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1 Permutable Polynomials

The Chebyshev polynomial of the first type Td is defined by the initial values

T0(x) = 1, T1(x) = x, (1)

with the 3–term recurrence relation for n > 1:

Tn(x) = 2xTn−1(x)− Tn−2(x). (2)

By induction on n in (2), it follows from (1) that, for all integers d ≥ 0, Td(x) is
a polynomial in x of degree d with integer coefficients. Moreover, Td is an even
polynomial for even d and an odd polynomial for odd d.

The integer coefficients of Td are given explicitly by the following formula1

for d > 0 [17, p.79]:

Td(x) =
d÷2∑
k=0

(−1)k 2d−2k−1d(d− k − 1)!
k!(d− 2k)!

xd−2k =

2d−1xd − 2d−3dxd−2 + 2d−6d(d− 3)xd−4 − 2d−8

3
d(d− 4)(d− 5)xd−6 + · · ·

· · ·+
{

(−1)d÷2 (for even d),
(−1)(d−1)÷2 dx (for odd d).

(3)

1The symbol ÷ denotes integer division, yielding integer quotient. For integers n and
d > 0, q = n÷ d, where n = qd + r, with remainder 0 ≤ r < d .
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For example, in addition to (1),

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,
T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x . (4)

By induction on n in (2), it follows from (1) that for all complex x and
integer n ≥ 0, with ϑ def= cos−1 x,

Tn(x) = Tn(cosϑ) = 2 cos ϑ cos((n− 1)ϑ)− cos((n− 2)ϑ) = cos(nϑ). (5)

(Any of the infinitely many values of cos−1 x can be used for ϑ.) Therefore, for
all complex x and non–negative integers j, k,

Tj

(
Tk(x)

)
= Tj

(
Tk(cos ϑ)

)
= Tj(cos(kϑ)) = cos(jkϑ)

= Tjk(cosϑ) = Tjk(x), (6)

giving the functional identity for complex x and non–negative integers j, k:

Tj

(
Tk(x)

)
= Tjk(x). (7)

Thus, the Chebyshev polynomials, with the binary operation of function
composition, form an infinite Abelian group, with

Tj

(
Tk(x)

)
= Tjk(x) = Tkj(x) = Tk

(
Tj(x)

)
. (8)

“Two polynomials, p and q, are called permutable if p(q(x)) = q(p(x)) for
all m,x.” [20, p.192]. “A sequence of polynomials, each of positive degree,
containing at least one of each positive degree and such that every two poly-
nomials in it are permutable is called a chain. The Chebyshev polynomials
T1(x), . . . , Tn(x), . . . form a chain. So do the powers πj(x) = xj , j = 1, 2, . . . , as
is easily verified.” [20, p.194]

For a 6= 0, the linear transform y = λ(x) = ax+ b has the inverse transform
x = λ−1(y) = (y − b)/a. A pair of functions u(x) and v(x) are permutable,
if and only if the transformed functions U def= λ−1uλ and V

def= λ−1vλ are
permutable, since

U(V (x)) = λ−1u
(
λ
(
λ−1v(λ(x))

))
= λ−1u(v(λ(x)))

= λ−1v(u(λ(x))) = λ−1v
(
λ
(
λ−1u(λ(x))

))
= V (U(x)) . (9)

If u(x) is a polynomial in x of degree n, then so is the transformed function
λ−1uλ.

Two chains are called similar if there is a linear transformation λ such that
each polynomial in one chain is similar (via λ) to the polynomial of the same
degree in the other chain. H. David Block and H. P. Thielman [3] and E.
Jacobsthal [13] proved the remarkable theorem that “every chain is either similar
to

{
xj

}
, j = 1, 2, . . . or to {Tj}, j = 1, 2, . . .” [20, p.195] [16, p.156] [4, p.34].

1.1 Permutable Even and Odd Functions

The sequence of rational functions πr(x) = {xr} (for integer r) are all per-
mutable, since

πr

(
πs(x)

)
= πr

(
xs

)
=

(
xs

)r = xsr

= xrs =
(
xr

)s = πs

(
xr

)
= πs

(
πr(x)

)
. (10)
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A function f is called an even function iff

f(−x) = f(x) (11)

for all x. If u and v are permutable even functions then −u and −v are per-
mutable even functions, since

−u(−v(x)) = −u(v(x)) = −v(u(x)) = −v(−u(x)). (12)

Hence, if {wr} is a permutable sequence of even functions for integer r, then
the negated sequence {−wr} is permutable.

A function f is called an odd function iff

f(−x) = −f(x) (13)

for all x. If u and v are permutable odd functions then −u and v are permutable
odd functions, since

−u(v(x)) = −v(u(x)) = v(−u(x)), (14)

and similarly −v and u permute. If u and v are permutable odd functions then
−u and −v are permutable odd functions, since

−u(−v(x)) = −(−u(v(x))) = u(v(x))
= v(u(x)) = −(−v(u(x))) = −v(−u(x)). (15)

Hence, if wr are permutable odd functions for integer r, then the reflected
sequence {wr, −wr} is permutable. For odd r = 2i+1 the odd rational functions
x2i+1 are permutable, and so is the reflected sequence

{x2i+1, −x2i+1} = · · · , x−3,−x−3, x−1,−x−1, x,−x, x3,−x3, · · · . (16)

And the odd Chebyshev polynomials T2j+1 are permutable, and hence the
reflected sequence of polynomials {T2j+1, −T2j+1} is permutable. For all ϑ, we
have the identity [17, p.79]

sin((2j + 1)ϑ) = (−1)jT2j+1(sin ϑ). (17)

Denote
qj(z)

def= (−1)jT2j+1(z), (18)

so that qj(sinϑ) = sin((2j + 1)ϑ). Thus the sequence {qj} is a subsequence of
the reflected permutable sequence {T2j+1, −T2j+1}. Indeed, for all non-negative
integers j and k,

qj(qk(sinϑ)) = qj(sin((2k + 1)ϑ)
= sin((2j + 1)(2k + 1)ϑ) = sin((4jk + 2j + 2k + 1)ϑ)

= q2jk+j+k(sin ϑ) = qk(qj(sin ϑ)), (19)

The linear transform with λ(x) = −x converts u(x) to −u(−x). Hence, if u
is an odd function then it is unchanged, but if u is an even function then it is
converted to −u. Thus, the permutable sequence of rational functions {xr} is
similar (via λ(x) = −x) to the permutable sequence

{−(−x)r} = · · · ,−x−4, x−3,−x−2, x−1,−1, x,−x2, x3,−x4, · · · . (20)

And the permutable chain of Chebyshev polynomials {Tj} is similar (via λ(x) =
−x) to the permutable chain

{−Tj(−x)} = −1, x,−T2(x), T3(x),−T4(x), T5(x), · · · . (21)
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2 Permutable Rational Functions

For complex z = x+ iy and positive integer n.

zn = (x+ iy)n =
n∑

j=0

(
n

j

)
ijxn−jyj = H(0)

n (x, y) + iH(1)
n (x, y) , (22)

where the real and imaginary parts of zn are given [17, Appendix 1 §2.1] by the
harmonic polynomials :

H(0)
n (x, y) =

n÷2∑
k=0

(−1)k

(
n

2k

)
xn−2ky2k (23)

H(1)
n (x, y) =

(n−1)÷2∑
k=0

(−1)k

(
n

2k + 1

)
xn−2k−1y2k+1 . (24)

For all ρ ∈ C| , log(cos ρ + i sin ρ) = iρ (by Cotes’s theorem), or

cos ρ + i sin ρ = eiρ; (25)

and hence (De Moivre’s Theorem) for integer n ≥ 0

cos(nρ) + i sin(nρ) = einρ = (cos ρ + i sin ρ)n. (26)

Therefore

cos(nρ) + i sin(nρ) = (cos ρ+ i sin ρ)n

= H(0)
n (cos ρ, sin ρ) + iH(1)

n (cos ρ, sin ρ) . (27)

Equating real and imaginary parts (for real ρ), we get that

cos(nρ) = H(0)
n (cos ρ, sin ρ), sin(nρ) = H(1)

n (cos ρ, sin ρ); (28)

and hence

tan(nρ) =
sin(nρ)
cos(nρ)

=
H

(1)
n (cos ρ, sin ρ)

H
(0)
n (cos ρ, sin ρ)

. (29)

2.1 Tangents of multiple angles

Dividing numerator and denominator in (29) by cosn ρ, we get [17, p.79] tan(nρ)
as a rational function of tan ρ, with integer coefficients:

tan(nρ) =
H

(1)
n (1, tan ρ)

H
(0)
n (1, tan ρ)

=

∑(n−1)÷2
k=0

(
n

2k + 1

)
(−1)k tan2k+1 ρ

∑n÷2
k=0

(
n

2k

)
(−1)k tan2k ρ

. (30)

Denote
t

def= tan ρ, z
def= −t2 = − tan2 ρ. (31)

Then, it follows from (30) that

tan(nρ) = rn(tan ρ), (32)
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where rn(t) is an odd rational function with positive integer coefficients

rn(t) = t
An(z)
Bn(z)

, (33)

(except that A0(t) = 0), with :

An(z) =
(n−1)÷2∑

k=0

(
n

2k + 1

)
zk, Bn(z) =

n÷2∑
k=0

(
n

2k

)
zk, (34)

and Bn(0) = 1.
In more detail, for odd n = 2j + 1:

r2j+1(t) = t
A2j+1(z)
B2j+1(z)

= t
2j + 1 +

(
2j+1

3

)
z +

(
2j+1

5

)
z2 + · · ·+

(
2j+1

4

)
zj−2 +

(
2j+1

2

)
zj−1 + zj

1 +
(
2j+1

2

)
z +

(
2j+1

4

)
z2 + · · ·+

(
2j+1

5

)
zj−2 +

(
2j+1

3

)
zj−1 + (2j + 1)zj

,

(35)

where the polynomials A2j+1 and B2j+1 are mutually reciprocal:

zjA2j+1

(
1
z

)
= B2j+1(z), zjB2j+1

(
1
z

)
= A2j+1(z) (36)

for all z 6= 0. For even n = 2j:

r2j(t) = t
A2j(z)
B2j(z)

= t
2j +

(
2j
3

)
z +

(
2j
5

)
z2 + · · ·+

(
2j
5

)
zj−3 +

(
2j
3

)
zj−2 + 2jzj−1

1 +
(
2j
2

)
z +

(
2j
4

)
z2 + · · ·+

(
2j
4

)
zj−2 +

(
2j
2

)
zj−1 + zj

, (37)

where both A2j and B2j are self–reciprocal polynomials:

A2j(z) = zj−1A2j

(
1
z

)
, B2j(z) = zjB2j

(
1
z

)
, (38)

for all z 6= 0.
For example,

r0(t) = t
0
1

= 0 , r1(t) = t
1
1

= t ,

r2(t) = t
2

1 + z
, r3(t) = t

3 + z

1 + 3z
,

r4(t) = t
4 + 4z

1 + 6z + z2
, r5(t) = t

5 + 10z + z2

1 + 10z + 5z2
,

r6(t) = t
6 + 20z + 6z2

1 + 15z + 15z2 + z3
, r7(t) = t

7 + 35z + 21z2 + z3

1 + 21z + 35z2 + 7z3
,

r8(t) = t
8 + 56z + 56z2 + 8z3

1 + 28z + 70z2 + 28z3 + z4
,

(39)
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et cetera .
Since cot ρ = tan

(
1
2π − ρ

)
, we get that

rn(cot ρ) = rn

(
tan

(π
2
− ρ

))
= tan

(nπ
2
− nρ

)
. (40)

For odd n = 2j + 1, this becomes

r2j+1(cot ρ) = tan
(
jπ + 1

2π − (2j + 1)ρ
)

= tan
(

1
2π − (2j + 1)ρ

)
= cot((2j + 1)ρ), (41)

and for even n = 2j, this becomes

r2j(cot ρ) = tan (jπ − 2jρ) = − tan(2jρ). (42)

2.2 Permutable rational function rj(t)

For the infinite sequence of odd rational functions {rj}, it follows from (32)
that, for all complex t and non–negative integers j, k, with ρ = tan−1 t,

rj
(
rk(t)

)
= rj

(
rk(tan ρ)

)
= rj(tan(kρ)) = tan(jkρ)

= rjk(tan ρ) = rjk(t), (43)

giving the functional identity for complex t and non–negative integers j, k:

rj
(
rk(t)

)
= rjk(t). (44)

Thus, the rational functions rn, with the binary operation of function com-
position, form an infinite Abelian group [4, p.34], with

rjk(t) = rj
(
rk(t)

)
= rk

(
rj(t)

)
. (45)

For example, for all t ∈ C| and integer k ≥ 0,

r4k(t) = rk

(
4t− 4t3

1− 6t2 + t4

)
=

4rk(t)− 4r3k(t)
1− 6r2k(t) + r4k(t)

. (46)

Thus we get for j = 0, 1, 2, . . . the reflected sequence of permutable odd
rational functions {rj(t), −rj(t)}

Another infinite sequence of permutable rational functions is given by
{Tj(x)/1} for j = 0, 1, 2, . . . , which is similar (via λ(x) = −x) to the permutable
rational sequence {Tj(−x)/(−1)}. And since T2i+1 is an odd polynomial, there
is also the reflected sequence {T2i+1(x)/1, T2i+1(x)/(−1)} of permutable ratio-
nal functions.

2.2.1 Reciprocal rational functions

The bilinear transform y = ξ(x) = (ax + b)/(cx + d), where ad − bc 6= 0, has
the inverse bilinear transform x = ξ−1(y) = (dy − b)/(a− yc). A function u(x)
is rational if and only if the transformed function ξ−1u(ξ(x)) is also a rational
function of x. Similarly to (9), functions u(x) and v(x) are permutable if and
only if the transformed functions ξ−1uξ and ξ−1vξ are permutable.
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In the important special case where ξ(x) = 1/x, any function v(x) gets con-
verted to another function 1/v(1/x), which we call the reciprocal of the function
v. The reciprocal of an even function is even, and the reciprocal of an odd func-
tion is odd. Any pair of rational functions v(x) and w(x) are permutable, if and
only if their reciprocal rational functions f(x) = 1/v(1/x) and g(x) = 1/w(1/x)
are permutable.

The permutable rational infinite sequence {fn(x) = Tn(x)/1} has the recip-
rocal permutable sequence {sn(x) = 1/Tn(1/x)}, for which

fn(cos ϑ) = cos(nϑ), sn(sec ϑ) = sec(nϑ). (47)

The sequence {sn(x)} is similar (via λ(x) = −x) to the permutable rational
sequence {−sn(−x)} = −s0(x), s1(x),−s2(x), s3(x),−s4(x), · · · . The rational
function s2i+1 is an odd function, giving the permutable reflected rational se-
quence {s2i+1, −s2i+1}.

The permutable odd rational infinite sequence {qj(x) = T2j+1(x)/(−1)j}
has the reciprocal permutable rational sequence {uj(x) = (−1)j/T2j+1(1/x)},
and in view of (17),

qj(sin ϑ) = sin((2j + 1)ϑ), uj(cosecϑ) = cosec((2j + 1)ϑ). (48)

The odd rational function uj has the reflected permutable sequence {uj , −uj}.
The odd rational function rn(t) has the reciprocal odd rational function

hn(t) = 1/rn(1/t), for which

rn(tan ρ) = tan(nρ), hn(cot ρ) = cot(nρ). (49)

In view of (41) and (42), this can be rewritten as

hn(t) =


rn(t) (for odd n),

−1
rn(t)

(for even n).
(50)

Since {rn} is an odd permutable sequence, we get the odd permutable reflected
reciprocal sequence {hn, −hn}.

3 Elliptic Functions

An integral of the form
∫
R(x, y) dx, where R(x, y) is a rational function of x

and y, and y2 = P (x) where P is a polynomial of degree 3 or 4, is called an
elliptic integral [18, §17.1].

3.1 Legendre Elliptic Integrals

We shall use Louis Melville Milne-Thomson’s notation for Legendre’s elliptic
integrals and Jacobian elliptic functions [18].

Adrien-Marie Legendre’s Incomplete Elliptic Integral of the First Kind, with
amplitude ϕ and parameter m, is defined [18, §17.2.7] as

F (ϕ | m) def=
∫ sin ϕ

0

dt√
(1− t2)(1−mt2)

=
∫ ϕ

0

dx√
1−m sin2 x

. (51)
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The complex parameter m can be reduced to the real case with 0 ≤ m ≤ 1.
(Earlier authors often used the modulus k, where m = k2.) F (ϕ | m) is often
abbreviated to F (ϕ), when the parameter m is to be understood.

Legendre’s Complete Elliptic Integral of the First Kind [18, §17.3.1] is

K(m) def= F ( 1
2π | m) =

∫ 1

0

dt√
(1− t2)(1−mt2)

=
∫ π/2

0

dx√
1−m sin2 x

.

(52)
As m↗ 1, then K(m) ↗∞.

Legendre’s Complementary Complete Elliptic Integral of the First Kind is
defined [18, §17.3.5] as

K ′(m) def= K(1−m). (53)

K(m) and K ′(m) are often abbreviated to K and K ′, when the parameter
m is to be understood.

The elliptic integral u = F (ϕ | m) is single-valued for integration along the
real interval [0, sinϕ], but it has infinitely many values in the case of complex
integration.

3.2 Jacobian elliptic functions

In 1827, Niels Henrik Abel inverted elliptic integrals to get elliptic functions [1,
p.264], and he shewed that elliptic functions are doubly–periodic single–valued
functions.

As functions of the complex variable u, the Jacobian elliptic functions snu,
cnu, dnu et cetera are doubly–periodic single–valued functions of u.

3.2.1 Jacobian elliptic function snu

The inverse function of the Legendre elliptic function F is ϕ = F−1(u), and
the Jacobian elliptic function sn(u | m) def= sinϕ is often abbreviated to snu,
with the parameter m implied. The function sn is single–valued for all complex
parameters [18, §16.1.3], with

u =
∫ snu

0

dt√
(1− t2)(1−mt2)

, (54)

and snu is an odd single–valued function of u.
For real u, the function sn has real period 4K(m) and range [−1, 1], with

sn(0) = 0, sn(K) = 1, sn(2K) = 0, sn(3K) = −1 and sn(4K) = 0 [18, §16.2].
Let τ = snu, so that

sn−1τ = u =
∫ τ

0

dt√
(1− t2)(1−mt2)

= F
(
sin−1 τ | m

)
. (55)

On the real interval −K ≤ u ≤ K the function sn increases monotonically from
−1 to 1, and so for real τ ∈ [−1, 1] the function sn−1τ has a single value in the
real interval [−K,K].

In addition to the real period 4K, sn also has the imaginary period i 2K ′.
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3.2.2 Jacobian elliptic function cnu

The function cn is defined by

cn(u | m) def= cos ϕ. (56)

It is often abbreviated to cnu, with the parameter m implied. Thus,

cnu =
√

1− sn2u , (57)

and cnu is an even single–valued function of u. The branch of the square root
function in (57) is determined by (56).

For real u, the function cn has real period 4K(m) and range [−1, 1], with
cn(0) = 1, cn(K) = 0, cn(2K) = −1, cn(3K) = 0 and cn(4K) = 1 [18, §16.2].
On the real interval 0 ≤ u ≤ 2K the function cn decreases monotonically from
1 to −1, and so for real r ∈ [−1, 1] the function cn−1r has a single value in the
real interval [0, 2K].

In addition to the real period 4K, cn has the complex period 2K + i 2K ′.

3.2.3 Jacobian elliptic function dnu

The Jacobian elliptic function dn is defined by

dn(u | m) def=
√

1−m sn2u . (58)

It is often abbreviated to dnu, with the parameter m implied. Thus, dnu is an
even single–valued function of u.

For real u, the function dn has real period 2K(m) and range [
√
m1, 1], with

dn(0) = 1, dn(K) =
√
m1 and dn(2K) = 1 [18, §16.2]. On the real interval

0 ≤ u ≤ K the function dn decreases monotonically from 1 to
√
m1, and so

for real r ∈ [
√
m1, 1] the function dn−1r has a single value in the real interval

[0,K].
In addition to the real period 2K, dn also has the imaginary period i 4K ′.

3.2.4 The 12 Jacobi elliptic functions

In J. W. L. Glaisher’s systematic notation, there are 9 other Jacobi elliptic
functions [18, §16.3]:

cdu def= cnu
dnu dcu def= dnu

cnu nsu def= 1
snu

sdu def= snu
dnu ncu def= 1

cnu dsu def= dnu
snu

ndu def= 1
dnu scu def= snu

cnu csu def= cnu
snu

(59)

The 6 functions snu, scu, sdu, nsu, csu, dsu are odd functions of u, and
the other 6 functions are even functions of u.

Milne-Thomson gave clear graphs [18, Figures 16.1, 16.2, 16.3] of the 12
Jacobi elliptic functions for real u (and m = 0.5). Eugene Jahnke and Fritz
Emde gave very effective graphs [14, pp. 92–93] of sn u, cn u and dn u for
complex u (and m = 0.64).
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3.3 Weierstraß elliptic function ℘

Karl Wilhelm Theodor Weierstraß developed his version of elliptic functions on
the basis of his elliptic function ℘, with complex (or real) parameters g2 and g3,
which is defined by the differential equation [21, §18.1.6]

℘′2(z) = 4℘3(z)− g2℘(z)− g3 . (60)

Hence, Weierstraß’s function ℘ is the inverse of an elliptic integral, with

z =
∫ ∞

℘(z)

dw√
4w3 − g2w − g3

(61)

for complex z.
Many mathematicians (e.g. Eric Temple Bell [2, p.207]) regard Weierstraß’s

function ℘ as being much more difficult than the Jacobi elliptic functions. But
some mathematicians seem to have responded to that difficulty as a challenge,
and they have chosen to use Weierstraß’s version of elliptic functions.

For the parameters m = 0 and m = 1, the Jacobi elliptic functions reduce
respectively [18, §16.6] to trigonometric and hyperbolic functions:

sn(u | 0) = sin u, cn(u | 0) = cos u, dn(u | 0) = 1,
sn(u | 1) = tanhu, cn(u | 1) = sechu, dn(u | 1) = sechu, (62)

et cetera.
For the Weierstraß function, as u→ 0,

℘(u) =
1
u2

+O(u2) . (63)

The simplest form of ℘(u) occurs as the limit when one period is i∞. Denote
the other period as 2ω (with nonzero real part). Then [14, p.105]

℘(u) = −1
3

( π

2ω

)2

+

 π

2ω
sin

(πu
2ω

)
2

. (64)

In 1956, Harold and Bertha Jeffreys mildly remarked that “Had Abel been
alive he would probably have remarked that this property corresponds to taking
the fundamental trigonometric function as cosec2x− 1

3 ” [15, p.688].

3.4 Addition Formulæ for Elliptic Functions

For all complex α and β, the Jacobi elliptic functions have the rational addition
formulæ: [18, §16.17],

sn(α+ β) =
snα · cnβ · dnβ + snβ · cnα · dnα

1−m sn2α · sn2β
,

cn(α+ β) =
cnα · cnβ − snα · dnα · snβ · dnβ

1−m sn2α · sn2β
,

dn(α+ β) =
dnα · dnβ −m snα · cnα · snβ · cnβ

1−m sn2α · sn2β
. (65)
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But the function ℘ has the irrational addition formula [21, §18.4.1]:

℘(α+ β) = −℘(α)− ℘(β)

+
1
4

[√
4℘(α)3 − g2℘(α)− g3 −

√
4℘(β)3 − g2℘(β)− g3

℘(α) − ℘(β)

]2

, (66)

for ℘(α) 6= ℘(β).

3.5 Elliptic Functions of multiple argument

For brevity, we shall write s, c and d for snu, cnu and dnu.
Put α = β = u in (65), and then it follows that

sn 2u =
2scd

1−ms4
, cn 2u =

1− 2s2 +ms4

1−ms4
, dn 2u =

1− 2ms2 +ms4

1−ms4
.

(67)
For m = 0 these reduce to

sin 2u = 2 sin u cos u, cos 2u = 1− 2 sin2 u, 1 = 1 ; (68)

and for m = 1 these reduce to

tanh 2u =
2 tanh u

1 + tanh2 u
(69)

and
cosh 2u = 2 cosh2u− 1 (twice). (70)

For the Weierstraß function, taking the limit of (66) as β → α, we get the
rational formula

℘(2α) = −2℘(α) +
(3℘2(α)− 1

4g2)
2

4℘3(α)− g2℘(α)− g3

=
16℘4(α) + 8g2℘2(α) + 32g3℘(α) + g2

2

16
(
4℘3(α)− g2℘(α)− g3

) , (71)

[21, §18.4.5]. Induction on (71) shews that for integer j ≥ 0,

℘
(
2jα

)
= wj(℘(α)), (72)

where wj(x) is a rational function of x with coefficients which are polynomials
in g2 and g3, with integer coefficients.

But if n is not a power of 2, then the irrational formulæ for ℘(nα) are very
complicated.

Put α = 2u and β = u in (65) and we get rational functions, with denomi-
nator and numerators expressed as polynomials in s = snu and m;

D = 1− 6ms4 + 4m[1 +m]s6 − 3m2s8,

sn 3u = s
(
3− 4[1 +m]s2 + 6ms4 −m2s8

)
/D,

cn 3u = c
(
1− 4s2 + 6ms4 − 4m2s6 +m2s8

)
/D,

dn 3u = d
(
1− 4ms2 + 6ms4 − 4ms6 +m2s8

)
/D. (73)

11



Hereafter, n is a positive integer.
Those formulæ for addition of Jacobian elliptic functions can be iterated, to

get real formulæ for sn(nu) et cetera, in terms of rational functions of z = sn2u
[11, pp. 78–87].

For odd n = 2r + 1,

sn(nu) =
sAn(z)
Dn(z)

, cn(nu) =
cBn(z)
Dn(z)

, dn(nu) =
dCn(z)
Dn(z)

; (74)

and for even n = 2r,

sn(nu) =
s c dAn(z)
Dn(z)

, cn(nu) =
Bn(z)
Dn(z)

, dn(nu) =
Cn(z)
Dn(z)

. (75)

Each of An, Bn, Cn, Dn is a polynomial of degree n2÷ 2 — except that A2r has
degree 1

2n
2 − 2 = 2r2 − 2. In each polynomial, the coefficient of each power of

z is a reciprocal polynomial in m of degree less than or equal to n2 ÷ 4, with
integer coefficients [2, p.208].

N.B. Arthur Cayley advised that, when constructing the elliptic functions of
nu = ju+ku, then j = k should be used for even n and j = k±1 should be used
for odd n — otherwise the constructed numerators and denominators will have
common multinomial factors which need to be divided out to get the rational
functions in lowest terms [11, p.79]. The appropriate degrees of z = s2 in the
numerators and denominators are given in the previous paragraph. Without
that information, it would be necessary to divide numerator and denominator
by their gcd, in the form of a polynomial in z whose coefficients are polynomials
in m with integer coefficients.

3.6 Transcendental Formulæ for
Real Multiplication of Elliptic Functions

Abel inverted some elliptic integrals and invented elliptic functions φ, f and F
which correspond to sn, cn and dn; and he constructed an explicit formula for
φ((2r+1)u) as a rational function (in factored form) of φ(u) , and similarly for f
and F [1, pp.321–323]. That is called Real Multiplication of Elliptic Functions.

Thus, the rational functions sAn(s2)/Dn(s2) perform real multiplication of
the elliptic function sn. And since (5) Tn(cos ϑ) ≡ cos(nϑ), the Chebyshev
polynomials Tn perform real multiplication of the cosine function; and (33) the
rational functions rn perform real multiplication of the tangent function.

For integers µ and ν, denote

Qµ,ν
def= 2µK(m) + i 2νK ′(m) . (76)

Then snQµ,ν = 0 for all integers µ and ν, and conversely every zero of sn is of
that form Qµ,ν .

Consider an odd positive integer n = 2r + 1. Then sn(Qµ,ν/n) has n2

distinct values for all integers µ and ν, and those are all given by −r ≤ µ ≤ r
and −r ≤ ν ≤ r. Those n2 values include sn(Q0,0/n) = 0; so that if we exclude
that zero value then there remain n2 − 1 distinct values [11, pp.94–97]. From
this, it follows that for odd n = 2r + 1, the polynomials An, Bn, Cn, Dn can

12



be explicitly factorized, in terms of the transcendental functions sn and K:

An = (2r + 1) s
r∏

µ=0

r∏
ν=−r

′
(

1− ns2
(
Qµ,ν

n

)
s2

)
, (77)

Bn = c
r∏

µ=0

r∏
ν=−r

′
(

1− ns2
(
K(m)− Qµ,ν

n

)
s2

)
, (78)

Cn = d
r∏

µ=0

r∏
ν=−r

′
(

1−m sn2

(
K(m)− Qµ,ν

n

)
s2

)
, (79)

Dn =
r∏

µ=0

r∏
ν=−r

′
(

1−m sn2

(
Qµ,ν

n

)
s2

)
. (80)

Here,
∏ ′ means that for ν = 0, µ ranges from 1 to r; but otherwise ν ranges

from −r to r. Thus the double product over µ and ν has 2r(r + 1) factors.
And similar factorizations apply for even n.
But, repeated application of Abel’s addition formulæ for elliptic functions

gives the algebraic formulæ (74) (75), with coefficients of powers of z in numer-
ator and denominator as polynomials in m with integer coefficients.

The algebraic complexity of those algebraic formulæ for sn(nu) et cetera in-
creases very rapidly with n. The immensely complicated formulæ for n = 6 and
n = 7 were constructed by Baehr in 1861, and were partially verified (for m = 0
and m = 1) by Cayley. In 1895, Cayley fitted the formulæ for sn(7u), cn(7u)
and dn(7u) onto 2 pages of fine print, only by using heavily abbreviated nota-
tion which requires careful attention to detail for interpreting it [11, pp.84–85].
The construction of explicit algebraic formulæ for those coefficients of powers
of z for general n was a problem which defied solution for over a century af-
ter Abel [6] [7] [8] [9] [12]. In 1847, Cayley sighed that “it seems hopeless to
continue this investigation any further” [5, p.298], and in 1889 he declared that
“the investigation seems to show that the integration cannot be effected in any
tolerably simple form” [10, p.589].

In 1932, Eric Temple Bell explained that “The transcendental solution of
the problem of real multiplication of elliptic functions has been classic for over
a century; the algebraic solution has not yet been achieved, although it has
engaged the attention of many writers”. Bell then gave the first general method
(very complicated) for constructing all coefficients of Dn as polynomials in n2

(and m), for general n [2]. The coefficients in the numerators An, Bn, Cn can
be constructed from the coefficients of Dn, with different rules for even n and
odd n [11, pp. 81–89], [12, pp.196–209].

The low-order terms of Dn are:

Dn(z) = 1 + 0z − 1
12n

2(n2 − 12)mz2

+ 1
90n

2(n2 − 12)(n2 − 22)[1 +m]mz3 − · · · . (81)

For even n = 2r, the high–order terms are:

D2r(z) = · · ·+ (−1)r 8
45r

2(r2 − 1)(4r2 − 1)[1 +m]mr2−2z2r2−3

+(−1)r−1 1
3r

2(4r2 − 1)(mz2)r2−1 + 0z2r2−1 + (−1)r(mz2)r2
; (82)
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and for odd n = 2r + 1, the high–order terms are:

D2r+1(z) = · · ·+ (−1)r−1 2
3r(r + 1)(2r + 1)[1 +m]mr2+r−1z2r2+2r−1

+(−1)r(2r + 1)(mz2)r(r+1). (83)

For odd n = 2r + 1,

A2r+1(z) = (2r + 1)− 2
3r(r + 1)(2r + 1)[1 +m]z + · · ·

+(−1)r 2
45r(r + 1)(2r − 1)(2r + 1)2(2r + 3)×

×[1 +m]mr2+r−2z2r2+2r−3

+(−1)r−1 1
3r(r + 1)(2r + 1)2(mz2)r2+r−1

+0z2r2+2r−1 + (−1)r(mz2)r(r+1),

B2r+1(z) = 1− 2r(r + 1)z
+ 1

3r(r + 1)[2(r2 + r − 2) + (2r + 1)2m]z2 − · · ·

+ 1
3r(r + 1)[(2r + 1)2 + 2(r2 + r − 2)m](mz2)r2+r−1

−2r(r + 1)mr(r+1)z2r2+2r−1 + (mz2)r(r+1),

C2r+1(z) = 1− 2r(r + 1)mz
+ 1

3r(r + 1)[(2r + 1)2 + 2(r2 + r − 2)m]mz2 − · · ·

+ 1
3r(r + 1)[2(r2 + r − 2) + (2r + 1)2m]mr2+r−2z2(r2+r−1)

−2r(r + 1)mr2+r−1z2r2+2r−1 + (mz2)r(r+1).

(84)

With m = 0, these reduce to

sin((2r + 1)u) =
(−1)rT2r+1(sin u)

1
, cos((2r + 1)u) =

T2r+1(cos u)
1

. (85)

For even n = 2r,

A2r(z) = 2r − 4
3r(r

2 − 1)[1 +m]z + · · ·

+(−1)r 4
3r(r

2 − 1)[1 +m]mr2−2z2r2−3 + (−1)r−12r(mz2)r2−1,

B2r(z) = 1− 2r2z + 1
3r

2[2(r2 − 1) + (4r2 − 1)m]z2 + · · ·

+ 1
3r

2[2(r2 − 1) + (4r2 − 1)m]mr2−2z2r2−2

−2r2mr2−1z2r2−1 + (mz2)r2
,

C2r(z) = 1− 2r2mz + 1
3r

2[2(r2 − 1) + (4r2 − 1)m]mz2 + · · ·

+ 1
3r

2[4r2 − 1 + 2(r2 − 1)m]mr2−2z2r2−2

−2r2mr2−1z2r2−1 + (mz2)r2
. (86)

With m = 0, these reduce to

cos(2ru) =
T2r(cos u)

1
. (87)

In each expression for the polynomials An, Bn, Cn, Dn, some powers of z can
appear both in the low–order terms (before the · · ·) and in the high–order terms
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(after the · · ·). For instance, in A2r+1 with r = 1, the term in z1 does appear
before and after the dots, with expressions which both give the term −4[1+m]z
for r = 1. In any such case, the term is to be used only once (not twice) in
evaluating the polynomial.

4 From elliptic functions
to permutable rational functions

In 1923, J. F. Ritt made a very general study [19] of permutable polynomials
and permutable rational functions “that classifies all rational functions r and s
that commute in the sense that r ◦ s = s ◦ r” [4, p.34]. Ritt’s major result is the
following:

Theorem If the rational functions Φ(z) and Ψ(z), each of degree
greater than unity, are permutable, and if no iterate of Φ(z) is iden-
tical with any iterate of Ψ(z), there exist a periodic meromorphic
function f(z), and four numbers a, b, c and d, such that

f(az + b) = Φ
[
f(z)

]
, f(cz + d) = Ψ

[
f(z)

]
.

The possibilities for f(z) are: any linear function of ez, cos z,
℘ z; in the lemniscatic case (g3 = 0), ℘2z; in the equianharmonic
case (g2 = 0), ℘′z and ℘3z. These are, essentially, the only periodic
meromorphic functions which have rational multiplication theorems.

The multipliers a and c must be such that if ω is any period of
f(z), aω and cω are also periods of f(z).

If p represents the order of f(z), that is, the number of times
f(z) assumes any given value in a primitive period strip or in a
primitive period parallelogram, the products

b
(
1− e2πi/p

)
, d

(
1− e2πi/p

)
must be periods of f(z).

Finally,
(a− 1)d− (c− 1)b

must be a period of f(z). [19, pp.399–400]

Ritt’s treatment of this topic is extremely abstract. In 50 pages of abstruse
analysis of the Weierstraß elliptic function ℘(z) on Riemann surfaces, he gave
only 2 detailed examples of a permutable pair of rational functions. His first
example is “the permutable pair zp and εzq where p and q are positive or
negative integers, and where εp−1 = 1” [19, p.413]. His second example involves
functions which are not based on periodic trigonometric or elliptic functions:
“Let

φ(z) =
ε2z2 + 2
εz + 1

, ψ(z) =
z2 + 2
z + 1

, σ(z) =
z2 − 4
z − 1

,

where ε is a primitive third root of unity. We shall see below that Φ = φσ and
Ψ = ψσ are permutable” [19, p.447].

15



For the rational function wj (cf. (72)), for all complex α, g2 and g3 and for
all non-negative integers j and k,

wj

(
wk(℘(α)

)
= wj

(
℘
(
2kα

))
= ℘

(
2j

(
2kα

))
= ℘

(
2j+kα

)
= wj+k(℘(α)).

(88)
Hence

wj

(
wk(℘(α)

)
= wj+k(℘(α)) = wk

(
wj(℘(α)

)
, (89)

and thus the sequence of rational functions {wj} is permutable.
The Weierstraß theory of elliptic functions, which Ritt used, is much more

complicated than the version using the Jacobi elliptic functions.

For each of the 12 Jacobi elliptic functions, some infinite sequences of per-
mutable rational functions are here constructed explicitly, based on the equa-
tions (74) and (75) for elliptic functions of multiple argument. In each case the
parameter m is implied.

4.1 Functions sn((2r + 1)u) and ns((2r + 1)u)

From (74),
sn((2r + 1)u) = α2r+1(snu), (90)

where α2r+1 is the odd rational function:

α2r+1(x)
def=

xA2r+1(x2)
D2r+1(x2)

. (91)

Also, using the factored forms (80) for A2r+1 and D2r+1, we get

α2r+1(x) = (2r + 1) x
r∏

g=0

r∏
h=−r

′

 1− ns2
(
Qg,h

2r + 1

)
x2

1− sn2

(
Qg,h

2r + 1

)
mx2

 . (92)

With parameter m = 0, these reduce to sin((2r+ 1)u) = (−1)rT2r+1(sin u).
As with (45), we get the functional identity for complex x and positive odd

integers j, k:
αjk(x) = αk

(
αj(x)

)
= αj

(
αk(x)

)
. (93)

Thus, all rational functions in the infinite reflected sequence {α2r+1, −α2r+1}
are permutable.

The reciprocal function is

β2r+1(x)
def=

xD2r+1(1/x2)
A2r+1(1/x2)

, (94)

with
ns((2r + 1)u) = β2r+1(nsu), (95)
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giving the infinite reflected sequence {β2r+1, −β2r+1} of permutable rational
functions. Also, using the factored form (92) for α2r+1(x), we get

β2r+1(x) =
1

α2r+1(1/x)

=
x

2r + 1

r∏
g=0

r∏
h=−r

′

x2 − sn2

(
Qg,h

2r + 1

)
m

x2 − ns2
(
Qg,h

2r + 1

)
 . (96)

4.2 Functions sd((2r + 1)u) and ds((2r + 1)u)

From (58), we get that

sd2u =
sn2u

dn2u
=

sn2u

1−m sn2u
, (97)

and hence

z = sn2u =
sd2u

1 +m sd2u
. (98)

From (74) we get that for odd n = 2r + 1,

sd((2r + 1)u) =
sd(u)A2r+1(sn2u)
C2r+1(sn2u)

. (99)

Therefore
sd((2r + 1)u) = γ2r+1(sdu), (100)

where γ2r+1 is the odd rational function:

γ2r+1(x) =
xA2r+1

(
x2

1 +mx2

)
C2r+1

(
x2

1 +mx2

) . (101)

Also, using the factored forms (80) for A2r+1 and C2r+1, we get

γ2r+1(x) = (2r + 1) x
r∏

g=0

r∏
h=−r

′

 1− ns2
(
Qg,h

2r + 1

)
x2

1 +mx2

1− ns2
(
K(m)− Qg,h

2r + 1

)
mx2

1 +mx2



= (2r + 1) x
r∏

g=0

r∏
h=−r

′

 1 +
(
m− ns2

(
Qg,h

2r + 1

))
x2

1 +m

(
1− ns2

(
K(m)− Qg,h

2r + 1

))
x2



= (2r + 1) x
r∏

g=0

r∏
h=−r

′

 1− ds2
(
Qg,h

2r + 1

)
x2

1− cs2
(
K(m)− Qg,h

2r + 1

)
mx2

 . (102)
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With parameter m = 0 this reduces to sin((2r + 1)u) = (−1)rT2r+1(sin u).
As with (45), we get the functional identity for complex x and positive odd

positive integers j, k:

γjk(x) = γj

(
γk(x)

)
= γk

(
γj(x)

)
. (103)

Thus, all rational functions in the infinite reflected sequence {γ2r+1, −γ2r+1}
are permutable.

The reciprocal function is

δ2r+1(x)
def=

1
γ2r+1(1/x)

=
xC2r+1

(
1

m+ x2

)
A2r+1

(
1

m+ x2

) , (104)

with
ds((2r + 1)u) = δ2r+1(dsu), (105)

giving the infinite reflected sequence {δ2r+1, −δ2r+1} of permutable rational
functions.

Also, using the factored form (102) for γ2r+1(x), we get

δ2r+1(x) =
1

γ2r+1(1/x)

=
x

2r + 1

r∏
g=0

r∏
h=−r

′

x2 − cs2
(
K(m)− Qg,h

2r + 1

)
m

x2 − ds2
(
Qg,h

2r + 1

)
 . (106)

4.3 Functions sc((2p + 1)u) and cs((2p + 1)u)

From (58), we get that

sc2u =
sn2u

cn2u
=

sn2u

1− sn2u
, (107)

and hence

z = sn2u =
sc2u

1 + sc2u
. (108)

From (74) we get that for odd n = 2p+ 1,

sc((2p+ 1)u) =
sc(u)A2p+1(sn2u)
B2p+1(sn2u)

. (109)

Therefore
sc((2p+ 1)u) = ε2p+1(scu), (110)

where ε2p+1 is the odd rational function:

ε2p+1(x) =
xA2p+1

(
x2

1 + x2

)
B2p+1

(
x2

1 + x2

) . (111)
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With parameter m = 0, this reduces (cf. (32)) to tan((2p+1)ρ) = r2p+1(tan ρ).
Also, using the factored forms (80) for A2r+1 and B2r+1, we get

ε2p+1(x) = (2p+ 1) x
r∏

g=0

r∏
h=−r

′

 1− ns2
(
Qg,h

2p+ 1

)
x2

1 + x2

1− ns2
(
K(m)− Qg,h

2p+ 1

)
x2

1 + x2



= (2p+ 1) x
r∏

g=0

r∏
h=−r

′

 1 +
(

1− ns2
(
Qg,h

2p+ 1

))
x2

1 +
(

1− ns2
(
K(m)− Qg,h

2p+ 1

))
x2



= (2p+ 1) x
r∏

g=0

r∏
h=−r

′

 1− cs2
(
Qg,h

2p+ 1

)
x2

1− cs2
(
K(m)− Qg,h

2p+ 1

)
x2

 . (112)

As with (45), we get the functional identity for complex x and positive odd
positive integers j, k:

εjk(x) = εj

(
εk(x)

)
= εk

(
εj(x)

)
. (113)

Thus, all rational functions in the infinite reflected sequence {ε2p+1, −ε2p+1}
are permutable.

The reciprocal function is

ζ2p+1(x)
def=

1
ε2p+1(1/x)

=
xB2p+1

(
1

1 + x2

)
A2p+1

(
1

1 + x2

) , (114)

with
cs((2p+ 1)u) = ζ2p+1(csu), (115)

giving the infinite reflected sequence {ζ2p+1, −ζ2p+1} of permutable rational
functions.

Also, using the factored form (112) for ε2p+1, we get

ζ2p+1(x) =
1

ε2p+1(1/x)

=
x

2p+ 1

r∏
g=0

r∏
h=−r

′

x2 − cs2
(
K(m)− Qg,h

2p+ 1

)
x2 − cs2

(
Qg,h

2p+ 1

)
 . (116)

4.4 Functions cn(ku) and nc(ku)

From (56), z = sn2u = 1− cn2u, and from (74) and (75) we get that

cn(ku) = ηk(cnu), (117)
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where ηk is an odd rational function for odd k = 2r + 1 and an even rational
function for even k = 2r:

ηk(x) def=


xB2r+1(1− x2)
D2r+1(1− x2)

(k = 2r + 1),

B2r(1− x2)
D2r(1− x2)

(k = 2r).

(118)

With parameter m = 0, these reduce to cos(ku) = Tk(cos u).
As with (45), we get the functional identity for complex x and positive

integers j, k:
ηjk(x) = ηj

(
ηk(x)

)
= ηk

(
ηj(x)

)
. (119)

Thus, all rational functions in the infinite sequence {ηk} are permutable.
This sequence is similar (via λ(x) = −x) to the permutable rational sequence

{−ηk(−x)} = −η0(x), η1(x),−η2(x), η3(x), · · · .
The odd rational function η2r+1 has the reflected permutable rational se-

quence {η2r+1, −η2r+1}.
The reciprocal function is

θk(x) def=
1

ηk(1/x)
, (120)

with
nc(ku) = θk(ncu), (121)

giving the sequence of permutable rational functions {θk}.
This sequence is similar (via λ(x) = −x) to the permutable rational sequence

{−θk(−x)} = −θ0(x), θ1(x),−θ2(x), θ3(x), · · · .
The odd rational function θ2r+1 has the reflected permutable rational se-

quence {θ2r+1, −θ2r+1}.

4.5 Functions dn(ku) and nd(ku)

From (58),

z = sn2u =
1− dn2u

m
, (122)

and from (74) and (75) we get that

dn(ku) = ιk(dnu), (123)

where ιk is an odd rational function for odd k = 2r + 1 and an even rational
function for even k = 2r:

ιk(x) def=



xC2r+1

(
1− x2

m

)
D2r+1

(
1− x2

m

) (k = 2r + 1),

C2r

(
1− x2

m

)
D2r

(
1− x2

m

) (k = 2r).

(124)
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As with (45), we get the functional identity for complex x and positive integers
j, k:

ιjk(x) = ιj
(
ιk(x)

)
= ιk

(
ιj(x)

)
. (125)

Thus, all rational functions in the infinite sequence {ιk} are permutable.
This sequence is similar (via λ(x) = −x) to the permutable rational sequence

{−ιk(−x)} = −ι0(x), ι1(x),−ι2(x), ι3(x), · · · .
The odd rational function ι2r+1 has the reflected permutable rational se-

quence {ι2r+1, −ι2r+1}.
The reciprocal function is

κk(x) def=
1

ιk(1/x)
, (126)

with
nd(ku) = κk(ndu), (127)

giving the sequence of permutable rational functions {κk}.
This sequence is similar (via λ(x) = −x) to the permutable rational sequence

{−κk(−x)} = −κ0(x), κ1(x),−κ2(x), κ3(x), · · · .
The odd rational function κ2r+1 has the reflected permutable rational se-

quence {κ2r+1, −κ2r+1}.

4.5.1 Duality of cn and dn

The rational functions ηk perform (118) real multiplication of the elliptic func-
tion cn, and the rational functions ιk perform (124) real multiplication of the
elliptic function dn. Rewrite those functions with m as an explicit parameter,
and we get:

ηk(cn(u |m),m) = cn(ku |m), ιk(dn(u |m),m) = dn(ku |m). (128)

Denote
ρ

def= 1/m, v
def= u

√
m . (129)

Then, by Jacobi’s Real Transformation [18, §16.11.3 & §16.11.4],

cn(u |m) ≡ dn(v | ρ), dn(u |m) ≡ cn(v | ρ) . (130)

Substitute this in (128), and we get the identity

ηk(dn(v | ρ),m) ≡ ηk(cn(u |m),m) ≡ cn(ku |m)
≡ dn(kv | ρ) ≡ ιk(dn(v | ρ), ρ) . (131)

Write x = dn(v | ρ), and we get an identity (in complex x and m, and non-
negative integer k) between two families of permutable rational functions:

ηk(x,m) ≡ ιk(x, 1/m) . (132)

And we get an identity for their permutable reciprocal functions
θk(x) = 1/ηk(1/x) (which perform real multiplication of the function nc) and
κk(x) = 1/ιk(1/x) (which perform real multiplication of the function nd):

θk(x,m) ≡ κk(x, 1/m) . (133)
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4.6 Functions cd(ku) and dc(ku)

From (56) and (58), we get that

cd2u =
cn2u

dn2u
=

1− sn2u

1−m sn2u
, (134)

and hence

z = sn2u =
1− cd2u

1−m cd2u
. (135)

From (74) and (75) we get that

cd(ku) =


cd(u)B2r+1(sn2u)
C2r+1(sn2u)

(k = 2r + 1),

B2r(sn2u)
C2r(sn2u)

(k = 2r).

(136)

Therefore
cd(ku) = λk(cdu), (137)

where λk is an odd rational function for odd k = 2r + 1 and an even rational
function for even k = 2r:

λk(x) =



xB2r+1

(
1− x2

1−mx2

)
C2r+1

(
1− x2

1−mx2

) (k = 2r + 1),

B2r

(
1− x2

1−mx2

)
C2r

(
1− x2

1−mx2

) (k = 2r).

(138)

With parameter m = 0, these reduce to cos(ku) = Tk(cos u).
As with (45), we get the functional identity for complex x and positive

integers j, k:
λjk(x) = λj

(
λk(x)

)
= λk

(
λj(x)

)
. (139)

Thus, all rational functions in the infinite sequence {λk} are permutable.
This sequence is similar to the permutable rational sequence {−λk(−x)} =

−λ0(x), λ1(x),−λ2(x), λ3(x), · · · .
The odd rational function λ2r+1 has the reflected permutable rational se-

quence {λ2r+1, −λ2r+1}.
The reciprocal function is

µk(x) def=
1

λk(1/x)
, (140)

with
dc(ku) = µk(dcu), (141)

giving the sequence of permutable rational functions {µk}.
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This sequence is similar to the permutable rational sequence {−µk(−x)} =
−µ0(x), µ1(x),−µ2(x), µ3(x), · · · .

The odd rational function µ2r+1 has the reflected permutable rational se-
quence {µ2r+1, −µ2r+1}.

Thus, many infinite sequences of permutable rational functions have been
constructed, on the basis of elliptic functions.
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