
Decomposing a Simple Polygon into Trapezoids

Fajie Li and Reinhard Klette

Computer Science Department, The University of Auckland
Auckland, New Zealand

Abstract. Chazelle’s triangulation [1] forms today the common basis
for linear-time Euclidean shortest path (ESP) calculations (where start
and end point are given within a simple polygon). This paper provides an
alternative method for subdividing a simple polygon into “basic shapes”,
using trapezoids instead of triangles. The authors consider the presented
method as being substantially simpler than the linear-time triangulation
method. However, it requires a sorting step (of a subset of vertices of the
given simple polygon); all the other subprocesses are linear time.

Keywords: computational geometry, simple polygon, Euclidean shortest path,
rubberband algorithm

1 Introduction

Simple polygons form a class of very complex 2D shapes. For example, consider a
“fractal tree” where all line segments are expanded into “thin rectangles”, form-
ing a simple polygon this way. This paper proposes a decomposition of any simple
polygon into trapezoids. Subsequent algorithms, such as calculating a Euclidean
shortest path (ESP), or further processing for pattern recognition or shape anal-
ysis purposes, may have benefit from this. In [2] the authors claimed to have
an O(n log n) rubberband algorithm for calculating ESPs in simple polygons.
Actually, this needs to be corrected: the algorithm given in [2] has worst-case
complexity O(n2). However, using the trapzoid decomposing as given in this pa-
per it is possible to calculate step sets more efficiently [which allows to modify
the algorithm given in [2] into one of O(n log n) time complexity].

Section 2 provides necessary definitions and theorems. Section 3 presents the
trapzoid decomposing algorithm and examples and a time analysis. Section 4
concludes the paper.

2 Basics

Let Π• be the (topological) closure of a simple polygon Π, ∂Π be its frontier,
V (Π) the set of vertices of Π, and E(Π) the set of edges of Π. For v ∈ ∂Π,
vx and vy are the x- and y-coordinates of v, respectively. Let v1, v2, v3 ∈ ∂Π.
Vertices are ordered either by a clockwise or counter-clockwise scan through
∂Π. Let ρ(v1,Π, v2) be the polygonal path from v1 to v2, contained in ∂Π. Let

Fig. 1. Illustration of the given definitions.

ρ(v1,Π, v2,Π, v3) be the polygonal path from v1 to v2 and then to v3 around
∂Π.

Let u, v, w ∈ ∂Π such that uy = vy = wy; consider ρ(u, Π, v,Π, w) ⊂
∂Π. Let Π ′ be a simple polygon obtained by adding a ‘closing edge’ uw to
ρ(u, Π, v,Π, w), denoted by Π ′ = uw + ρ(u, Π, v,Π, w). Π ′ is called an up-
(down-) polygon with respect to v if, for each p ∈ Π ′•, py ≥ (≤) vy.

For example, in Figure 1, Πl and Πr are up-polygons with respect to v1. Π ′

is a down-polygon with respect to v1.
Let Π, Π ′ be two simple polygons with Π ′• ⊂ Π•; let {v0, v1, v2, . . . , vn−1}

and {v′0, v′1, v′2, . . . , v′n−1} be such orders of the vertices of Π and Π ′, respectively,
that the following becomes true: For a sufficiently small ε > 0, we have de(v′0, v0)
= ε for the Euclidean distance between v′0 and v0, edge v′iv

′
i+1 is parallel to edge

vivi+1, and v′ivi bisects the angle 6 vi−1vivi+1, where i = 0, 1, 2, . . . , n, and the
addition or subtraction of indices is taken mod n. In this case, Π ′ is called an
inner simple polygon of Π, denoted by Π(v0, ε). – In Figure 2, u0u1u2u3u4u5u0

is an inner polygon of v0v1v2v3v4v5v0.
Let vi−1, vi, vi+1 and vi+2 be four consecutive vertices of Π. If (vi−1)y <

(vi)y, (vi)y = (vi+1)y and (vi)y > (vi+2)y [or (vi−1)y > (vi)y, (vi)y = (vi+1)y

and (vi)y < (vi+2)y], and the point (0.5 · (vix + vi+1x), viy + ε) [or (0.5 · (vix +
vi+1x), viy − ε)] is inside Π, then vivi+1 is called an up- (down-) stable edge of
Π with respect to the xy-coordinate system used for representing Π.

If (vi−1)y < (vi)y, (vi)y = (vi+1)y and (vi)y > (vi+2)y, and the point(0.5 ·
(vix + vi+1x), viy − ε) is in Π, then vivi+1 is called a maximal edge of Π with
respect to the chosen xy-coordinate system.

Fig. 2. Example of an inner polygon.

Let vi−1, vi and vi+1 be three consecutive vertices of Π. If (vi−1)y < (vi)y,
(vi)y > (vi+1)y [or (vi−1)y > (vi)y, (vi)y < (vi+1)y], and there exist points
ui ∈ V (Π(v0, ε)) [this is the set of vertices of Π(v0, ε)] such that 4vi−1vivi+1

does not (!) contain ui, then vi is called an up- (down-) stable point of Π with
respect to the xy-coordinate system used for representing Π.

In Figure 1, v2, v3, v5, v6, v7 and v8 are up-stable points. v1, v4, v9, v10, v11,
v12 and v13 are down-stable points.

If (vi−1)y < (vi)y, (vi)y > (vi+1)y [or (vi−1)y > (vi)y, (vi)y < (vi+1)y] and
there exist points ui ∈ V (Π(v0, ε)) [this is the set of vertices of Π(v0, ε)] such
that4vi−1vivi+1 does (!) contain ui, then vi is called an maximal (minimal) point
of Π with respect to the chosen xy-coordinate system.

In Figure 1, u1 is a maximal point and u3 is a minimal point. – As common,
a simple polygon is called monotonous if it has both a unique up- and down-
stable point or edge. In Figure 1, u1u2u3u4u5u6u7u8u1 is a monotonous simple
polygon.

Since the discussion of our algorithm in the case of an up- or down-stable
edge is analogous to that of an up- or down-stable point, we will just detail the
case of up- or down-stable points.

Let v be an up-stable point of Π. Let Sv be the set of minimal points u of
Π such that there exists a polygonal path from v to u around ∂Π and uy < vy.
Let u′ ∈ Sv such that u′y = max{uy : u ∈ Sv}. If there exists a point w ∈ ∂Π
such that the segment u′w ⊂ Π• and wy = u′y, then u′w is called a cut edge of
Π. The polygonal path ρ(v,Π, u′) is called a decreasing polygonal path from v
to u′w. v is called an up-stable point with respect to the cut edge u′w, and u′w
is called a cut edge with respect to the up-stable point v. u′ is called a closest
minimal point with respect to v around the frontier of Π.

In Figure 1, v8v9u9u3 is a decreasing polygonal path from v8 to u3u4, and
u3 is a closest minimal point with respect to v8.

If u, w ∈ ∂Π such that uy = vy = wy, ux < vx < wx, and uv, vw ∈ Π•, then
u and w are called the left and right intersection points of v, respectively. – In
Figure 1, v1l and v1r are the left and right intersection points of v1, respectively.

Let v be a maximal point of Π. Let Sv be the set of down-stable points u of
Π such that there exists a polygonal path from v to u around ∂Π and uy < vy.
Let u′ ∈ Sv such that u′y = max{uy : u ∈ Sv}. u′ is called a closest down-stable
point with respect to v around the frontier of Π.

In Figure 1, v9 is a closest down-stable point with respect to the maximal
point above the segment v9u9.

3 The Algorithm

This section describes the decomposition algorithm and its three subroutines,
which are Procedures 1–3. Procedure 1 is used to update the left or right inter-
section points of up-stable points. It will be applied by Procedure 2 to remove
up-stable points. Procedure 3 applies Procedures 1 and 2 to compute the left
and right intersection points of all up-stable points, from bottom to top. This
procedure will be called in Step 3 of the main algorithm which processes both
up- and down-stable points, from top to bottom.

In Procedure 1, let Π be a simple polygon such that V (Π) does not have
any up-stable point.

Procedure 1: update left or right intersection points

1. Decompose Π into a set of trapezoids, denoted by TΠ (note: straightfor-
ward, because there is no up-stable point).

2. For each edge e ∈ E(Π).
2.1. If e is a cut edge, then do the following:
2.1.1. Let ve be the up-stable point with respect to e.

Fig. 3. Example for Step 2.1.1 of Procedure 1.

Fig. 4. Example for (left) Step 2.1.2 and (right) Step 2.1.3 of Procedure 1.

Fig. 5. Example for (left) Step 2.1.5 and (right) Step 2.1.6 of Procedure 1.

2.1.2. Find a trapezoid t ∈ TΠ such that the bottom edge of t and edge e
have a common end point in V (Π).

2.1.3. Let ρe be the decreasing polygonal path from ve to e.
2.1.4. Find a stack of trapezoids, denoted by Te (⊆ TΠ), such that for each

t ∈ Te, t• ∩ ρe 6= ∅.
2.1.5. Let te be the topmost trapezoid in Te.
2.1.6. Compute the intersection points between y = vey with those two edges

on the left and right side of te.
2.1.7. Update the left and right intersection points of ve by comparing the

results of Step 2.1.6 with the initial left and right intersection points of ve.

For the following Procedure 2, let I be an interval of real numbers, and MI

be a subset of maximal points of Π such that for each element v ∈ MI , vy ∈ I.
Suppose MI is sorted according to y-coordinate decreasingly.

Procedure 2: remove up-stable points

1. Let MI = {v1, v2, . . . , vk}. 2. For each i ∈ {1, 2, . . . , k}, do the following:

Fig. 6. Example for Step 2.1.7 of Procedure 1: u is an up-stable point, v is the result of
Step 2.1.6, w is the initial right intersection point of u. Thus, v is the right intersection
point of u.

Fig. 7. Example for Step 1 of Procedure 2.

2.1. Find a closest down-stable point with respect to vi around the frontier
of Π, denoted by ui.

2.2. Find a point wi ∈ ∂Π such that ρ(ui,Π, vi,Π, wi) is the shortest polyg-
onal path in ∂Π such that uiy = wiy.

2.3. Update Π by replacing ρ(ui,Π, vi,Π, wi) by the edge uiwi.
2.4. Let Πi = uiwi + ρ(ui,Π, vi,Π, wi).
2.5. Now let Πi be the input of Procedure 1 and update the left and right

intersection points of all possible up-stable points.

Procedure 3: compute all left or right intersection points

1. Let U = {v1, v2, . . . , vk} be the sorted set of up-stable points of Π such
that v1y < v2y < · · · < vky.

2. For each i ∈ {1, 2, . . . , k}, do the following:
2.1. Find a closest minimal point with respect to vi by following the frontier

of Π, denoted by ui.
2.2. Let I = [a, b] where a = uiy and b = viy.

Fig. 8. Example for Step 2.1 of Procedure 2.

Fig. 9. Example for Step 2.2 of Procedure 2.

2.3. Compute MI .
2.4. If MI 6= ∅, then apply Procedure 2 and go to Step 2.1.
2.5. Otherwise, find a point wi such that ρ(ui,Π, vi,Π, wi) is the shortest

polygonal path of ∂Π with uiy = wiy.
2.6. Set initial left and right intersection points of vi as follows:
2.6.1. If vi−1y = viy = vi+1y then let the initial left and right intersection

points of vi be vi−1 and vi+1, respectively.
2.6.2. Otherwise, find two points wil, wir such that ρ(wil,Π, ui,Π, vi,Π, wir)

is the shortest polygonal path of ∂Π with wily = viy = wiry.

Fig. 10. Example for Step 2.3 of Procedure 2.

Fig. 11. Example for Step 1 of Procedure 3.

2.6.3. Let the initial left and right intersection points of vi be wil and wir,
respectively.

2.7. Update Π by replacing ρ(ui,Π, vi,Π, wi) by the edge uiwi.
2.8. Now let Π be the input for Procedure 1; update the left and right

intersection points of all possible up stable points.

Main Algorithm: Decomposition Algorithm

1. Let S = ∅ and T = ∅.
2. Compute the set of up- and down-stable points, denoted by V .

3. Apply Procedure 3 to compute the left and right intersection points, for
all up-stable points in V .

4. Sort V for decreasing y-coordinates.
5. For each i ∈ {1, 2, . . . , k}, with k = |V |, do the following:
5.1. Case 1. vi is a down-stable point.
5.1.1. Find two points vil, vir ∈ ∂Π such that vily = viy = viry and vilx <

vix < virx.
5.1.2a. Let Πl = vilvi + ρ(vil,Π, vi) (up-polygon).
5.1.2b. Let Πr = vivir + ρ(vi,Π, vir) (up-polygon).
5.1.2c. Let Π ′ = vilvir + ρ(vil,Π, vir) (down-polygon).
5.1.3. Let S = S ∪ {Πl,Πr}.
5.1.4. Let Π = Π ′.
5.1.5. Let i = i + 1 and go to Step 5.
5.2. Case 2. vi is an up-stable point.
5.2.1. Let vil, vir be the left and right intersection points of vi, respectively.
5.2.2a. Let Πl = vilvi + ρ(vil,Π, vi) (down-polygon).
5.2.2b. Let Πr = vivir + ρ(vi,Π, vir) (down-polygon).
5.2.2c. Let Π ′ = vilvir + ρ(vil,Π, vir) (up-polygon).
5.2.3. Let S = S ∪ {Π ′}.
5.2.4. Let Π = {Πl,Πr}.
5.2.5. Let i = i + 1 and go to Step 5.
6. For each j ∈ {1, 2, . . . , n}, with n = |S|, do the following:
6.1. For each (monotonous) polygon Πj ∈ S, decompose it into a stack of

trapezoids, denoted by Tj .
6.2. Let T = T ∪ Tj .
7. Output T .

Fig. 12. Example for Step 2.1 of Procedure 3.

Fig. 13. Example for Step 2.5 of Procedure 3.

3.1 Time Complexity of the Algorithm

Lemma 1. The set of up- (or down-, maximal) stable points of Π can be com-
puted in O(n), where n = |V (Π)|.

Proof. For a sufficiently small number ε > 0, the “start” vertex v′0 of an inner
polygon Π(v0, ε) can be computed in O(n), where n = |V (Π)| (see [3]). For
three consecutive vertices u, v, w ∈ V (Π) such that ux < vx < wx, if uy < vy,
vy > wy and v′y > vy, then v is a up stable point (if uy < vy, vy > wy and
v′y < vy, it follows that v is a maximal point; if uy > vy, vy < wy and v′y < vy,
then v is a down-stable point). ut

Lemma 2. Procedure 1 can be computed in O(n log n), where n = |V (Π)|.

Fig. 14. Example 1 for Step 2.6.2 of Procedure 3.

Fig. 15. Example 2 for Step 2.6.2 of Procedure 3.

Fig. 16. Example 3 for Step 2.6.2 of Procedure 3.

Fig. 17. Example for Step 2.6.3 of Procedure 3.

Fig. 18. Example for Step 2.7 of Procedure 3.

Proof. If Π is monotonous, then (obviously) it can be decomposed into a stack
of trapezoids in O(|V (Π)|). Otherwise, by assumption, Π can only have a finite
number of down-stable points. Analogous to Step 5.1 in the decomposition algo-
rithm, Π can be decomposed into a set of trapezoids in O(|V (Π)|). Thus, Step
1 can be computed in O(|V (Π)|).

All steps following Step 2, except Step 2.1.4, can be computed in O(1).
Step 2.1.4 can be computed in O(nlogn), where n = |V (Π)|:
Let Sd be the set of all down-stable points of Π.
A1. Sort Sd according to y-coordinates; we obtain Sd = {v1, v2, . . . , vk} such

that v1y ≤ v2y ≤ v3y ≤ . . . ≤ vky.

Fig. 19. Example for Step 2 of the decomposition algorithm.

Fig. 20. Example for Step 3 of the decomposition algorithm (note the left and right
intersection points).

Fig. 21. Example for Step 5.1.1 of the decomposition algorithm.

A2. Let m = min{|vi−1y − viy| : |vi−1y − viy| > 0, i = 2, 3, . . . , k}, and M =
max{|vi−1x − vix| : |vi−1x − vix| > 0, i = 2, 3, . . . , k}.

A3. Transform Π by rotating it by angle θ anticlockwise about the origin
(i.e., for each point p = (x, y) ∈ Π•, update it by point (x′, y′), where x′ =
x cos θ − y sin θ, y′ = x sin θ + y cos θ).

Without loss of generality, assume that m = |v1y − v2y| > 0. We have that

|v′1y − v′2y| = |(v1x − v2x) sin θ + (v1y − v2y) cos θ|
≥ |(v1y − v2y) cos θ| − |(v1x − v2x) sin θ|
≥ m cos θ −M sin θ → m(θ → 0)

Fig. 22. Example for Steps 5.1.2a–c of the decomposition algorithm.

Therefore, there exists a sufficiently small angle θ > 0 such that, after rotating,
each down-stable point is still a down-stable point, and all down-stable points
have unique y-coordinates. This implies that, for each trapezoid t ∈ TΠ , there
exist at most two trapezoids t1, t2 ∈ TΠ such that t1 and t2 has a common vertex
with t, respectively. (In this case, t1 and t2 have a common vertex which is a
down-stable point. See Figure 25.) Since Step A2 can be computed in O(|Sd|)
and Step A3 can be computed in O(1), it follows that Step 2.1.4 can be computed
in O(k), where k is the number of vertices of the decreasing polygonal path from
ve to e, after sorting (Step A1) in O(|Sd|log|Sd|). ut

Fig. 23. Example for Steps 5.2.1 and 5.2.2a–c of the decomposition algorithm.

Fig. 24. Output of the decomposition algorithm for the polygon of Figure 1.

Fig. 25. Illustration for the proof of Lemma 2.

Lemma 3. Procedure 2 can be computed in O(n log n) time, where n is the
number of vertices of the original simple polygon Π.

Proof. By Lemma 1, Step 1 can be computed in O(n log n), where n is the
number of vertices of the original simple polygon Π. Step 2.1 can be computed
in O(nu), where nu is the number of vertices of ρ(ui,Π, vi). Step 2.2 can be
computed in O(nw), where nw is the number of vertices of ρ(vi,Π, wi). Steps
2.3 and 2.4 can be computed in O(1). By Lemma 2, Step 2.5 can be computed in
O(ni log ni), where ni = |V (Πi)|. Thus, Step 2 can be computed in O(n log n)
altogether, where n is the number of vertices of Π. ut

Lemma 4. Procedure 3 can be computed in O(n log n) time, where n is the
number of vertices of the original simple polygon Π.

Proof. By Lemma 1, Step 1 can be computed in O(n log n), where n is the
number of vertices of the original simple polygon Π. Step 2.1 can be computed
in O(nu), where nu is the number of vertices of ρ(ui,Π, vi). Step 2.2 can be
computed in O(1). Step 2.3 can be computed in O(|MI |). By Lemma 4, Step 2.4
can be computed in O(nu log nu), where nu = |V (ρ(ui,Π, vi))|. Step 2.5 can
be computed in O(nw), where nw is the number of vertices of ρ(ui,Π, wi). Step
2.6.1 can be computed in O(1). Step 2.6.2 can be computed in O(ni), where
ni = |V (ρ(ui,Π, wil))|+ |V (ρ(wi,Π, wir))|. Step 2.6.3 can be computed in O(1).

Step 2.7 can be computed in O(1). By Lemma 2, Step 2.8 can be computed in
O(n log n), where n is the number of the vertices of the updated Π. Therefore,
Procedure 3 can be computed in O(n log n), where n is the number of the
vertices of the original simple polygon Π. ut

Theorem 1. The given decomposition algorithm has time complexity O(n log n),
where n is the number of vertices of the original simple polygon Π.

Proof. Step 1 can be computed in O(1). By Lemma 1, Step 2 can be com-
puted in O(n log n), where n is the number of vertices of the original sim-
ple polygon Π. By Lemma 4, Step 3 can be computed in O(n log n), where
n is the number of the vertices of the original simple polygon Π. Step 4 can
be computed in O(|V | log |V |). Step 5.1.1 can be computed in O(ni), where
ni = |V (ρ(vil,Π, vi))| + |V (ρ(vi,Π, vir))|. Steps 5.1.2a – 5.1.5 can be computed
in O(1). Thus, Step 5.1 can be computed in O(ni), where ni = |V (ρ(vil,Π, vi))|
+ |V (ρ(vi,Π, vir))|. Step 5.2 can be computed in O(1). By Lemma 3, Step 6.1
can be computed in O(|Πj |). Thus, Step 6 can be computed in O(n), where n
is the number of the vertices of the original simple polygon Π. Step 7 can be
computed in O(1). Therefore, the decomposition algorithm can be computed in
O(n log n), where n is the number of the vertices of Π. ut

4 Conclusions

The report described an O(n log n) time algorithm for the decomposition of any
simple polygon into trapezoids. (See Figure 24 for an example.) Of course, these
can then be further divided into triangles. The algorithm was described on these
eight pages (compared to 40 journal pages of paper [1]). (For a longer version of
this paper, with some examples illustrating processing steps, see CITR-TR-199.)
The given algorithm will allow to improve work reported in [2]. - The authors
conjecture that the O(nlogn) sorting step in the given algorithm can also be
replaced by incorporating some type of a (linear-time) scan, and future studies
will show.

References

1. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Computational
Geometry, 6:485–524, 1991.

2. F. Li and R. Klette. Finding the shortest path between two points in a simple
polygon by applying a rubberband algorithm. In Proc. PSIVT’06, pages 280-291,
Hsinchu, Taiwan, LNCS, Springer, Berlin 2006.

3. D. Sunday. Algorithm 3: Fast winding number inclusion of a point in a polygon. See
www.geometryalgorithms.com/Archive/algorithm0103/ (last visit: April 2007).

