4i ∩4i+1, where i = 1, 2, . . ., m′ − 1. Let {e′1, e′2, . . . , e′m′−1} be a sequence
of edges such that e′i is obtained by removing a sufficiently small segment (Assume
that the length of the removed segment is δ′.) from both endpoints of ei, where i =
1, 2, . . ., m′ − 1. Set {e′1, e′2, . . . , e′m′−1} is the approximate step set we are looking
for.

1.3.2. Trapezoidal Decomposition

Analogously to Section 1.3.1, let Π be a simple polygon, and let T2 = {t1, t2, . . . , tm}
be such that Π = ∪m

i=1ti and ti ∩ tj = ∅ or eij , where eij is a part (a subset) of
a joint edge of trapezoids ti and tj , i 6= j and i, j = 1, 2, . . ., m. We construct a
corresponding simple graph G = [V,E] where V = {v1, v2, . . . , vm}, and each edge e

∈ E is defined as follows: If ti∩ tj = eij 6= ∅, then let e = vivj (where eij is a subset
of a joint edge of trapezoids ti and tj); and if ti ∩ tj = ∅, then there is not an edge
between vi and vj , i < j and i, j = 1, 2, . . ., m. We say that G is a (corresponding)
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graph with respect to the trapezoidal decomposition of simple polygon Π, denoted
by GΠ. – Analogously to Lemma 1.1, we also have the following

Lemma 1.2. For each trapezoidal decomposition of a simple polygon Π, its corre-
sponding graph GΠ is a tree.

Following Section 1.3.1, we apply Procedure 1 as follows: Let T = GΠ and p′,
q′ be the vertices of T corresponding to the trapezoids containing p, q respectively.
Let a sequence of trapezoids {t′1, t′2, . . . , t′m′} correspond to the vertices of the path
obtained by Procedure 1. Let E′ = {e1, e2, . . . , em′−1} be a sequence of edges such
that ei = ti ∩ ti+1, where i = 1, 2, . . ., m′ − 1. For each i ∈ {1, 2, . . . ,m′ − 2},
if ei ∩ ei+1 6= ∅, then update ei and ei+1 in E′ by removing sufficiently small
segments from both sides of this intersection point. Then the updated set E′ is the
approximate step set.

1. Apply Chazelle’s algorithm to decompose Π into triangles.
2. Construct the corresponding graph with respect to the decomposed Π, denoted
by GΠ.
3. Apply Procedure 1 to compute the unique path from p′ to q′, denoted by ρ.
4. Let δ′ = ε. Compute the step set from ρ, denoted by S, where removed segments
have length δ′.
5. Let S, p and q as input, apply Algorithm 1 to compute the approximate ESP
from p to q.

Fig. 1.6. Algorithm 2: approximate ESP after triangulation.

Modify Step 1 in Algorithm 2 as follows:
Apply a trapezoidal decomposition algorithm13 to Π.

Fig. 1.7. Algorithm 3: approximate ESP after trapezoidal decomposition.

1.3.3. Two Approximate Algorithms

Figures 1.6 and 1.7 show the main algorithms having decomposition, step set con-
struction, and ESP approximation as their subprocedures. For Step 4, see the
description following Lemma 1.1. For Step 5 note that the approximation is not
due to Algorithm 1 but due to removing small segments of length δ′.

We illustrate Algorithms 2 and 3 by a few examples, using the simple polygon
in Figure 1.8, with coordinates of vertices provided in Table 1.3. After illustrating
triangulation and Algorithm 2, we also illustrate decomposition into trapezoids and
Algorithm 3.
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Fig. 1.8. A possible triangulation of a simple polygon.

Table 1.3. Vertices of the simple polygon in Figure 1.8, where p = (59,201) and q = (707,382).

vi v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

xi 42 178 11 306 269 506 589 503 595 736 623 176 358 106

yi 230 158 304 286 411 173 173 436 320 408 100 211 19 84

Fig. 1.9. Another possible triangulation of the simple polygon of Figure 1.8.

Fig. 1.10. The step set of the triangulation shown in Figure 1.8.

Fig. 1.11. The step set of the triangulation shown in Figure 1.9.

Fig. 1.12. Left (right): corresponding graph (tree) with respect to Figure 1.8 (Figure 1.9).



June 29, 2007 15:44 World Scientific Review Volume - 9.75in x 6.5in invitedArticle˙0629

10 Fajie Li and Reinhard Klette

Table 1.4. Vertices pi calculated by Algorithm 2 for the simple polygon in Figure 1.8. The length of
the path equals 1246.0330730004.

pi (xi, yi) pi (xi, yi)

p1 (177.9999999928, 157.9999999926) p6 (374.5899740372, 188.1320635957)

p2 (178.000000018, 157.9999999861) p7 (506.0000000117, 172.9999999927)
p3 (176.9605570407, 185.5452384224) p8 (589.0000000034, 172.9999999927)

p4 (175.9999999835, 211.0000000093) p9 (589.0000000772, 173.0000001234)

p5 (176.000000013, 211.0000000075)

Fig. 1.13. The approximate ESP with respect to the triangulated simple polygon of Figure 1.8.

Table 1.5. Vertices pi calculated by Algorithm 2 for the simple polygon in Figure 1.9. The length of

the path equals 1323.510103408.

pi (xi, yi) pi (xi, yi)

p1 (123.3191615501, 175.7014459270) p5 (420.0869708340, 167.6376763887)

p2 (178.000000018, 157.9999999861) p6 (510.0186257061, 170.4926523372)

p3 (176.9605570407,185.5452384224) p7 (589.0000000034, 172.9999999927)
p4 (175.9999999835, 211.0000000093) p8 (609.1637118080,208.7136929370)

Fig. 1.14. The approximate ESP with respect to the triangulated simple polygon of Figure 1.9.
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Fig. 1.15. A trapezoidal decomposition of the simple polygon of Figure 1.8.

Fig. 1.16. The step set of those trapezoids in Figure 1.15.

Fig. 1.17. Corresponding graph with respect to the trapezoidal decomposition in Figure 1.15.

Table 1.6. Vertices pi calculated by Algorithm 3 for the simple polygon in Figure 1.15. The length
of the path equals 1356.7016610946.

pi (xi, yi) pi (xi, yi)

p1 (170.9999999999, 149) p5 (504, 161)

p2 (171.0000000001, 149) p6 (584, 161)
p3 (171.9999999999, 202) p7 (669.1611374407582, 312)

p4 (172.0000000001, 202)

Fig. 1.18. The approximate ESP with respect to the trapezoidal decomposition in Figure 1.15.
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1.4. Proofs of Correctness

Obviously, correctness of Algorithm 1 implies that of Algorithms 2 and 3. In this
subsection we present two versions of proofs to show that Algorithm 1 is correct for
any sequence of pairwise disjoint segments. The first one is longer but leads to a
stronger result: we not only prove that the algorithm is correct but also show that
the ESP is unique. The second one is very short but without proving the uniqueness
of the ESP.

1.4.1. Definitions

We start with introducing a few definitions used in those proofs. Some of them are
from mathematical analysis or multivariable calculus or from elementary topology
textbook.

Definition 1.1. An iteration of Algorithm 1 is a complete pass through its loop.
At the end of iteration n ≥ 1 we obtain the n-th approximate ESP, denoted by
AESPn(S), for a given sequence of segments S = {s1, s2, . . . , sk}.

We assume that the sequence of the n-th approximate ESPs is converging to-
wards a polygonal path; let

AESP (S) = lim
n→∞

AESPn(S)

be this polygonal path.
Let pi(ti0) be the i-th vertex of the AESP (S), for i = 1, 2, . . . , k. Parameter

ti0 ∈ [0, 1] identifies the i-th vertex of AESP (S) that is on the segment si. Let p0

= p, pk+1 = q, and di = de(pi−1, pi) + de(pi, pi+1) for i = 1, 2, . . ., or k. Let

d(t1, t2, . . . , tk) =
k∑

i=1

di

Obviously, d(t1, t2, . . . , tk) is an k-ary function on the domain [0, 1]k.
Let pi ∈ si, for i = 1, 2, . . . , k. We call the k tuple (p1, p2, . . ., pk) a point tuple

of S. We call it an AESP critical point tuple of S if it is the set of the vertices of
the AESP of S.

Now let P =(p1, p2, . . ., pk) be an AESP critical point tuple of S. Using P

as an initial point set, defining AESP0(S), and n iterations of Algorithm 1, we get
another critical point tuple of S, say P ′ = (p′1, p

′
2, . . . , p

′
k), which defines (see above)

the n-th approximate polygonal path AESPn(S), or AESPn for short.

Definition 1.2. Let
∂d(t1, t2, . . . , tk)

∂ti
|ti=ti0 = 0

where i = 1, 2, . . ., or k. Then we say that (t10, t20, . . . , tk0) is a critical point of

d(t1, t2, . . . , tk)
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Let P =(p1, p2, . . ., pk) be a critical point tuple of S. Using P as an initial
point set, n iterations of the Algorithm 1, we calculate an n-rubberband transform
of P , denoted by P →rbn

Q, or P → Q for short, where Q is the resulting critical
point tuple of S, and n is a positive integer.

Let P =(p1, p2, . . ., pk) be a critical point tuple of S. For sufficiently small real
ε > 0, the set

{(p′1, p′2, . . . , p′k) : x′i ∈ (xi − ε, xi + ε) ∧ y′i ∈ (yi − ε, yi + ε)

∧ p′i = (x′i, y
′
i)

∧ pi = (xi, yi) ∧ i = 1, 2, . . . , k}

is the ε-neighborhood of P , denoted by Uε(P ).
The ε-neighborhood of P is an open set in the Euclidean k-dimensional topo-

logical space (Rk, T ); T is the topology, that means the family of all open sets in
Rk. We also use the following definition (see Definition 4.115):

Definition 1.3. Let Y ⊂ X, where (X, T) is a topological space. Let T ′ be the
family of sets defined as follows: A set W belongs to T ′ iff there is a set U ∈ T such
that W = Y ∩ U . The family T ′ is called the relativization of T to Y, denoted by
T |Y .

1.4.2. A Proof Without Using Convex Analysis

We express a point

pi(ti) = (xi + kxiti, yi + kyiti)

on si in general form, with ti ∈ [0, 1], where i = 1, 2, . . ., or k. In the following,
pi(ti) will also be denoted by pi for short, where i = 1, 2, . . ., or k.

The following is a multivariable version of Fermat’s Theorem in mathematical
analysis (see Theorem 8.8.15). We will use it for proving Lemma 1.3; this lemma is
then applied in the proofs of Lemmas 1.4 and Theorem 1.2.

Theorem 1.1. (Fermat’s Theorem) Let f = f(t1, t2, . . . , tk) be a real-valued function
defined on an open set U in Rk. Let C = (t10, t20, . . . , tk0) be a point of U. Suppose
that f is differentiable at C. If f has a local extremum at C, then

∂f

∂ti
= 0

where i = 1, 2, . . ., k.

Let pi(ti0) be i-th vertex of an AESP , where i = 1, 2, . . . , k. Then we have the
following:

Lemma 1.3. (t10, t20, . . . , tk0) is a critical point of d(t1, t2, . . . , tk).
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Proof. d(t1, t2, . . . , tk) is differentiable at each point

(t1, t2, . . . , tk) ∈ [0, 1]k

Because AESPn(S) is the n-th polygonal path of S, where n = 1, 2, . . ., and

AESP = lim
n→∞

AESPn(S)

it follows that d(t10 , t20 , . . . , tk0) is a local minimum of d(t1, t2, . . . , tk). By Theo-
rem 1.1,

∂d

∂ti
= 0

where i = 1, 2, . . ., k. By Definition 1.2, (t10, t20, . . . , tk0) is a critical point of
d(t1, t2, . . . , tk). �

By Lemmas 1.2 and 1.3, we have the following:

Lemma 1.4. Any sequence S of pairwise disjoint segments has only a finite number
of AESP critical point tuples.

This is our first important lemma in this subsection. In the rest of this subsec-
tion, based on Lemma 1.4, we show a much stronger result: S has actually only one
(!) AESP critical point tuple.

Let pi = (pi1 , pi2) be on si, for i = 1, 2, 3. The proof of the following lemma
specifies an explicit expression for the relation between parameter t and the optimum
point p2.

Lemma 1.5. Optimum point p2 ∈ s2, defined by

de(p2, p1) + de(p2, p3) = min{p′2 : de(p′2, p1) + de(p′2, p3) ∧ p′2 ∈ s2}

can be computed in O(1) time.

Proof. Let the two endpoints of s2 be a2 = (a21 , a22) and b2 = (b21 , b22). Let
p1 = (p11 , p12). Point p2 can be written as

(a21 + (b21 − a21)t, a22 + (b22 − a22)t)

The formula

de(p2, p1) =

√√√√ 2∑
i=1

[(a2i
− p1i

) + (b2i
− a2i

)t]2

can be simplified: We can rotate the coordinate system such that s2 is parallel to
one of the two coordinate axes. It follows that only one element of the set

{b2i
− a2i

: i = 1, 2}
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is equal to a real number α 6= 0, and the other is equal to 0. Without loss of
generality we can assume that

de(p2, p1) =
√

(αt + A1)2 + B1

where A1 and B1 are functions of a2i , b2i and p1i , for i = 1, 2. – Analogously,

de(p2, p3) =
√

(αt + A2)2 + B2

where A2 and B2 are functions of a2i
, b2i

and p3i
, for i = 1, 2. In order to find a

point p2 ∈ s2 such that

de(p2, p1) + de(p2, p3) = min{p′2 : de(p′2, p1) + de(p′2, p3), p2 ∈ s2}

we can solve the equation

∂(de(p2, p1) + de(p2, p3))
∂t

= 0

The unique solution is

t = −1/α× (A1B2 + A2B1)/(B2 + B1)

This proves the lemma. �

By the proof of Lemma 1.5, assuming the representation

pi = (ai1 + (bi1 − ai1)ti, ai2 + (bi2 − ai2)ti)

we have defined a function f , t2 = f(t1, t3), for which we have the following:

Lemma 1.6. The function t2 = f(t1, t3) is continuous at each tuple (t1, t3) ∈ [0, 1]2.

This is used to prove the following:

Lemma 1.7. If P →rb1 Q, then for every sufficiently small real ε > 0, there
is a sufficiently small real δ > 0 such that P ′ ∈ Uδ(P ) and P ′ →rb1 Q′ implies
Q′ ∈ Uε(Q).

Proof. By Lemma 1.5 and note that S has k segments; thus we use Lemma 1.6
repeatedly k times, and this proves this lemma. �

By Lemma 1.7, we have the following:

Lemma 1.8. If P →rbn Q, then, for every sufficiently small real ε > 0, there
is a sufficiently small real δε > 0 and a sufficiently large integer Nε , such that
P ′ ∈ Uδε(P ) and P ′ →rbn′ Q′ implies Q′ ∈ Uε(Q), where n′ is an integer and
n′ > Nε.
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This lemma is used to prove Lemma 1.12; the latter one and the following
three lemmas are then finally applied to prove the second important lemma (i.e.,
Lemma 1.13) in this section. Lemmas 1.13 and 1.3 imply then the main theorem
(i.e., Theorem 1.2 below) of this section.

By Lemma 1.4, let Q1, Q2, . . ., QN with N ≥ 1 be the set of all AESP critical
point tuples of S. Let ε be a sufficiently small positive real such that

Uε(Qi) ∩ Uε(Qj) = ∅

for i, j = 1, 2, . . ., N and i 6= j. Let

Di = {P : P → Q′ ∧Q′ ∈ Uε(Qi) ∧ P ∈ [0, 1]k}

for i = 1, 2, . . . , N .
The statements in the following two lemmas are obvious:

Lemma 1.9. If N > 1 then Di ∩Dj = ∅, for i, j = 1, 2, . . . , N and i 6= j.

Lemma 1.10.
⋃N

i=1 Di = [0, 1]k

We consider the Euclidean topology T on Rk, and its relativization T = Rk|[0,1]k .

Lemma 1.11. Di is an open set of T , where i = 1, 2, . . . , N with N ≥ 1.

Proof. By Lemma 1.8, for each P ∈ Di, there is a sufficiently small real δP > 0
such that

UδP
(P ) ⊆ Di

So we have ⋃
P∈Di

UδP
(P ) ⊆ Di

On the other hand, for P ∈ UδP
(P ), we have

Di = ∪P ⊆
⋃

P∈Di

UδP
(P )

Note that UδP
(P ) is an open set of T . Thus,

Di =
⋃

P∈Di

UδP
(P )

is an open set of T . �

The following basic lemma is characterizing open sets in general (see Proposition
5.1.420).

Lemma 1.12. Let U ⊂ R be an arbitrary open set. Then there are countably many
pairwise disjoint open intervals Un such that U = ∪Un.
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Now we are prepared to approach the second important lemma in this subsection:

Lemma 1.13. S has a unique AESP critical point tuple.

Proof. By contradiction. Suppose that Q1, Q2, . . ., QN with N > 1 are all the
AESP critical point tuples of S. Then there exists i ∈ {1, 2, . . . , N} such that

Di|sj ⊂ [0, 1]

where sj is a segment in S, for i, j = 1, 2, . . . , N . Otherwise we have

D1 = D2 = · · · = DN

This is a contradiction to Lemma 1.9.
Let

E = {sj : Di|sj
⊆ [0, 1]}

where sj is any segment in S. We can select a critical point tuple of S as follows:
go through each s ∈ {s1, s2, . . . , sk}. If s ∈ E, by Lemmas 1.11 and 1.12, select the
minimum left endpoint of the open intervals whose union is Di|s. Otherwise select
the midpoint of s. We denote the resulting critical point tuple as

P = (p1, p2, . . . , pk)

By the selection of P , we know that P is not in Di. By Lemma 1.10 there is a
j ∈ {1, 2, . . . , N} − {i} such that P ∈ Dj . Therefore, there is a sufficiently small
real δ > 0 such that Uδ(P ) ⊂ Dj . Again by the selection of P , there is a sufficiently
small real δ′ > 0 such that U ′

δ(P ) ∩ Di 6= ∅. Let δ′′ = min{δ, δ′}. Then we have
U ′′

δ (P ) ⊂ Dj and U ′′
δ (P ) ∩ Di 6= ∅. This implies that Di ∩ Dj 6= ∅, and this is a

contradiction to Lemma 1.9. �

Let S be a sequence of pairwise disjoint segments. Let AESPn(S) be the n-th
approximate polygonal path of S, for n = 1, 2, . . .. The subsection has shown that

AESP = lim
n→∞

AESPn(S)

exists, and we can conclude the following main result of this section:

Theorem 1.2. The AESP of S is the ESP of S, or, in short AESP = ESP .

Proof. By Lemma 1.13 and the proof of Lemma 1.3, d(t1, t2, . . . , tk) has a unique
local minimal value. This implies that the AESP of S is the ESP of S. �
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1.4.3. A Shorter Proof by Using Convex Analysis

This subsection gives a shorter proof of the correctness of Algorithm 1 by applying
some basic results from convex analysis (but without obtaining the uniqueness result
for the ESP). We cite a few basic results of convex analysis:1,16,17

Proposition 1.3. (page 27 1) Each line segment is a convex set.

Proposition 1.4. (page 72 1) Each norm on Rn is a convex function.

Proposition 1.5. (page 79 1) A nonnegative weighted sum of convex functions is
a convex function.

Theorem 1.3. (Theorem 3.5 17) Let S1 and S2 be convex sets in Rm and Rn,
respectively. Then

{(x, y) : x ∈ S1 ∧ y ∈ S2}

is a convex set in Rm+n, where m, n ∈ N.

Proposition 1.6. (page 264 17) Let f be a convex function. If x is a point where
f has a finite local minimum, then x is a point where f has its global minimum.

By Proposition 1.3, the interval [0, 1] is a convex set. By Theorem 1.3, [0, 1]k is
a convex set. For any p, q ∈ Rn, de(p, q) is a norm (see, for example, page 789). By
Proposition 1.4 and 1.5, d(t1, t2, . . . , tk) (see Section 1.4.2) is a convex function on
[0, 1]k. Since d(t1, t2, . . . , tk) is continuous on [0, 1]k, so its minimum is attained. It is
clear that, for any sequence of pairwise disjoint segments S, Algorithm 1 will always
produce an exact local minimum of the function d(t1, t2, . . . , tk). By Proposition 1.6,
each local minimum of d(t1, t2, . . . , tk) is its global minimum. Therefore, we have
proved Theorem 1.2 once again.

To recall, we proved that Algorithm 1 is correct for the family of sequences of
pairwise disjoint segments, and that there is unique ESP for a given sequence of
pairwise disjoint segments.

Although the proof in Subsection 1.4.2 is much more complicated than the one in
Subsection 1.4.3, we proved a stronger result there, namely, that for each sequence
of pairwise disjoint segments, Algorithm 1 will converge to a unique ESP.

See also Lemma 1,4 Lemma 3.3,18 and Lemma 1,21 for proofs of the uniqueness
of an ESP. Our proof is actually also completely suitable for the “curve case”, where
p = q.

1.5. Computational Complexity

This section analyzes the time complexities of Algorithms 1, 2 and 3.

Theorem 1.4. Algorithm 1 has a time complexity in κ(ε) ·O(k) time, where κ(ε) =
(L − L0)/ε , L is the true length of the ESP of S, L0 that of an initial polygonal
path, and k is the number of segments of the set S.
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Proof. Let Ln be the true length of the polygonal path after n iterations. We
slightly modify Algorithm 1 as follows:a

For each iteration, we update the vertices with odd indices first and then update
those with even indices later (i.e., for each iteration, we update the following vertices
p1, p3, p5, . . ., then the following vertices p2, p4, p6, . . ..

Thus, {Ln}n→∞ is a strict decreasing sequence with lower bound 0, since L0−L

can be written as ak + b (i.e., it is a linear function of k), where a, b are constants
such that a 6= 0. Because Algorithm 1 will not stop if Ln − Ln+1 > ε (see Step
8, Algorithm 1), it follows that Ln − Ln+1 will also depend on k. Again, since
Ln − Ln+1 can be written as ck + d, where c and d are constants such that c 6= 0.
Then we have that

lim
k→∞

ak + b

ck + d
=

a

c

Therefore, Algorithm 1 will stop after at most da/(cε)e iterations. (Note that,
if we would not modify Algorithm 1, then it stops after at most

d(L0 − L)/εe

iterations.)
We apply Lemma 1.5; it follows that the time complexity of Algorithm 1 is in

d(L0 − L)/(ε)e · O(k) = κ(ε) · O(k), where κ(ε) = (L − L0)/ε , L be the true
length of the ESP of S, L0 that of an initial polygonal path, and k is the number
of segments of the set S. �

Lemma 1.14. Procedure 1 can be computed in O(n) time, where n = |V (T )|.

Proof. Step 1 can be computed in O(|V (T )|) time, where T is the original input
tree. Steps 2 and 3 can be computed in O(1) time. Steps 4.2.1–4.2.3 can be
computed in O(1) time. So each while loop can be computed in O(|Vij

|) time.
Steps 4.1 and 4.3 can be computed in O(1) time. Step 4.4 can be computed in
O(|Vij

|) time. So each for loop can be computed in O(
∑|Si|

j=1 |Vij
|) ≤ |V (T )| time,

where T is the original input tree. Therefore each iteration (Steps 1–5) can be
computed in O(|V (T )|) time, where T is the original input tree. Since Step 5 can
occur at most once, Procedure 1 can be computed in O(|V (T )|) time, where T is
the original input tree. �

Theorem 1.5. Algorithms 2 and 3 can be computed in κ(ε)·O(k) or κ(ε)·O(k log k)
time, respectively, where κ(ε) = (L−L0)/ε , L be the true length of the ESP from p

to q, L0 that of an initial polygonal path from p to q, and k is the number of vertices
of Π.

Proof. Steps 2, 4 can be computed in O(k) time. Theorem 4.33 (Theorem 113),
Lemma 1.14 and Theorem 1.4 prove the conclusion for Algorithm 2 (3). �
aThis is just for the purpose of time complexity analysis. By experience, Algorithm 1 runs faster
without such a modification.
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1.6. Improving the Algorithms

We mention some possible ways to improve Algorithms 1, 2 and 3 without changing
their time complexity.

For Algorithm 1, to initialize, let pi be the center of si; let ai and bi be the
endpoints of si, li the line such that si ⊂ li, for i = 1, 2, . . ., k. We modify Steps
4.2 and 5.2 as follows:

4.2.1. Let q′2 = li ∩ q1q3.
4.2.2. If q′2 ∈ si then let q2 = q′2. Otherwise, let q2 ∈ si such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ {ai, bi} ∩ V (Π)}.

and

5.2.1. Let q′2 = lk ∩ q1q3.
5.2.2. If q′2 ∈ sk then let q2 = q′2. Otherwise, let q2 ∈ sk such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ {ak, bk} ∩ V (Π)}.

For Algorithms 2 and 3, we may revert the removal of some segments to obtain
exact vertices of Π. Furthermore, for Algorithm 3, we may prove that each possible
intersection point of ei and ei+1 (see the discussions after Lemma 1.2) is a vertex
of the ESP and thus we do not have to remove any small segment in this case.

1.7. Conclusions

This chapter provided two approximate algorithms for calculating ESPs in sim-
ple polygons. Depending on the used preprocessing step (triangular or trapezoidal
decomposition), they are either κ(ε)-linear or in κ(ε) · O(n log n) time. But note
that the trapezoidal decomposition algorithm13 is substantially simpler to imple-
ment than the triangulation algorithm.3 The chapter illustrates that rubberband
algorithms are of simple design, easy to implement, and can be used to solve ESP
problems either approximate or in a de facto exact way if the used accuracy thresh-
old was chosen small enough.
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