Euclidean Shortest Paths
in Simple Cube Curves at a Glance

Fajie Li and Reinhard Klette

Computer Science Department
The University of Auckland, New Zealand

Abstract. This paper reports about the development of two provably
correct approximate algorithms which calculate the Euclidean shortest
path (ESP) within a given cube-curve with arbitrary accuracy, defined
by € > 0, and in time complexity x(¢) - O(n), where k(e) is the length
difference between the path used for initialization and the minimum-
length path, divided by €. A run-time diagram also illustrates this linear-
time behavior of the implemented ESP algorithm.

1 Introduction

Euclidean shortest path (ESP) problems are defined by a (2D, 3D, ...) Euclidean
space which contains (closed) polyhedral obstacles; the task is to compute a path
which connects two given points in the space such that it does not intersect the
interior of any obstacle, and it is of minimum Euclidean length.

Examples are the ESP inside of a simple polygon, on the surface of a con-
vex polytope, or inside of a simply-connected polyhedron, or problems such as
touring polygons, parts cutting, safari or zookeeper, or the watchman route. All-
together, this defines a class of immensely important computational problems of
huge impact in economy, science or technology.

For time complexities of algorithms in this area, we cite two examples. The
general 3D ESP problem (e.g., path-planning in robotics) is NP-hard, see J.
Canny and J. H. Reif [5].

For 2D ESP problems, there are linear-time, but very complicated algorithms
(e.g., algorithms for ESP calculation in a simple polygon, based on B. Chazelle’s
[6] triangulation of whole polygons), or linear-time and easy-to-implement algo-
rithms (e.g., for the relative convex hull in the 2D grid, see [9]). See [13] for work
of the authors on 2D or 3D ESP problems in general.

In this paper we consider ESPs in simple cube-curves (a cyclic sequence of
subsequently face-adjacent grid cubes where each cube is only listed once), which
are formed by successively face-adjacent grid cubes (of the uniform orthogonal
3D grid, see digital geometry [11]). T. Biilow and R. Klette published between
2000 and 2002 (see, e.g., [4]) a so-called rubberband algorithm (RBA) for the cal-
culation of a Euclidean shortest path in a simple cube-curve. [4] stated two open
problems: is this approximate RBA actually always converging (with numbers
of iterations) to the correct ESP, and is its time complexity actually linear as all
experiments indicated at that time.



This paper reports about the development of two approximate RBAs, which
always converge towards the ESP, and have k() - O(n) time complexity. This
paper is a first summarizing publication of results in the technical report [12]
related to minimum-length polygon (MLP) calculation in simple cube-curves.

2 The Original RBA

Critical edges of a given cube-curve g are those grid edges which are incident
with three cubes of the curve (see Figure 1). Critical edges are the only possible
locations for vertices of an ESP [10]. A subset of those will define the step set of
the RBA, which contains all those critical edges which contain exactly one ESP
vertex each.

Fig. 1. Critical edges e1, ez, €3, e4, €5, and eg.

The Original RBA, as published in [4,11], is as follows: it consists of two
subprocesses, (i) an initialization process (e.g., from an endpoint of one critical
edge to the closest endpoint of the subsequent critical edge; satisfying a “closed-
path” constraint at the end), and (ii) an iterative process which contracts the
path during each of its loops, using a break-off criterion

En _£n+1 <é€

where € > 0, and L,, is the total length of the path after the nth loop.

During each loop, the algorithm tries to shorten the path locally by checking
three options, called OP1, OP2, and OP3. OP1 and OP2 find the step set of
critical edges. OP3 optimizes the position of a vertex on its critical edge. These
options are defined as follows:

OP1: delete vertex p; if the line segment p; _1p;41 is in the tube g, which is
the union of all the grid cubes in the given simple cube-curve g;

OP2: calculate intersection points of the triangle p;_1p;p;+1 with all critical
edges (“between” p;_1 and p;11) and replace the subsequence p;_1, p;, pir1 by
the resulting convex arc, defined by these of intersection points;



OP3: move p; on its critical edge e into the optimum position pyeq, with
de(Prews Pi—1) + de(Dit1, Prew) = Inf{de(p, pi—1) + de(piy1,p) : p € e}, where de
denotes the Euclidean distance.

We continue with vertices ppew,pit1,Pive of the path. At the end of each
loop we compare the total length of the new path with that of the path at the
end of the previous loop.

See Figure 2 for OP2. Here, vertices on critical edges ej1, ey4 and ejg are
replaced by a convex arc with vertices on critical edges ej1, e13, €16, and e,
and (in general) it may be e, e14 and ey again within a subsequent loop — of
course, for a reduced length of the calculated path at this stage.

€11
€13
celDs 1=
€14
4 7 11 14 18 19 20
] -
L €1
€18 celDs 2 =
4 7 11 13 16 18 19 20

Fig. 2. Illustration for the (original) Option 2.

The situation with the original RBA in 2002 [4] was as follows: Even for
very small values of €, the measured time complexity indicated O(n), where n is
the number of cubes in g. However, there was no proof for the asymptotic time
complexity of the original RBA. For a small number of test examples, calculated
paths seemed (!) to converge against the ESP. However, no implemented algo-
rithm for calculating the correct ESP was available, and (more general) no proof
whether the path, provided by the original RBA, converges towards the ESP.
Nevertheless, the algorithm is in use since 2002 (e.g., in DNA research).

3 Non-Existence of an Exact Arithmetic Algorithm

An arithmetic algorithm consists of a finite number of steps of arithmetic oper-
ations, possibly also using input parameters from the field of rational numbers,
using only the following basic operators: +, —, -, / or the kth root, for k > 2.
OP3 can be formalized by a system of three PDEs, involving parameters
t; € R for critical edges e; of the step set. The result ensures that p;(¢;) is the
optimum point on e;. Considering the situation illustrated in Figure 3, this is
equivalent to the problem of finding the roots of p(x) = 84x% — 2282° + 3612 +
2023 + 21022 + 200% + 25 (see Chapter 7 in [12]). In fact, this problem is not



M
o

A

vk UMY

AAAAT

Fig. 3. Calculation of ¢; and ¢2 such that the polyline po(to)p1(t1)p2(t2)ps(ts) is fully
contained in g. Point p; is on e1, and p2 on es.

solvable by radicals over the field of rationals; see [12]. (The proof uses a theorem
by C. Bajaj [2] and the factorization algorithm by E. R. Berlekamp [3].)

This example allows two corollaries. First, there is no exact arithmetic al-
gorithm for calculating the roots of polynomials of degree >5 (theorem by E.
Galois; B.L. van der Waerdens famous example is p(z) = 2® — x — 1). Second,
there is also no exact arithmetic algorithm for calculating 3D ESPs. C. Bajaj [1]
showed this based on a polynomial of degree 20 for the general 3D ESP problem.
As a new result, here we have a degree 6 polynomial, and the restricted ESP
problem for simple cube-curves!

Note that this is not just a “rounding number problem” but a fundamental
non-existence of exact algorithms, no matter what kind of time-complexity is
allowed (see Section 4).

There is a uniquely defined shortest path, which passes through subsequent
line segments eq, es, ..., ex in 3D space in this order; see, for example, [7]. Ob-
viously, vertices of a shortest path can be at real division points, and even at
those which cannot be represented by radicals over the field of rationals.

4 Approximate Algorithms

An algorithm is an (1 + €)-approzimation algorithm for a minimization problem
P iff, for each input instance I of P, the algorithm delivers a solution that is at
most (1 + ¢) times the optimum solution [8].

The general 3D ESP problem can be solved in O (n4 [b+ log(n/e)]2 /52) time
by an (1 + €)-approximation algorithm; see C. H. Papadimitriou [15].

An algorithm is x-linear iff its time complexity is in x(g) - O(n), and function
k does not depend on the problem size n, for ¢ > 0. We use k(g) = (Lo — £)/e,
where L is the true length of the ESP, and L£; the initial length.

A cube-curve is first-class iff each critical edge contains one ESP vertex. The
original RBA is correct and «-linear for first-class cube-curves [12].



Fig. 4. Weighted undirected graph for m = 3.

[12] analyzed the following approximate graph-theoretical algorithm: Sub-
divide each critical edge by m uniformly-spaced vertices; connect each vertex
with those vertices such that the resulting edge is contained in the tube g. This
defines a weighted undirected graph (see Figure 4). Calculate a shortest-length
cycle, and use this as a (first-class !) input for the original RBA.

The time-complexity of the graph-theoretic algorithm (in our specification)
equals O (m4n4 + k(e) n) It applies Dijkstras algorithm repeatedly; possibly
its time-complexity can be reduced, but certainly not to be s-linear.

However, this (slow) algorithm allowed for the first time to evaluate results
obtained by the original RBA.

Assume a simple cube-curve g and a triple of consecutive critical edges ey,
e, and eg such that e; is orthogonal to e;, for ¢,7 = 1,2,3 and ¢ # j. If e; and
es are also coplanar, then we say that e;, es, and e3 form an end angle, and a
middle angle otherwise.

The following approximate numerical algorithm (see [12]) requires an input
which is first-class and has at least one end angle; the cube-curve is split at end
angles into one or several arcs. For each arc, one vertex on each critical edge
can be calculated using the systems of PDEs briefly mentioned already above;
variable t; determines the position of vertex p; on edge e;. This algorithm is
provably correct and k-linear for the assumed inputs.

An open problem in [11] (page 406) was stated as follows: Is there a simple
cube-curve such that none of the vertices of its ESP is a grid vertex? The answer
is “yes” [12], and any of those curves does not have any end angle; see Figure 5.1
Thus, the provably correct approximate numerical algorithm cannot be used in
general.

This lead us back to the initial two questions about the original RBA: is it
correct? (We can use either the approximate graph-theoretical or the numeri-

! Here are two new open problems: What is the smallest (say, in number of cubes or
in number of critical edges - both is equivalent) simple cube curve which does not
have any end angle? What is the smallest (say, in number of cubes or in number of
critical edges - both is equivalent) simple cube curve which does not have any of its
MLP vertices at a grid point location? We assume that the second problem is more
difficult to solve.



Fig. 5. A simple cube-curve where the ESP does not have any grid-point vertex (and
which has no end angle).

cal algorithm for evaluation.) What is its time-complexity in general? Indeed,
corrections were in place:

OP2: if intersecting with the triangle p;_1p;p;+1 and using the convex arc
only, we may miss edges of the step set (see Figure 6 for such a situation) - more
tests are needed, and this option was totally reformulated (for details, see [12] -
the specifications require some technical preparations which cannot be given in
this short paper).

OP3: the vertex ppew, found by optimization, may specify edges p;_1pnew
and Ppewpir1 such that one or both of them are not fully contained in the tube
of the curve; an additional test is needed (a simple correction).

Fig. 6. The original Option 2 misses es.



Y(in seconds)

* L L L L
100 200 300 400 500 500
K(total number of cubes)

Fig. 7. Edge-based RBA Implemented in Java, run under Matlab 7.0.4, Pentium 4,
using € = 1071°.

Therfore, those corrections define a provably correct (for any simple cube-
curve) and k-linear edge-based RBA [12].

Instead of moving points along critical edges, we can also move points within
critical faces (which contain one critical edge). Of course, the vertices will finally
move onto or towards critical edges. This conceptually simpler (in its OP2) face-
based RBA is also provably correct, but showing a slower convergence (within
the limits of being -linear) towards the EPS.

See Figure 7 for some statistics about measured run time. Half of a simple
cube-curve was generated randomly, and the second half then generated using
three straight arcs for closing the curve. The number of cubes in generated curves
was between 10 and 630. The break-off criterion was defined by ¢ = 10~1°.

Figure 8 illustrates the meaning of the break-off criterion. The lengths L,,,
for loops n = 1,2,3... define a Cauchy sequence which converges towards the
true length £. An in-depth study of this sequence may reveal whether we can
assume 0 < € in general, or not.

Length
L
n <g
Lh+1
<8
L

Iteration

Fig. 8. Let ¢ be the maximum accuracy of the program, that means the smallest
number for discriminating between L£,, and L,,+1. Still, the difference to the true value
L might be § > . The algorithm allows to obtain arbitrary accuracy (with respect to
L) when continuing iterations, but this would require to reduce e.



5

Conclusions

This paper reported about the process of solving the minimum-length polygon
problem for simple cube-curves. The developed methodology [i.e., define “criti-
cal” subsets, specify the step set such that each critical subset in this set contains
exactly one (possibly redundant, such as colinear) vertex, apply OP3] can be
applied to ESP problems as considered (e.g.) in [14]. A few RBA applications
have been illustrated in [12,13]. For more details, see technical report [12].

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

C. Bajaj. The algebraic complexity of shortest paths in polyhedral spaces. In Proc.
Allerton Conf. Commun. Control Comput., pages 510-517, 1985.

C. Bajaj. The algebraic degree of geometric optimization problems. Discrete Com-
putational Geometry, 3:177-191, 1988.

E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp.,
24:713-735, 1970.

T. Biilow and R. Klette. Digital curves in 3D space and a linear-time length estima-
tion algorithm. IEEE Trans. Pattern Analysis Machine Intelligence, 24:962-970,
2002.

J. Canny and J. H. Reif. New lower bound techniques for robot motion planning
problems. In Proc. IEEE Conf. Foundations Computer Science, pages 49-60, 1987.
B. Chazelle. Triangulating a simple polygon in linear time. Discrete Computational
Geometry, 6:485-524, 1991.

J. Choi, J. Sellen, and C.-K. Yap. Approximate Euclidean shortest path in 3-
space. In Proc. ACM Conf. Computational Geometry, ACM Press, pages 41-48,
1994.

D. S. Hochbaum (editor). Approximation Algorithms for NP-Hard Problems. PWS
Pub. Co.,Boston, 1997.

R. Klette, V. V. Kovalevsky, and B. Yip. Length estimation of digital curves. In
Proc. Vision Geometry, SPIE 3811, pages 117-129, 1999.

R. Klette and T. Biilow. Critical edges in simple cube-curves. In Proc. Discrete
Geometry Computational Imaging, LNCS 1953, pages 467-478, 2000.

R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco,
2004.

F. Li and R. Klette. Exact and approximate algorithms for the calculation of
shortest paths. Report 2141 on www.ima.umn.edu/preprints/oct2006.

F. Li and R. Klette. Rubberband algorithms for solving various 2D or 3D shortest
path problems. In Proc. Computing: Theory Applications, plenary talk, pages 919,
2007.

J. S. B. Mitchell and M. Sharir. New results on shortest paths in three dimensions.
In Proc. SCG, pages 124-133, 2004.

C. H. Papadimitriou. An algorithm for shortest path motion in three dimensions.
Inform. Process. Lett., 20:259-263, 1985.

M. Talbot. A dynamical programming solution for shortest path itineraries in
robotics. Electr. J. Undergrad. Math., 9:21-35, 2004.



