
Touring Polygons, Parts Cutting, and q-Rectangles
Fajie Li and Reinhard Klette

Computer Science Department, The University of Auckland, Tamaki Campus
Auckland, New Zealand.

Abstract
Given a sequence of k simple polygons in a plane, a start point p, and a target point q. We approximately
compute a shortest path that starts at p, then visits each of the polygons in the specified order, and finally
ends at q. So far no solution was known if the polygons are pairwise disjoint and non-convex. By applying
a rubberband algorithm, we give an approximative algorithm with time complexity in κ(ε) · O(n), where
n is the total number of vertices of the given polygons, and function κ(ε) is as

κ(ε) = (L0 − L)/ε (1)

where L0 is the length of the initial path, and L is the true (i.e., optimum) path length.
The given rubberband algorithm can also be applied to solve approximately three NP-complete or
NP-hard 3D Euclidean shortest path (ESP) problems in time κ(ε) ·O(k), where k is the number of layers
in a stack which contains the defined obstacles.

Keywords : rubberband algorithm, shortest paths, touring polygons, parts cutting, q-rectangles.

1 Introduction

This paper reports about applications of a rubber-
band algorithm, which was originally proposed in
[1], and then studied in detail in [12]. Before speci-
fying the rubberband algorithm here in this paper,
at first we describe two closely related problems,
the touring polygons problem (TPP) and the parts
cutting problem, whose approximate solutions will
be given in this paper. Section 2 then presents the
basic principle and a few issues of the rubberband
algorithm, and Section 3 illustrates its applications
to TPP and q-rectangles. Section 4 concludes the
paper.

1.1 Touring Polygons Problem

We recall some notations from [4], which intro-
duced the touring polygons problem. Let π be a
plane, which is identified with R2. Consider poly-
gons Pi ⊂ π, where i = 1, 2, . . . , k, and two points
p, q ∈ π. Let p0 = p and pk+1 = q. Let pi ∈ R2,
where i = 1, 2, . . . , k. Let ρ(p, p1, p2, , . . . , pk, q)
denote the path pp1p2 . . . pkq ⊂ R2. Let ρ(p, q)
= ρ(p, p1, p2, , . . . , pk, q) if this does not cause any
confusion. If pi ∈ Pi such that pi is the first (i.e.,
along the path) point in ∂Pi ∩ ρ(p, pi), then we
say that path ρ(p, q) visits Pi at pi, where i =
1, 2, . . . , k.

The unconstrained TPP is defined as follows:

How to find a shortest path ρ(p, p1, p2, , . . . , pk, q)
such that it visits each of the polygons Pi in the
given order i = 1, 2, . . . , k?

Assume that for any i, j ∈ {1, 2, . . . , k}, ∂Pi ∩
∂Pj = ∅, and each Pi is convex; this special case is
dealt with in [4]. The given algorithm runs inO(kn
log(n/k)) time, where n is the total number of all
vertices of all polygons Pi ⊂ π, for i = 1, 2, . . . , k.

According to [4], “one of the most intriguing open
problems” identified by their results “is to deter-
mine the complexity of the TPP for (pairwise) dis-
joint nonconvex simple polygons”.

Algorithm 2 in Section 3.1 answers this problem
by providing an approximate algorithm running in
time κ(ε) · O(n), where n is the total number of
vertices of all polygons.

1.2 The Parts Cutting Problem

In a variety of industries, such as clothing, window
manufacturing, or mechanic, it is necessary to cut
a set of parts (modeled by polygons) from large
sheets of paper, cloth, glass, metal, and so forth.
Motivated by such applications, [9] introduced the
following three restrictions for cutting scenarios:

1. The continuous cutting problem: here the path
of the cutting tool visits each object (i.e., polygon)
to be cut just once. The tool can start an object
cut at any point on its frontier, but must cut the

entire object before it travels to the next object.
(Accordingly, the same frontier point must be used
for entry and departure from the object.)

2. The endpoint cutting problem: here the tool can
enter and exit the object only at some predefined
frontier points; however, it may cut the object in
sections (i.e., it may visit an object repeatedly).

3. The intermittent cutting problem: this is the
most general version of the problem in which the
object can be cut in sections and there is no re-
striction on the points that can be used for entry
or exit.

[9] focused on the continuous cutting problem
where each object is a polygon. They also called
this problem the plate-cutting traveling salesman
problem (P-TSP).

It is a generalization of the well-known traveling
salesman problem (TSP) [11]. The P-TSP further
generalizes the generalized TSP (GTSP) [10, 14].
If each polygon degenerates into a single vertex,
then P-TSP becomes the TSP which is known to
be NP-hard [5]. It follows that P-TSP is NP-hard
as well.

Figure 1: Illustration for the simplified P-TSP in
[9] where polygons are assumed to be given in a
particular order.

The difficulty of the P-TSP caused [9] to consider
the problem with an additional condition, assum-
ing now that all polygons are given in a particular
order (see Figure 1). [9] then solved this simplified
P-TSP by a heuristic approach based on a La-
grange relaxation method [6, 8], without providing
a complexity analysis for this proposed approach.
As a follow-up of the work in [9], [3] then proved
that a further simplified P-TSP (i.e., only convex
polygons, and a particular order of those polygons)
is solvable in polynomial time (see Figure 2). If,
additionally, the start point is also given (see Fig-
ure 3), then [4] claim that they can solve the same
problem in time O(kn log(n/k)), where n is the
total number of vertices of all polygons, ∂Pi ⊂ π,
and i = 1, 2, . . . , k.

Figure 2: Illustration for the further simplified P-
TSP in [3] also assuming convex polygons.

Figure 3: Illustration for the P-TSP as considered
in [4], now also with a given start point s.

2 Rubberband Algorithm

We explain the basic idea of a rubberband algo-
rithm using the following very simple 2D example:

Assume a degenerate case of an unconstrained
TPP where each polygon Pi contracts into a
single line segment si, where i = 1, 2, . . ., k; see
Figure 4. The following algorithm is a simplified
version (”arc version”) of a rubberband algorithm.
It illustrates the basic principle of the original
rubberband algorithm.

Figure 4: Degenerate case of the TPP, for k = 3.

Algorithm 1

1. Let ε = 10−10 (the chosen accuracy).

2. Compute the length l1 of the initial path ρ =
〈p, p1, p2, . . . , pk, q〉.

3. Let q1 = p and i = 1.

4. While i < k − 1 do:

4.1 Let q3 = pi+1.

4.2 Compute a point q2 ∈ si such that de(q1, q2)+
de(q3, q2) = min{de(q1, q)+de(q3, q) : q ∈ si}.

4.3 Update ρ by replacing pi by q2.

4.4 Let q1 = pi and i = i + 1.

5.1 Let q3 = q.

5.2 Compute q2 ∈ sk such that de(q1, q2)+
de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ sk}.

5.3 Update ρ by replacing pk by q2.

6. Compute the length l2 of the updated path ρ =
〈p, p1, p2, . . . , pk, q〉.

7. Let δ = l1 − l2.

8. If δ > ε, then let l1 = l2 and go to Step 3.
Otherwise, Stop.

The accuracy parameter in Step 1 can be chosen
such that maximum possible numerical accuracy is
guaranteed on the given computer.

In the rest of this paper, we call

{s1, s2, . . . , sk}

the step set of the rubberband algorithm, and each
si is a step element of the rubberband algorithm,
where i = 1, 2, . . ., k.

A step set may be such that two of the steps do
have identical endpoints. For example, let the in-
put for Algorithm 1 be as follows (see also Fig-
ure 5):

s1 = q1q2, s2 = q2q3, q1 = (0, 0), q2 = (2, 4),
q3 = (3, 0), p = (1, 0), and q = (2, 0).

Figure 5: Illustration for identical endpoints of
steps.

I δ
1 -0.8900
2 -0.1752
3 -0.0019
4 −1.2935e− 005
5 −8.4435e− 008
6 −5.4930e− 010
7 −3.5740e− 012

Table 1: Number I of iterations and resulting δs
for the initialization illustrated by Figure 5 [i.e.,
with p1 = (1, 2) and p2 = (2.5, 2) as initialization
points].

To initialize, let p1 and p2 be the centers of s1 and
s2, respectively [i.e., p1 = (1, 2), and p2 = (2.5, 2)].
We obtain that the length of the initialized polyline
ρ = 〈p, p1, p2, q〉 is equal to 5.5616. Algorithm
1 finds the shortest path ρ = 〈p, p′1, p

′
2, q〉 where

p′1 = (0.3646, 0.7291), p′2 = (2.8636, 0.5455) and
the length of it is equal to 4.4944 (see Table 1,
which lists resulting δs for the number I of itera-
tions).

Now we assume a different initialization, such that
p1 = p2 = q2; in this case, the output of Step
4.2 in Algorithm 1 will be wrong: the calculated
path equals ρ = 〈p, p′1, p

′
2, q〉, where p′1 = q2 and

p′2 = q2, and its length equals 8.1231. (Referring
to Lemma 16 of [12], we see that p1 6= p0 and p2

in this example.)

We call a situation as in this initialization exam-
ple a degenerate path within an application of a
rubberband algorithm, and it may occur within
initialization, or at a later iteration of the algo-
rithm. In general, it is defined by the occurrence
of at least two identical vertices of an initial or
updated polygonal path. Such a degenerate case
causes Step 4.2 in Algorithm 1 to fail.

A degenerate path can be dealt with approxi-
mately: we will not allow p2 = q2. To do so,
we remove sufficiently small segments from both
segments s1 and s2. The following shows how to
handle such a degenerate case (for example) for
the assumed input data.

We modify the initial values of x1 and x2, and of
y1 and y2 as follows:

δ′ = 2.221× 10−16 (see reason below)
x1 = 2− δ′ and y1 = 2× x1

x2 = 2 + δ′ and y2 = −4× (x2 − 3)
p1 = (x1, y1) and p2 = (x2, y2)

Furthermore, let the accuracy be

I δ I δ I δ I δ
1 -5.4831e-007 7 -1.2313 13 -7.0319e-010 19 8.8818e-016
2 -6.2779e-006 8 -2.0286 14 -4.5732e-012 20 8.8818e-016
3 -7.7817e-005 9 -0.2104 15 -3.0198e-014 21 -8.8818e-016
4 -9.6471e-004 10 -0.0024 16 -8.8818e-016 22 8.8818e-016
5 -0.0119 11 -1.6550e-005 17 8.8818e-016 23 -8.8818e-016
6 -0.1430 12 -1.0809e-007 18 -8.8818e-016 24 0

Table 2: Number I of iterations and resulting δs, for the step set shown in Figure 5, with p1 =
(2− δ′, 2(2− δ′)) and p2 = (2 + δ′,−4((2 + δ′)− 3)) as initialization points and δ′ = 2.221e-16.

ε = 1.0× 10−100

The length of the initialized polyline ρ =
〈p, p1, p2, q〉 is equal to 8.1231. Algorithm 1 will
calculate the shortest path ρ = 〈p, p′1, p

′
2, q〉, where

p′1 = (0.3646, 0.7291) and p′2 = (2.8636, 0.5455),
and its length equals 4.4944 (see Table 2 for
resulting δs in dependence of the number I of
iterations).

Of course, if we leave the accuracy to be equals

ε = 1.0× 10−10

then the algorithm will stop sooner, after less it-
erations. The algorithm was implemented on a
Pentium 4 PC using Matlab 7.04. If we change
the value of δ′ into

δ′ = 2.22× 10−16

then we obtain the same wrong result as that for
identical points p1 = p2 = q2. This is because
the computer is not able to recognize a difference
between x1 and x1 ∓ 2.22 × 10−16. However, for
practical applications, the value

δ′ = 2.221× 10−16

should be small or accurate enough in general (in
this particular implementation environment).

3 Applications

We approximately solve two computational prob-
lems using particular versions of a rubberband al-
gorithm.

3.1 Touring of Polygons

The main algorithm (Algorithm 2) in this sub-
section answers the open problem mentioned in
Section 1.1 by an approximate solution.

It is obtained as a modification of Algorithm 1.
(The difference between Algorithm 1 and Algo-
rithm 2 is defined by Steps 4.2 and 5.2.)

Algorithm 2

1. Let ε = 10−10 (the accuracy).

2. Compute the length l1 of the path ρ =
〈p, p1, p2, . . . , pk, q〉.

3. Let q1 = p and i = 1.

4. While i < k − 1 do:

4.1. Let q3 = pi+1.

4.2. Compute a point q2 ∈ ∂Pi (see the proof of
Lemma 53 in [12]) such that de(q1, q2)+

de(q3, q2) = min{de(q1, q
′)+de(q3, q

′) : q′ ∈ ∂Pi}
where ∂Pi is the frontier of polygon Pi.

4.3. Update ρ by replacing pi by q2.

4.4. Let q1 = pi and i = i + 1.

5.1. Let q3 = q.

5.2. Compute q2 ∈ ∂Pk such that de(q1, q2)+
de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ ∂Pk}.

5.3. Update ρ by replacing pk by q2.

6. Compute the length l2 of the updated path ρ
= 〈p, p1, p2, . . . , pk, q〉.

7. Let δ = l1 − l2.

8. If δ > ε, then let l1 = l2 and go to Step 3.
Otherwise, Stop.

See Figure 7 for an input example, and Figure 8 for
a few measured time complexities, illustrating the
κ(ε) · O(n) time complexity of the algorithm (see

Figure 6: Illustration for the initialization for Steps
4.2 and 5.2 in Algorithm 2.

Figure 7: Input example for Algorithm 2.

[12] for a proof of correctness and time complexity).
Algorithms for solving the safari, zookeeper, con-
strained TPP, and watchman route problem can
be obtained as modifications of Algorithm 2.

Figure 8: Measured run times for Algorithm 2.

The following procedure handles situations where
the case of a degenerate path needs to be covered.
Such a case may occur, and needs to be dealt with
when we apply Algorithm 3 (which is a modified
version of Algorithm 2) to the unconstrained TPP
where polygons are not necessarily pairwise dis-
joint.

Procedure 1

Input: A point p and two polygons P1 and P2 such
that p ∈ ∂P1 ∩ ∂P2 (see Figure 9).

Output: A point q ∈ ∂P1 such that de(q, p) ≤ ε
and q /∈ ∂P2.

1. Let ε = 10−10 (the accuracy).

Figure 9: Illustration for Procedure 1.

2. Find a point ej ∈ E(Pj), where j = 1, 2, such
that p ∈ e1 ∩ e2.

3. Let e1 = q1q2. Let q3 and q4 be two points in two
segments q1p and q2p, respectively (see Figure 9)
such that de(qj , p) ≤ ε and qj /∈ ∂P2, for j = 3, 4.

4. Let q = min{q3, q4} (with respect to lexico-
graphic order).

5. Output q.

If there exist i, j ∈ {1, 2, . . . , k} such that i 6= j
and ∂Pi ∩ ∂Pi+1 6= ∅, then we modify Algorithm
2 as follows: Let p0 = p, pk+1 = q, P0 = p, and
Pk+1 = q. (The difference between Algorithm 3
and Algorithm 2 is defined by Steps 4.1a and 5.1a.)
Let P = {p, p1, p2, . . . , pk, q}.

Algorithm 3

1. Let ε = 10−10 (the accuracy).

2. Compute the length l1 of the path ρ =
〈p, p1, p2, . . . , pk, q〉.

3. Let q1 = p and i = 1.

4. While i < k − 1 do:

4.1a. If (pi = pi−1 ∧ pi 6= pi+1) ∨ (pi 6= pi−1 ∧
pi = pi+1) ∨ (pi = pi−1 ∧ pi = pi+1), then apply
Procedure 1 to compute a point pi such that pi 6=
pi−1 and pi 6= pi+1.

4.1. Let q3 = pi+1.

4.2. Compute a point q2 ∈ ∂Pi (see the proof of
Lemma 57 in [12]) such that de(q1, q2)+de(q3, q2) =
min{de(q1, q

′) + de(q3, q
′) : q′ ∈ ∂Pi}.

4.3. Update P by replacing pi by q2.

4.4. Let q1 = pi and i = i + 1.

5.1a. If (pk = pk−1 ∧ pk 6= pk+1) ∨ (pk 6= pk−1 ∧
pk = pk+1) ∨ (pk = pk−1 ∧ pk = pk+1), then apply
Procedure 1 to compute a point pk such that pk 6=
pk−1 and pk 6= pk+1.

5.1b. Let q3 = q.

5.2. Compute q2 ∈ ∂Pk such that
de(q1, q2) + de(q3, q2) =
min{de(q1, q

′) + de(q3, q
′) : q′ ∈ ∂Pk}

5.3. Update P by replacing pk by q2.

6. Compute the length l2 of the updated path ρ =
〈p, p1, p2, . . . , pk, q〉.

7. Let δ = l1 − l2.

8. If δ > ε, then let l1 = l2 and go to Step 3.
Otherwise, Stop.

Section 11.5 of [12] applies this algorithm to show
that the TPP for not-necessarily pairwise disjoint
nonconvex simple polygons can be approximately
computed in polynomial time:

Theorem 1 ([12], Theorem 37) The uncon-
strained TPP can be solved in κ(ε) · O(n) time,
where n is the total number of vertices of all
polygons involved.

Finding the exact solution of this problem is NP-
hard due to the following

Theorem 2 ([4], Theorem 6) The touring
polygons problem (TPP) is NP-hard, for any
Minkowski metric Lp (p ≥ 1) in the case of
nonconvex polygons Pi, even (already) in the
unconstrained (Fi = R2) case with obstacles
bounded by edges having angles of 0, 45, or 90
degrees with respect to the x-axis.

3.2 q-rectangles

We denote by Π a simple polyhedron (i.e., a com-
pact polyhedral region which is homeomorphic to
a unit ball) in the 3D Euclidean space, which is
equipped with an xyz Cartesian coordinate system.
Let E the set of edges of Π; V = {v1, v2, . . . , vn} is
the set of vertices of Π.

For p ∈ Π, let πp be the plane which is incident
with p and parallel to the xoy-plane. The inter-
section πp ∩ Π is a finite set of simple polygons; a
singleton (i.e., a single point) is considered to be a
degenerate polygon. Let P be one of those simple
polygons, defined by p and Π.

Any simple polygon P , being one connected com-
ponent of πp ∩ Π, is a critical polygon (of Π, and
with respect to p).

Any vertex p defines in general a finite set of critical
polygons. We start with cases where any vertex p
only defines one critical polygon, and this is even
required to be convex:

Figure 10: Left: a type 1 polyhedron. Right: type
2 polyhedron.

We say that a simple polyhedron Π is a type 1 poly-
hedron iff any vertex p defines exactly one convex
critical polygon. We say that a simple polyhedron
Π is a type 2 polyhedron iff any vertex p defines
exactly one simple critical polygon.

Figure 10 shows a type 1 polyhedron on the left,
and a type 2 polyhedron on the right.

In this section we apply Algorithm 2 to two special
cases of ESP problems which can be solved effi-
ciently. We also point out that the “complements”
of these two problems are both NP-complete or
NP-hard.

We generalize the notion of a critical polygon. We
assume that a generalized Π is a simply connected
(possibly unbounded) polyhedron, and we allow
that the resulting (generalized) critical polygons
are unbounded. For example, a generalized critical
polygon may have a vertex at infinity, or it can be
the complement of a critical polygon.

We recall some concepts introduced in [13]. Let
(x0, y0, z0) be a point in 3D space. Let

S1 = {(x, y, z0) : x0 ≤ x < ∞∧ y0 ≤ y < ∞}
S2 = {(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y < ∞}
S3 = {(x, y, z0) : −∞ < x ≤ x0 ∧ −∞ < y ≤ y0}
S3 = {(x, y, z0) : x0 ≤ x < ∞∧−∞ < y ≤ y0}

Si is called a q-rectangle of type i, where i = 1, 2,
3, 4. Furthermore, let (x1, y1, z0) be a point in 3D
space such that x1 > x0 and y1 > y0. Let

Sh = {(x, y, z0) : −∞ < x < ∞∧ y0 ≤ y ≤ y1}
Sv = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y < ∞}

Sh (Sv) is called a horizontal (vertical) strip. Fi-
nally, let

Sh1 = {(x, y, z0) : x0 ≤ x < ∞∧ y0 ≤ y ≤ y1}
Sh2 = {(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y ≤ y1}
Sv1 = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ y0 ≤ y < ∞}
Sv2 = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y ≤ y0}

Figure 11: Axis-aligned rectangles.

According to their geometric shape, we notice that

S1 [S2, S3, S4] is unbounded in direction
(+x,+y) [(−x, +y), (−x,−y), (+x,−y)];

Sh [Sv] is unbounded in direction ±x [±y];

Sh1 [Sh2 , Sv1 , Sv2] is unbounded in direction
+x [−x, +y, −y].

Si, Sh, Sv, Shj
, and Svj

are axis-aligned rectangles
(see Figure 11), where i = 1, 2, 3, 4, and j =
1, 2. The stack S of axis-aligned rectangles is
called terrain-like if, for at least one of the four
directions −x, +x, −y, or +y, each rectangle in S
is unbounded.

Example 1

Let Π be a simple polyhedron such that each gener-
alized critical polygon is an axis-aligned rectangle.
Let p, q ∈ Π such that pz < qz. Let Vpq = {v : pz <
vz < qz ∧ v ∈ V }, where V is the set of vertices of
Π. By Theorem 27 of [12], the Euclidean shortest
path between p and q inside of Π can be computed
in κ(ε) · O(|Vpq|). Therefore, the 3D ESP problem
can be solved efficiently in such a special case.

However, if we modify Π such that each general-
ized critical polygon is the complement of an axis-
aligned rectangle, then the problem of finding the
Euclidean shortest path between p and q inside of
Π is NP-complete (!) because of the following

Theorem 3 ([13], Theorem 4) It is NP-complete
to decide wether there exists an obstacle-avoiding
path of Euclidean length at most L among a set
of stacked axis-aligned rectangles. The problem is
(already) NP-complete for the special case that the
axis-aligned rectangles are all q-rectangles of types
1 or 3.

Example 2

We slightly modify Π as considered in Example 1:
Let Π be a simply connected polyhedron such that

each critical polygon is a triangle. By Theorem
27 of [12], the Euclidean shortest path between
p and q inside of Π can be computed in κ(ε) ·
O(|Vpq|) time. Therefore, the 3D ESP problem can
be solved efficiently in such a special case.

However, if we modify Π such that each generalized
critical polygon is the complement of a triangle,
then the problem of finding the Euclidean shortest
path between p and q inside of Π is NP-hard (!)
because of the following

Theorem 4 (see [2]) It is NP-hard to decide
whether there exists an obstacle-avoiding path of
Euclidean length at most L among a set of stacked
triangles.

We approximately solve these two very difficult
problems, addressed in Theorems 3 and 4, in Sec-
tion 3.3.

3.3 Three NP-complete or NP-hard Prob-
lems

As in Section 3.2, we again generalize the notion of
a critical polygon, also allowing unbounded poly-
gons. We now apply the generalized Algorithm 2 to
approximately solve hard problems, characterized
in Section 3.2 as being NP-complete or NP-hard.

Example 3

We modify Example 1 as follows: Let Π be a simply
connected polyhedron such that each critical poly-
gon is the complement of an axis-aligned rectangle.
Let p, q ∈ Π such that pz < qz. Let Vpq = {v : pz <
vz < qz∧v ∈ V }, where V is the set of all vertices of
Π. By Theorem 32 of [12], the Euclidean shortest
path between p and q inside of Π can be approxi-
mately computed in κ(ε)·O(|Vpq|) time. Therefore,
the 3D ESP problem can be approximately solved
efficiently in such a special case.

Example 4

We modify Example 2 as follows (also just a slight
modification of Π in Example 2: Let Π be a sim-
ply connected polyhedron such that each critical
polygon is the complement of a triangle (or of a
finite number of pairwise disjoint triangles). By
Theorem 32 of [12], the Euclidean shortest path
between p and q inside of Π can be approximately
computed in κ(ε) · O(|Vpq|) time.

Example 5

Let S be a stack of k horizontal or vertical strips.
The Euclidean shortest path among S can be ap-
proximately computed in κ(ε) ·O(k) time. Finding

Figure 12: Illustration of measured run time for
Algorithm 2 applied to q-rectangles.

the exact solution is very hard (NP-complete!) be-
cause of the following

Theorem 5 ([13], Theorem 5) It is NP-complete
to decide whether there exists an obstacle-avoiding
path of Euclidean length at most L among a finite
number of stacked horizontal and vertical strips.

Example 6

Let S be a stack of k terrain-like axis-parallel rect-
angles. The Euclidean shortest path among S can
be approximately computed in κ(ε) · O(k) time.
The best known algorithm for finding the exact
solution has a time complexity in O(k4) due to the
following

Theorem 6 ([13], Theorem 6) Let S be a stack
of k terrain-like axis-parallel rectangles. The Eu-
clidean shortest path among S can be computed in
O(k4) time.

4 Conclusions

The paper presented at first in detail a simple rub-
berband algorithm for introducing into the basic
ideas of this algorithmic approach. It explained
how to deal with cases of degenerated paths (by
means of an example, and also by presenting a
general procedure for dealing with such cases).

Then the paper informed about various
results when applying versions of rubberband
algorithms, illustrating this way that rubberband
algorithms define a widely applicable class of
algorithms solving difficult geometric problems by
approximate solutions in κ-linear time.

References
[1] T. Bülow and R. Klette. Digital curves in 3D

space and a linear-time length estimation algo-
rithm. IEEE Trans. Pattern Analysis Machine In-
telligence, 24:962–970, 2002.

[2] J. Canny and J.H. Reif. New lower bound
techniques for robot motion planning problems. In
Proc. IEEE Conf. Foundations Computer Science,
pages 49–60, 1987.

[3] M. Dror. Polygon plate-cutting with a given order.
IIE Transactions, 31:271–274, 1999.

[4] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell.
Touring a sequence of polygons. In Proc. STOC,
pages 473–482, 2003.

[5] M. R. Garey, R. L. Graham, and D. S. Johnson.
Some NP-complete geometric problems. In Proc.
ACM Sympos. Theory Computing, pages 10–22,
1976.

[6] A. M. Geoffrion. Lagrangean relaxation and its
uses in integer programming. In Mathematical Pro-
gramming Study, volume 2, pages 82–114. North
Holland, Amsterdam, 1974.

[7] L. Guibas, J. Hershberger, D. Leven, M.
Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside
triangulated simple polygons. Algorithmica, 2:209–
233, 1987.

[8] M. Guignard and S. Kim. Lagrangean decom-
position: a model yielding stronger Lagrangean
bounds. Mathematical Programming, 39:215–228,
1987.

[9] J. Hoeft and U. S. Palekar. Heuristics for the plate-
cutting traveling salesman problem. IIE Transac-
tions, 29:719–731, 1997.

[10] G. Laporte, H. Mercure, and Y. Nobert. General-
ized traveling salesman problem through n clusters.
Discrete Applied Mathematics, 18:185–197, 1987.

[11] E. Lawler, J. Lenstra, A. Rinnooy Kan, and
D. Shmoys. The Traveling Salesman Problem. A
Guided Tour of Combinatorial Optimization. John
Wiley and Sons, New York, 1985.

[12] F. Li and R. Klette. Exact and approxi-
mate algorithms for the calculation of short-
est paths. IMA Minneapolis, Report 2141 on
www.ima.umn.edu/preprints/oct2006.

[13] J. S. B. Mitchell and M. Sharir. New results on
shortest paths in three dimensions. In Proc. SCG,
pages 124–133, 2004.

[14] C. E. Noon and J. C. Bean. An efficient trans-
formation of the generalized traveling salesman
problem. INFOR, 31:39–44, 1993.

